Patents Examined by Sonya D. McCall-Shepard
  • Patent number: 9618957
    Abstract: In one embodiment, an apparatus comprises a capacitor and a die. The die comprises a resistor switch coupled between a power line and the capacitor, wherein the resistor switch has an adjustable resistance, and the power line and the capacitor are both external to the die. The die also comprises a circuit configured to receive power from the power line, and a controller configured to open the resistor switch if the power line is powered down.
    Type: Grant
    Filed: May 25, 2016
    Date of Patent: April 11, 2017
    Assignee: QUALCOMM Incorporated
    Inventors: Ryan Michael Coutts, Mikhail Popovich
  • Patent number: 9614046
    Abstract: An embodiment of a semiconductor device includes a semiconductor substrate that includes a host substrate and an upper surface, an active area, a substrate opening in the semiconductor substrate that is partially defined by a recessed surface, and a thermally conductive layer disposed over the semiconductor substrate that extends between the recessed surface and a portion of the semiconductor substrate within the active area. A method for fabricating the semiconductor device includes defining an active area, forming a gate electrode over a channel in the active area, forming a source electrode and a drain electrode in the active area on opposite sides of the gate electrode, etching a substrate opening in the semiconductor substrate that is partially defined by the recessed surface, and depositing a thermally conductive layer over the semiconductor substrate that extends between the recessed surface and a portion of the semiconductor substrate over the channel.
    Type: Grant
    Filed: June 3, 2016
    Date of Patent: April 4, 2017
    Assignee: NXP USA, INC.
    Inventors: Lakshminarayan Viswanathan, Bruce M. Green, Darrell G. Hill, L. M. Mahalingam
  • Patent number: 9613798
    Abstract: A technique includes forming a film containing a first element, a second element and carbon on a substrate by performing a cycle a predetermined number of times. The cycle includes non-simultaneously performing: forming a first layer containing the first element and carbon by supplying a precursor gas having a chemical bond of the first element and carbon from a first supply part to the substrate in a process chamber, and forming a second layer by supplying a reaction gas containing the second element from a second supply part to the substrate in the process chamber and supplying a plasma-excited inert gas from a third supply part to the substrate in the process chamber to modify the first layer, the third supply part being different from the second supply part.
    Type: Grant
    Filed: February 27, 2015
    Date of Patent: April 4, 2017
    Assignee: HITACHI KOKUSAI ELECTRIC INC.
    Inventors: Ryuji Yamamoto, Yoshiro Hirose, Satoshi Shimamoto
  • Patent number: 9607985
    Abstract: A semiconductor device and a method of fabricating the same, the semiconductor device includes a substrate, a plurality of fin shaped structures, a first trench and at least one bump. The substrate has a base. The fin shaped structures protrude from the base of the substrate. The first trench recesses from the base of the substrate and has a depth being smaller than a width of each of the fin shaped structures. The at least one bump is disposed on a surface of the first trench.
    Type: Grant
    Filed: September 25, 2015
    Date of Patent: March 28, 2017
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: I-Ming Tseng, Wen-An Liang, Chen-Ming Huang
  • Patent number: 9601616
    Abstract: Power Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFETs) and methods of forming the same are provided. A power MOSFET may comprise a first drift region formed at a side of a gate electrode, and a second drift region beneath the gate electrode, adjacent to the first drift region, with a depth less than a depth of the first drift region so that the first drift region and the second drift region together form a stepwise shape. A sum of a depth of the second drift region, a depth of the gate dielectric, and a depth of the gate electrode may be of substantially a same value as a depth of the first drift region. The first drift region and the second drift region may be formed at the same time, using the gate electrode as a part of the implanting mask.
    Type: Grant
    Filed: May 5, 2016
    Date of Patent: March 21, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Fu-Yu Chu, Chih-Chang Cheng, Tung-Yang Lin, Ruey-Hsin Liu
  • Patent number: 9601380
    Abstract: After formation of gate structures over semiconductor fins and prior to formation of raised active regions, a directional ion beam is employed to form a dielectric material portion on end walls of semiconductor fins that are perpendicular to the lengthwise direction of the semiconductor fins. The angle of the directional ion beam is selected to be with a vertical plane including the lengthwise direction of the semiconductor fins, thereby avoiding formation of the dielectric material portion on lengthwise sidewalls of the semiconductor fins. Selective epitaxy of semiconductor material is performed to grow raised active regions from sidewall surfaces of the semiconductor fins. Optionally, horizontal portions of the dielectric material portion may be removed prior to the selective epitaxy process. Further, the dielectric material portion may optionally be removed after the selective epitaxy process.
    Type: Grant
    Filed: October 15, 2015
    Date of Patent: March 21, 2017
    Assignee: International Business Machines Corporation
    Inventors: Emre Alptekin, Sameer H. Jain, Viraj Y. Sardesai, Cung D. Tran, Reinaldo A. Vega
  • Patent number: 9590208
    Abstract: A light-emitting element having high external quantum efficiency is provided. A light-emitting element having a long lifetime is provided. A light-emitting element includes a light-emitting layer between a pair of electrodes. The light-emitting layer contains at least a phosphorescent compound, a first organic compound (host material) having an electron-transport property, and a second organic compound (assist material) having a hole-transport property. The light-emitting layer has a stacked-layer structure including a first light-emitting layer and a second light-emitting layer, and the first light-emitting layer contains a higher proportion of the second organic compound than the second light-emitting layer. In the light-emitting layer (the first light-emitting layer and the second light-emitting layer), a combination of the first organic compound and the second organic compound forms an exciplex.
    Type: Grant
    Filed: February 11, 2016
    Date of Patent: March 7, 2017
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hiromi Seo, Satoko Shitagaki, Satoshi Seo, Takahiro Ushikubo, Toshiki Sasaki, Shogo Uesaka
  • Patent number: 9590393
    Abstract: An electrical device that includes a first semiconductor device positioned on a first portion of a substrate and a second semiconductor device positioned on a third portion of the substrate, wherein the first and third portions of the substrate are separated by a second portion of the substrate. An interlevel dielectric layer is present on the first, second and third portions of the substrate. The interlevel dielectric layer is present over the first and second semiconductor devices. An optical interconnect is positioned over the second portion of the semiconductor substrate. At least one material layer of the optical interconnect includes an epitaxial material that is in direct contact with a seed surface within the second portion of the substrate through a via extending through the least one interlevel dielectric layer.
    Type: Grant
    Filed: April 11, 2016
    Date of Patent: March 7, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Cheng-Wei Cheng, Ning Li, Devendra K. Sadana, Kuen-Ting Shiu
  • Patent number: 9590028
    Abstract: A methodology for forming trench capacitors on an interposer wafer by an integrated process that provides high-capacitance, ultra-low profile capacitor structures and the resulting device are disclosed. Embodiments include forming a polymer block on a front side of an interposer wafer, patterning and etching the polymer block to form one or more trenches, and forming a capacitor on an upper surface of the polymer block and in the one or more trenches.
    Type: Grant
    Filed: November 23, 2015
    Date of Patent: March 7, 2017
    Assignee: GLOBALFOUNDRIES INC.
    Inventor: Luke England
  • Patent number: 9580800
    Abstract: A method for operating semiconductor manufacturing equipment is provided. The method includes forming a conductive thin film on an inner side surface of a reaction chamber and on a substrate in the reaction chamber, the conductive thin film including a first conductive material, and forming a particle preventive layer on the inner side surface of the reaction chamber in which the conductive thin film is formed.
    Type: Grant
    Filed: January 20, 2015
    Date of Patent: February 28, 2017
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Byoung-Hoon Lee, June-Hee Lee, Geun-Woo Kim, Min-Woo Song, Seok-Jun Won
  • Patent number: 9583532
    Abstract: By selectively anisotropically etching a stack film formed to cover a plurality of photodiodes and a gate electrode layer of a MOS transistor, the stack film remains on each of the plurality of photodiodes to form a lower antireflection coating and the stack film remains on a sidewall of the gate electrode layer to form a sidewall Using the gate electrode layer and the sidewall as a mask, an impurity is introduced to form a source/drain region of the MOS transistor. After the impurity was introduced, an upper antireflection coating is formed at least on a lower antireflection coating At least any of the upper antireflection coating and the lower antireflection coating is etched such that the antireflection coatings on the two respective photodiodes are different in thickness from each other.
    Type: Grant
    Filed: February 8, 2016
    Date of Patent: February 28, 2017
    Assignee: RENESAS ELECTRONICS CORPORATION
    Inventors: Akie Yutani, Yasutaka Nishioka
  • Patent number: 9564373
    Abstract: The present invention relates generally to a semiconductor device, and more particularly, to a structure and method of forming a compressive strained layer and a tensile strained layer on the same wafer. A lower epitaxial layer may be formed adjacent to a tensile strained layer. An upper epitaxial layer may be formed over a portion of the lower epitaxial layer. Thermal oxidation may convert the upper epitaxial layer to an upper oxide layer, and thermal condensation may causes a portion of the lower epitaxial layer to become a compressive strained layer. The upper oxide layer and a remaining portion of the lower epitaxial layer may be removed, leaving the tensile strained layer and the compressive strained layer.
    Type: Grant
    Filed: February 27, 2015
    Date of Patent: February 7, 2017
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Pouya Hashemi, Ali Khakifirooz, Alexander Reznicek
  • Patent number: 9564418
    Abstract: Interconnect structures with intermetallic palladium joints are disclosed herein. In one embodiment, a method of forming an interconnect structure includes depositing a first conductive material comprising nickel on a first conductive surface of a first die, and depositing a second conductive material comprising nickel on a second conductive surface of a second die spaced apart from the first surface. The method further includes depositing a third conductive material on the second conductive material, and thermally compressing tin/solder between the first and third conductive materials to form an intermetallic palladium joint that extends between the first conductive material and the second conductive material such that one end of the intermetallic palladium joint is bonded directly to the first conductive material and an opposite end of the intermetallic palladium joint is bonded directly to the second conductive material.
    Type: Grant
    Filed: October 8, 2014
    Date of Patent: February 7, 2017
    Assignee: Micron Technology, Inc.
    Inventor: Jaspreet S. Gandhi
  • Patent number: 9559008
    Abstract: A device includes a plurality of STI regions, a plurality of semiconductor strips between the STI regions and parallel to each other, and a plurality of semiconductor fins over the semiconductor strips. A gate stack is disposed over and crossing the plurality of semiconductor fins. A drain epitaxy semiconductor region is disposed on a side of the gate stack and connected to the plurality of semiconductor fins. The drain epitaxy semiconductor region includes a first portion adjoining the semiconductor fins, wherein the first portion forms a continuous region over and aligned to the plurality of semiconductor strips. The drain epitaxy semiconductor region further includes second portions farther away from the gate stack than the first portion. Each of the second portions is over and aligned to one of the semiconductor strips. The second portions are parallel to each other, and are separated from each other by a dielectric material.
    Type: Grant
    Filed: November 16, 2015
    Date of Patent: January 31, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Wun-Jie Lin, Ching-Hsiung Lo, Jen-Chou Tseng
  • Patent number: 9548404
    Abstract: Provided is a method for fabricating anti-reflection film with anti-PID effect. The method comprises: vacuuming a furnace tube, holding the temperature in the furnace at 420° C. and the pressure as 80 mTorr for 4 minutes; pretreating silicon wafers at 420° C. with a nitrous oxide flux of 3.8-4.4 slm and pressure of 1700 mTorr for 3 minutes; testing pressure to keep a inner pressure of the furnace tube as a constant value of 50 mTorr for 0.2-0.5 minute; pre-depositing at 420° C., with a ammonia gas flux of 0.1-0.5 slm, a silane flux of 180 sccm-200 sccm, a nitrous oxide flux of 3.5-4.1 slm, pressure of 1000 mTorr and radio frequency power of 4300 w for 0.3-0.5 minute; depositing a film at 450° C., with a ammonia gas flux of 2000-2200 sccm, a silane flux of 7000-7500 sccm, a nitrous oxide flux of 2-2.4 slm, pressure of 1700 mTorr and radio frequency power of 4300 w for 3 minutes; blowing and cooling the film at 420° C. with a nitrogen gas flux of 6-10 slm, pressure of 10000 mTorr for 5-8 minutes.
    Type: Grant
    Filed: June 20, 2013
    Date of Patent: January 17, 2017
    Assignee: DONGFANG ELECTRIC (YIXING) MAGI SOLAR POWER TECHNOLOGY CO., LTD
    Inventors: Lun Huang, Chunhui Lu, Junqing Wu, Zerong Hou, Jinwei Wang
  • Patent number: 9543211
    Abstract: A manufacturing method of a semiconductor structure includes the following steps. Gate structures are formed on a semiconductor substrate. A source/drain contact is formed between two adjacent gate structures. The source/drain contact is recessed by a recessing process. A top surface of the source/drain contact is lower than a top surface of the gate structure after the recessing process. A stop layer is formed on the gate structures and the source/drain contact after the recessing process. A top surface of the stop layer on the source/drain contact is lower than the top surface of the gate structure. A semiconductor structure includes the semiconductor substrate, the gate structures, a gate contact structure, and the source/drain contact. The source/drain contact is disposed between two adjacent gate structures, and the top surface of the source/drain contact is lower than the top surface of the gate structure.
    Type: Grant
    Filed: September 25, 2015
    Date of Patent: January 10, 2017
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chia-Lin Lu, Chun-Lung Chen, Yu-Cheng Tung, Kun-Yuan Liao, Feng-Yi Chang, En-Chiuan Liou, Wei-Hao Huang, Chih-Sen Huang, Ching-Wen Hung
  • Patent number: 9537090
    Abstract: A method of making a spin-torque transfer magnetic random access memory device (STT MRAM) device includes forming a tunnel barrier layer on a reference layer; forming a free layer on the tunnel barrier layer, the free layer comprising a cobalt iron boron (CoFeB) alloy layer and an iron (Fe) layer; and performing a sputtering process to form a metal oxide layer on the Fe layer.
    Type: Grant
    Filed: June 25, 2015
    Date of Patent: January 3, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventor: Guohan Hu
  • Patent number: 9537009
    Abstract: Semiconductor devices including a stressor in a recess and methods of forming the semiconductor devices are provided. The methods may include forming a fast etching region comprising phosphorous in an active region and forming a first trench in the active region by recessing the fast etching region. The methods may also include forming a second trench in the active region by enlarging the first trench using a directional etch process and forming a stressor in the second trench. The second trench may include a notched portion of the active region.
    Type: Grant
    Filed: December 1, 2015
    Date of Patent: January 3, 2017
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Dong-Suk Shin, Chul-Woong Lee, Hoi-Sung Chung, Young-Tak Kim, Nae-In Lee
  • Patent number: 9530938
    Abstract: A semiconductor light-emitting device having an electrode that can be manufactured by a simple method and is unlikely to deteriorate, and a method for forming the electrode are provided. The semiconductor light-emitting device according to the present invention has a semiconductor layered structure having a light-emitting layer that emits light by supplying electric power and an electrode formed on the semiconductor layered structure. The electrode has a reflection layer that reflects light exiting from the light-emitting layer, a barrier layer formed on the upper side and side surface of the reflection layer, and a pad layer formed only on the top surface of the barrier layer.
    Type: Grant
    Filed: January 6, 2016
    Date of Patent: December 27, 2016
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Tomohisa Sato, Jun Mori
  • Patent number: 9520497
    Abstract: Semiconductor devices including a stressor in a recess and methods of forming the semiconductor devices are provided. The methods may include forming a fast etching region comprising phosphorous in an active region and forming a first trench in the active region by recessing the fast etching region. The methods may also include forming a second trench in the active region by enlarging the first trench using a directional etch process and forming a stressor in the second trench. The second trench may include a notched portion of the active region.
    Type: Grant
    Filed: November 25, 2015
    Date of Patent: December 13, 2016
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Dong-Suk Shin, Chul-Woong Lee, Hoi-Sung Chung, Young-Tak Kim, Nae-In Lee