Patents Examined by Warren H Kilpatrick
  • Patent number: 9536890
    Abstract: A flash memory disposed on a substrate is provided. The flash memory includes a semiconductor transistor including stacked gate structures, lightly doped regions and spacers. The stacked gate structures include a gate dielectric layer, a first conductive layer, a dielectric layer and a second conductive layer sequentially disposed on the substrate. The dielectric layer has an opening there around such that the first conductive layer electrically connects with the second conductive layer. The lightly doped regions are disposed in the substrate under the opening at sides of the stacked gate structures. The spacers are disposed on sidewalls of the stacked gate structures. A width of spacers is adjusted by controlling a height of the first conductive layer under the opening. The lightly doped regions are disposed by using the dielectric layer as a mask layer, so as to gain margins of the lightly doped regions for good electrical properties.
    Type: Grant
    Filed: April 1, 2015
    Date of Patent: January 3, 2017
    Assignee: Powerchip Technology Corporation
    Inventor: Yukihiro Nagai
  • Patent number: 9530937
    Abstract: A light-emitting device, according to one embodiment, comprises: a light-emitting structure comprising a first conductive semiconductor layer, an active layer which is underneath the first conductive semiconductor layer, and a second conductive semiconductor layer which is underneath the active layer; a reflective electrode which is arranged under the light-emitting structure; a first metal layer which is arranged under the reflective electrode and is electrically connected to the second conductive semiconductor layer; a second metal layer which is arranged under the reflective electrode and is insulated from the first metal layer; and a contact portion for electrically connecting the second metal layer and the first conductive semiconductor layer.
    Type: Grant
    Filed: June 4, 2013
    Date of Patent: December 27, 2016
    Assignee: LG INNOTEK CO., LTD
    Inventor: Hwan Hee Jeong
  • Patent number: 9520367
    Abstract: A device includes a semiconductor substrate having a surface with a trench, first and second conduction terminals supported by the semiconductor substrate, a control electrode supported by the semiconductor substrate between the first and second conduction terminals and configured to control flow of charge carriers during operation between the first and second conduction terminals, and a Faraday shield supported by the semiconductor substrate and disposed between the control electrode and the second conduction terminal. At least a portion of the Faraday shield is disposed in the trench.
    Type: Grant
    Filed: August 20, 2014
    Date of Patent: December 13, 2016
    Assignee: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Zihao M. Gao, David C. Burdeaux, Wayne R. Burger, Robert A. Pryor, Philippe Renaud
  • Patent number: 9520442
    Abstract: An optoelectronic component can be used for mixing electromagnetic radiation having different wavelengths, in particular in the far field. The optoelectronic component includes a carrier. A first semiconductor chip has a first radiation exit surface for emitting electromagnetic radiation in a first spectral range is provided on the carrier and a second semiconductor chip as a second radiation exit surface for emitting electromagnetic radiation in a second spectral range is provided on the carrier. A diffusing layer is provided on the radiation exit surfaces of the semiconductor chips which face away from the carrier.
    Type: Grant
    Filed: December 18, 2014
    Date of Patent: December 13, 2016
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Ralph Wirth, Alexander Linkov
  • Patent number: 9515028
    Abstract: An array substrate and manufacturing method thereof, and a display device are provided. The array substrate comprises a TFT, an isolating layer (M), a pixel electrode (12) and a via (Q) formed through the isolating layer (14). A drain (6) of the TFT is electrically connected with the pixel electrode (12) through the via (Q). A first light blocking layer (14a) is formed on the pixel electrode (12) inside the via (Q). In the array substrate of the present invention, display effect deterioration due to the light reflection on pixel electrode inside the via is avoided by forming the light blocking layer on the pixel electrode inside the via. At the same time, prior to manufacturing the light blocking layer, a barrier layer is formed first to guarantee no residual of light blocking layer will be left on the substrate, thereby improving display performance of the display device.
    Type: Grant
    Filed: April 21, 2014
    Date of Patent: December 6, 2016
    Assignee: BOE Technology Group Co., Ltd.
    Inventors: Seungjin Choi, Heecheol Kim, Youngsuk Song, Seongyeol Yoo
  • Patent number: 9514981
    Abstract: An interconnect structure includes a dielectric layer with one or more trenches extending therein, one or more interconnect lines, and one or more first liner layers. Each interconnect line is positioned within a trench. At least one first liner layer is affixed between the trench bottom surface and the interconnect bottom surface. The interconnect structure further includes one or more second liner layers. At least one of the second liner layers is affixed directly to the interconnect top surface and at least one interconnect side surface. The interconnect structure further includes at least one air gap. Each air gap is positioned between the trench side surface and the interconnect side surface. A corresponding method of manufacture and product of a method of manufacture are also disclosed.
    Type: Grant
    Filed: December 16, 2015
    Date of Patent: December 6, 2016
    Assignee: International Business Machines Corporation
    Inventors: Dinesh A. Badami, Baozhen Li, Wen Liu, Chih-Chao Yang
  • Patent number: 9508728
    Abstract: A semiconductor device includes a substrate having a semiconducting surface having formed therein a first active region and a second active region, where the first active region consists of a substantially undoped layer at the surface and a highly doped screening layer of a first conductivity type beneath the first substantially undoped layer, and the second active region consists of a second substantially undoped layer at the surface and a second highly doped screening layer of a second conductivity type beneath the second substantially undoped layer. The semiconductor device also includes a gate stack formed in each of the first active region and the second active region consists of at least one gate dielectric layer and a layer of a metal, where the metal has a workfunction that is substantially midgap with respect to the semiconducting surface.
    Type: Grant
    Filed: January 21, 2016
    Date of Patent: November 29, 2016
    Assignee: Mie Fujitsu Semiconductor Limited
    Inventors: Thomas Hoffmann, Pushkar Ranade, Scott E. Thompson
  • Patent number: 9502419
    Abstract: A FinFET device comprises a well over a substrate, an isolation region over the well and a fin line over the well and surrounded by the isolation region, wherein the fin line is wrapped by a first gate electrode structure to form a first transistor and an end of the fin line is of a tapered shape.
    Type: Grant
    Filed: May 26, 2015
    Date of Patent: November 22, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Jhon-Jhy Liaw
  • Patent number: 9502576
    Abstract: There are provided a thin film transistor and a manufacturing method thereof, an array substrate and a display device. The thin film transistor is formed on a base substrate, and includes a gate electrode, an active layer, a source electrode and a drain electrode, the gate electrode includes a first section, a second section and a third section, the first section and the third section correspond to locations of the source electrode and the drain electrode, respectively; the base substrate has two recesses formed therein, and the first section and the third section are situated in the two recesses, respectively; the first section and the third section are covered with a filling layer; the filling layer and the second section are covered with a gate insulating layer, the active layer, the source electrode and the drain electrode in sequence.
    Type: Grant
    Filed: April 18, 2014
    Date of Patent: November 22, 2016
    Assignee: BOE Technology Group Co., Ltd.
    Inventors: Seungjin Choi, Heecheol Kim, Youngsuk Song, Seongyeol Yoo
  • Patent number: 9496226
    Abstract: A semiconductor device, a semiconductor package, and an electronic device are provided. The electronic device includes a first semiconductor package disposed on a circuit substrate. A second semiconductor package is provided on the circuit substrate and spaced apart from the first semiconductor package. An insulating electromagnetic shielding structure is provided on the top and the lateral surfaces of the first semiconductor package. A conductive electromagnetic shielding structure is provided on the circuit substrate to cover the first and second semiconductor packages and the insulating electromagnetic shielding structure.
    Type: Grant
    Filed: April 17, 2014
    Date of Patent: November 15, 2016
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Yong-Hoon Kim, In-Ho Choi, Keung-Beum Kim
  • Patent number: 9496385
    Abstract: The present disclosure provides a method for fabricating semiconductor device. The method includes forming a first dielectric layer over a substrate, forming a gate structure over a first portion of the first dielectric layer, forming a sidewall spacer over a second portion of the first dielectric layer and on the gate structure, converting the second portion of the first dielectric layer and an exposed third portion of the first dielectric layer to a first portion of a second dielectric layer and a second portion of the second dielectric layer, respectively, removing the second portion of the second dielectric layer and a portion of the substrate to form a recess in the substrate adjacent the sidewall spacer, forming a source/drain (S/D) feature in the recess and removing the gate electrode and the first portion of the first dielectric layer to form a gate trench.
    Type: Grant
    Filed: August 26, 2014
    Date of Patent: November 15, 2016
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chun Hsiung Tsai, Tsan-Chun Wang
  • Patent number: 9490199
    Abstract: An interposer for establishing a vertical connection between semiconductor packages includes an electrically insulating substrate having a first main side and a second main side opposite the first main side, a plurality of first electrical conductors at the first main side of the substrate, a plurality of second electrical conductors at the second main side of the substrate, and a programmable connection matrix at one or both main sides of the substrate. The programmable connection matrix includes programmable junctions configured to open or close electrical connections between different ones of the first electrical conductors and different ones of the second electrical conductors upon programming of the junctions.
    Type: Grant
    Filed: March 3, 2014
    Date of Patent: November 8, 2016
    Assignee: Infineon Technologies AG
    Inventors: Theng Chao Long, Tian San Tan, Wan Yee Ng, Kong Sin Chong
  • Patent number: 9484465
    Abstract: A array substrate is disclosed. The array substrate includes: a substrate (10); and a first gate metal layer (111), a first gate insulating layer (121), a semiconductor layer (13) and a source-drain electrode layer (14) disposed in this order on the substrate from bottom to top. The array substrate (10) further includes a second gate insulating layer (122) disposed on the source-drain electrode layer (14); and a second gate metal layer (112) disposed on the second gate insulating layer (122). A method of manufacturing an array substrate is also disclosed.
    Type: Grant
    Filed: December 9, 2013
    Date of Patent: November 1, 2016
    Assignee: BOE Technology Group Co., Ltd.
    Inventors: Hyun Sic Choi, Hui Li, Zhiqiang Xu, Yoon Sung Um
  • Patent number: 9478607
    Abstract: An electronic device can include a semiconductor layer having a primary surface, and an isolation structure. The isolation structure can include a first well region within the semiconductor layer and having a first conductivity, a second well region within the semiconductor layer and having a second conductivity type opposite the first conductivity type, and a third well region within the semiconductor layer having the first conductivity type. The second well region can be disposed between the first and third well regions. The first, second, and third well regions can be electrically connected to one another. The electronic device can help to allow more electrons during an electrostatic discharge or similar event to flow where the electrons will be less problematic. A process of forming the electronic device may be implemented with changes to existing masks without adding any processing operations.
    Type: Grant
    Filed: October 27, 2014
    Date of Patent: October 25, 2016
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Moshe Agam, Thierry Coffi Herve Yao, Matthew Comard
  • Patent number: 9478651
    Abstract: A circuit includes a first field effect transistor having a gate, a first drain-source terminal, and a second drain-source terminal; and a second field effect transistor having a gate, a first drain-source terminal, and a second drain-source terminal. The second field effect transistor and the first field effect transistor are of the same type, i.e., both re-channel transistors or both p-channel transistors. The second drain-source terminal of the first field effect transistor is coupled to the first drain-source terminal of the second field effect transistor; and the gate of the second field effect transistor is coupled to the first drain-source terminal of the second field effect transistor. The resulting three-terminal device can be substituted for a single field effect transistor that would otherwise suffer breakdown under proposed operating conditions.
    Type: Grant
    Filed: June 6, 2015
    Date of Patent: October 25, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Stephen W. Bedell, Bahman Hekmatshoartabari, Devendra K. Sadana, Ghavam G. Shahidi, Davood Shahrjerdi
  • Patent number: 9472741
    Abstract: A semiconductor light-emitting device includes a substrate; a first cladding layer formed on the substrate; a first guide layer formed on the first cladding layer; an active layer formed on the first guide layer; a second guide layer formed on the active layer; a contact layer formed on the second guide layer; a cladding electrode formed on the contact layer, and made of conductive metal oxide; and a pad electrode electrically coupled to the cladding electrode. The semiconductor light-emitting device includes a mesa structure including the contact layer. The cladding electrode has a greater width than the mesa structure. The cladding electrode covers an upper surface and side surfaces of the mesa structure, and is electrically coupled to the contact layer.
    Type: Grant
    Filed: September 16, 2013
    Date of Patent: October 18, 2016
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventor: Hiroshi Ohno
  • Patent number: 9461276
    Abstract: An organic EL device includes: a reflective electrode; a transparent electrode opposite the reflective electrode; an organic layer including a light-emitting layer between the reflective electrode and transparent electrode; and a low refractive index layer between the reflective electrode and light-emitting layer. The low refractive index layer has a function of transporting/injecting electrons/holes, and has a lower refractive index than the light-emitting layer. Distance between the surface of the reflective electrode and a central light-emitting position of the light-emitting layer is 300 nm or less. Furthermore, ?n×d/???0.009 and ?n×d/???0.
    Type: Grant
    Filed: September 26, 2013
    Date of Patent: October 4, 2016
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Yasuhisa Inada, Taku Hirasawa, Shinichi Wakabayashi, Masahito Yamana
  • Patent number: 9443944
    Abstract: Devices and methods for forming semiconductor devices with middle of line capacitance reduction in self-aligned contact process flow and fabrication are provided. One method includes, for instance: obtaining a wafer with at least one source, drain, and gate; forming a first contact region over the at least one source and a second contact region over the at least one drain; and forming at least one first and second small contact over the first and second contact regions. One intermediate semiconductor device includes, for instance: a wafer with a gate, source region, and drain region; at least one first contact region positioned over a portion of the source; at least one second contact region positioned over a portion of the drain; at least one first small contact positioned above the first contact region; and at least one second small contact positioned above the second contact region.
    Type: Grant
    Filed: November 14, 2014
    Date of Patent: September 13, 2016
    Assignees: GLOBALFOUNDRIES INC., INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Hui Zang, Balasubramanian Pranatharthiharan
  • Patent number: 9412822
    Abstract: One method disclosed includes, among other things, covering the top surface and a portion of the sidewalls of an initial fin structure with etch stop material, forming a sacrificial gate structure around the initial fin structure, forming a sidewall spacer adjacent the sacrificial gate structure, removing the sacrificial gate structure, with the etch stop material in position, to thereby define a replacement gate cavity, performing at least one etching process through the replacement gate cavity to remove a portion of the semiconductor substrate material of the fin structure positioned under the replacement gate cavity that is not covered by the etch stop material so as to thereby define a final fin structure and a channel cavity positioned below the final fin structure and substantially filling the channel cavity with a stressed material.
    Type: Grant
    Filed: March 7, 2014
    Date of Patent: August 9, 2016
    Assignees: GLOBALFOUNDRIES Inc., International Business Machines Corporation
    Inventors: Xiuyu Cai, Ruilong Xie, Kangguo Cheng, Ali Khakifirooz, Ajey P. Jacob, Witold P. Maszara
  • Patent number: 9406809
    Abstract: There is provided a field effect transistor having, on a substrate, at least a gate electrode, a gate insulating film, an active layer mainly containing an oxide semiconductor that contains at least one of In, Ga or Zn, a source electrode, and a drain electrode, the field effect transistor including: a heat diffusion layer, wherein, given that a thermal conductivity of the substrate is Nsub (W/mK), a thermal conductivity of the heat diffusion layer is Nkaku (W/mK), a film thickness of the heat diffusion layer is T (mm), a planar opening ratio of the heat diffusion layer is R (0?R?1), and S=T×R, the thermal conductivity Nsub of the substrate satisfies the condition Nsub<1.8, and the thermal conductivity Nkaku of the heat diffusion layer satisfies the conditions Nkaku>3.0×S^(?0.97×e^(?1.2×Nsub)) and Nkaku?Nsub.
    Type: Grant
    Filed: September 12, 2013
    Date of Patent: August 2, 2016
    Assignee: FUJIFILM Corporation
    Inventors: Kenichi Umeda, Takamichi Fujii