Patents by Inventor Chia-Jung Hsu

Chia-Jung Hsu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11145733
    Abstract: The present invention discloses a method for forming a semiconductor device with a reduced silicon horn structure. After a pad nitride layer is removed from a substrate, a hard mask layer is conformally deposited over the substrate. The hard mask layer is then etched and trimmed to completely remove a portion of the hard mask layer from an active area and a portion of the hard mask layer from an oblique sidewall of a protruding portion of a trench isolation region around the active area. The active area is then etched to form a recessed region. A gate dielectric layer is formed in the recessed region and a gate electrode layer is formed on the gate dielectric layer.
    Type: Grant
    Filed: September 27, 2020
    Date of Patent: October 12, 2021
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chin-Hung Chen, Chih-Kai Hsu, Ssu-I Fu, Chia-Jung Hsu, Chun-Ya Chiu, Yu-Hsiang Lin, Po-Wen Su, Chung-Fu Chang, Guang-Yu Lo, Chun-Tsen Lu
  • Publication number: 20210202308
    Abstract: Provided is a semiconductor device, including a substrate including a pixel region, a gate structure on the substrate in the pixel region, wherein the gate structure comprises a gate dielectric layer and a gate conductive layer on the gate dielectric layer; a dielectric layer located over the substrate and the gate structure; and a contact located in the dielectric layer and electrically connected to the gate conductive layer. The contact includes a doped polysilicon layer in contact with the gate conductive layer; a metal layer located on the doped polysilicon layer, wherein a part of the metal layer is embedded in the doped polysilicon layer; a barrier layer located between the metal layer and the doped polysilicon layer; and a metal silicide layer located between the barrier layer and the doped polysilicon layer.
    Type: Application
    Filed: February 25, 2021
    Publication date: July 1, 2021
    Applicant: United Microelectronics Corp.
    Inventors: Chih-Kai Hsu, Ssu-I Fu, Chia-Jung Hsu, Chun-Ya Chiu, Chin-Hung Chen, Yu-Hsiang Lin
  • Publication number: 20210193823
    Abstract: A method for fabricating semiconductor device includes: forming a first semiconductor layer and an insulating layer on a substrate; removing the insulating layer and the first semiconductor layer to form openings; forming a second semiconductor layer in the openings; and patterning the second semiconductor layer, the insulating layer, and the first semiconductor layer to form fin-shaped structures.
    Type: Application
    Filed: March 10, 2021
    Publication date: June 24, 2021
    Inventors: Chin-Hung Chen, Ssu-I Fu, Chih-Kai Hsu, Chia-Jung Hsu, Yu-Hsiang Lin
  • Patent number: 11011533
    Abstract: A memory structure including a first select transistor, a first floating gate transistor, a second select transistor, a second floating gate transistor, and a seventh doped region is provided. The first select transistor includes a select gate, a first doped region, and a second doped region. The first floating gate transistor includes a floating gate, the second doped region, and a third doped region. The second select transistor includes the select gate, a fourth doped region, and a fifth doped region. The second floating gate transistor includes the floating gate, the fifth doped region, and a sixth doped region. A gate width of the floating gate in the second floating gate transistor is greater than a gate width of the floating gate in the first floating gate transistor. The floating gate covers at least a portion of the seventh doped region.
    Type: Grant
    Filed: December 14, 2018
    Date of Patent: May 18, 2021
    Assignee: eMemory Technology Inc.
    Inventors: Chia-Jung Hsu, Wein-Town Sun
  • Publication number: 20210124864
    Abstract: A power rail design method is disclosed that includes the steps outlined below. A plurality of power rails and a plurality of power domains corresponding thereto in an integrated circuit design file are identified. A design rule check for a plurality of circuit units in the integrated circuit design file is performed to retrieve a plurality of non-violating circuit regions that correspond to the power rails in each of the power domains. The power rails corresponding to at least part of the plurality of non-violating circuit regions in the integrated circuit design file are widened to occupy at least part of the non-violating circuit regions for the plurality of power rails.
    Type: Application
    Filed: October 22, 2020
    Publication date: April 29, 2021
    Inventors: Cheng-Chen HUANG, Yun-Ru WU, Hsin-Chang LIN, Shu-Yi KAO, Chih-Chan CHEN, Chia-Jung HSU, Li-Yi LIN
  • Patent number: 10985264
    Abstract: A method for fabricating semiconductor device includes: forming a first semiconductor layer and an insulating layer on a substrate; removing the insulating layer and the first semiconductor layer to form openings; forming a second semiconductor layer in the openings; and patterning the second semiconductor layer, the insulating layer, and the first semiconductor layer to form fin-shaped structures.
    Type: Grant
    Filed: April 9, 2019
    Date of Patent: April 20, 2021
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chin-Hung Chen, Ssu-I Fu, Chih-Kai Hsu, Chia-Jung Hsu, Yu-Hsiang Lin
  • Patent number: 10971397
    Abstract: A method of fabricating a semiconductor device includes the following steps. A substrate is provided. The substrate includes a pixel region having a first conductive region and a logic region having a second conductive region. A dielectric layer is formed on the substrate to cover the first conductive region. A first contact opening is formed in the dielectric layer to expose the first conductive region. A doped polysilicon layer is sequentially formed in the first contact opening. A first metal silicide layer is formed on the doped polysilicon layer. A second contact opening is formed in the dielectric layer to expose the second conductive region. A barrier layer and a metal layer are respectively formed in the first contact opening and the second contact opening.
    Type: Grant
    Filed: September 12, 2019
    Date of Patent: April 6, 2021
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chih-Kai Hsu, Ssu-I Fu, Chia-Jung Hsu, Chun-Ya Chiu, Chin-Hung Chen, Yu-Hsiang Lin
  • Publication number: 20210050456
    Abstract: A manufacturing method of a semiconductor device includes the following steps. An opening is formed penetrating a dielectric layer on a semiconductor substrate. A stacked structure is formed on the dielectric layer. The stacked structure includes a first semiconductor layer partly formed in the opening and partly formed on the dielectric layer, a sacrificial layer formed on the first semiconductor layer, and a second semiconductor layer formed on the sacrificial layer. A patterning process is performed for forming a fin-shaped structure including the first semiconductor layer, the sacrificial layer, and the second semiconductor layer. An etching process is performed to remove the sacrificial layer in the fin-shaped structure. The first semiconductor layer in the fin-shaped structure is etched to become a first semiconductor wire by the etching process. The second semiconductor layer in the fin-shaped structure is etched to become a second semiconductor wire by the etching process.
    Type: Application
    Filed: September 16, 2019
    Publication date: February 18, 2021
    Inventors: Chin-Hung Chen, Ssu-I Fu, Chih-Kai Hsu, Chun-Ya Chiu, Chia-Jung Hsu, Yu-Hsiang Lin
  • Publication number: 20210050255
    Abstract: A method of fabricating a semiconductor device includes the following steps. A substrate is provided. The substrate includes a pixel region having a first conductive region and a logic region having a second conductive region. A dielectric layer is formed on the substrate to cover the first conductive region. A first contact opening is formed in the dielectric layer to expose the first conductive region. A doped polysilicon layer is sequentially formed in the first contact opening. A first metal silicide layer is formed on the doped polysilicon layer. A second contact opening is formed in the dielectric layer to expose the second conductive region. A barrier layer and a metal layer are respectively formed in the first contact opening and the second contact opening.
    Type: Application
    Filed: September 12, 2019
    Publication date: February 18, 2021
    Applicant: United Microelectronics Corp.
    Inventors: Chih-Kai Hsu, Ssu-I Fu, Chia-Jung Hsu, Chun-Ya Chiu, Chin-Hung Chen, Yu-Hsiang Lin
  • Publication number: 20200411329
    Abstract: A planarization method and a CMP method are provided. The planarization method includes providing a substrate with a first region and a second region having different degrees of hydrophobicity or hydrophilicity and performing a surface treatment to the first region to render the degrees of hydrophobicity or hydrophilicity in proximity to that of the second region. The CMP method includes providing a substrate with a first region and a second region; providing a polishing slurry on the substrate, wherein the polishing slurry and the surface of the first region have a first contact angle, and the polishing slurry and the surface of the first region have a second contact angle; modifying the surface of the first region to make a contact angle difference between the first contact angle and the second contact angle equal to or less than 30 degrees.
    Type: Application
    Filed: September 12, 2020
    Publication date: December 31, 2020
    Inventors: TUNG-KAI CHEN, CHING-HSIANG TSAI, KAO-FENG LIAO, CHIH-CHIEH CHANG, CHUN-HAO KUNG, FANG-I CHIH, HSIN-YING HO, CHIA-JUNG HSU, HUI-CHI HUANG, KEI-WEI CHEN
  • Publication number: 20200365722
    Abstract: A memory device includes a well, a first gate layer, a second gate layer, a doped region, a blocking layer and an alignment layer. The first gate layer is formed on the well. The second gate layer is formed on the well. The doped region is formed within the well and located between the first gate layer and the second gate layer. The blocking layer is formed to cover the first gate layer, the first doped region and a part of the second gate layer and used to block electrons from excessively escaping. The alignment layer is formed on the blocking layer and above the first gate layer, the doped region and the part of the second gate layer. The alignment layer is thinner than the blocking layer, and the alignment layer is thinner than the first gate layer and the second gate layer.
    Type: Application
    Filed: May 12, 2020
    Publication date: November 19, 2020
    Inventors: Chia-Jung Hsu, Wei-Ren Chen, Wein-Town Sun
  • Patent number: 10797064
    Abstract: A non-volatile memory cell includes a floating-gate transistor, a select transistor, and a coupling structure. The floating-gate transistor is deposited in a P-well and includes a gate terminal coupled to a floating gate which is a first polysilicon layer, a drain terminal coupled to a bit line, and a source terminal coupled to a first node. The select transistor is deposited in the P-well and includes a gate terminal coupled to a select gate which is coupled to a word line, a drain terminal coupled to the first node, and a source terminal coupled to the source line. The floating-gate transistor and the select transistor are N-type transistors. The coupling structure is formed by extending the first polysilicon layer to overlap a control gate, in which the control gate is a P-type doped region in an N-well and the control gate is coupled to a control line.
    Type: Grant
    Filed: July 11, 2019
    Date of Patent: October 6, 2020
    Assignee: EMEMORY TECHNOLOGY INC.
    Inventor: Chia-Jung Hsu
  • Patent number: 10790187
    Abstract: The disclosure relates to a cleaning composition that aids in the removal of post-etch residues and aluminum-containing material, e.g., aluminum oxide, in the production of semiconductors that utilize an aluminum-containing etch stop layer. The compositions have a high selectivity for post-etch residue and aluminum-containing materials relative to low-k dielectric materials, cobalt-containing materials and other metals on the microelectronic device.
    Type: Grant
    Filed: January 17, 2018
    Date of Patent: September 29, 2020
    Assignee: ENTEGRIS, INC.
    Inventors: Emanuel I. Cooper, Makonnen Payne, WonLae Kim, Eric Hong, Sheng-Hung Tu, Chieh Ju Wang, Chia-Jung Hsu
  • Publication number: 20200295160
    Abstract: A method for fabricating semiconductor device includes: forming a first semiconductor layer and an insulating layer on a substrate; removing the insulating layer and the first semiconductor layer to form openings; forming a second semiconductor layer in the openings; and patterning the second semiconductor layer, the insulating layer, and the first semiconductor layer to form fin-shaped structures.
    Type: Application
    Filed: April 9, 2019
    Publication date: September 17, 2020
    Inventors: Chin-Hung Chen, Ssu-I Fu, Chih-Kai Hsu, Chia-Jung Hsu, Yu-Hsiang Lin
  • Patent number: 10777423
    Abstract: A planarization method and a CMP method are provided. The planarization method includes providing a substrate with a first region and a second region having different degrees of hydrophobicity or hydrophilicity and performing a surface treatment to the first region to render the degrees of hydrophobicity or hydrophilicity in proximity to that of the second region. The CMP method includes providing a substrate with a first region and a second region; providing a polishing slurry on the substrate, wherein the polishing slurry and the surface of the first region have a first contact angle, and the polishing slurry and the surface of the first region have a second contact angle; modifying the surface of the first region to make a contact angle difference between the first contact angle and the second contact angle equal to or less than 30 degrees.
    Type: Grant
    Filed: June 8, 2018
    Date of Patent: September 15, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Tung-Kai Chen, Ching-Hsiang Tsai, Kao-Feng Liao, Chih-Chieh Chang, Chun-Hao Kung, Fang-I Chih, Hsin-Ying Ho, Chia-Jung Hsu, Hui-Chi Huang, Kei-Wei Chen
  • Publication number: 20200091168
    Abstract: A non-volatile memory cell includes a floating-gate transistor, a select transistor, and a coupling structure. The floating-gate transistor is deposited in a P-well and includes a gate terminal coupled to a floating gate which is a first polysilicon layer, a drain terminal coupled to a bit line, and a source terminal coupled to a first node. The select transistor is deposited in the P-well and includes a gate terminal coupled to a select gate which is coupled to a word line, a drain terminal coupled to the first node, and a source terminal coupled to the source line. The floating-gate transistor and the select transistor are N-type transistors. The coupling structure is formed by extending the first polysilicon layer to overlap a control gate, in which the control gate is a P-type doped region in an N-well and the control gate is coupled to a control line.
    Type: Application
    Filed: July 11, 2019
    Publication date: March 19, 2020
    Applicant: eMemory Technology Inc.
    Inventor: Chia-Jung Hsu
  • Publication number: 20200013633
    Abstract: A method of selectively removing aluminium oxide or nitride material from a microelectronic substrate, the method comprising contacting the material with an aqueous etching composition comprising: an etchant comprising a source of fluoride; and a metal corrosion inhibitor; wherein the composition has a pH in the range of from 3 to 8. Aqueous etching compositions and uses are also described.
    Type: Application
    Filed: June 17, 2019
    Publication date: January 9, 2020
    Inventors: Chieh Ju WANG, Hsing-Chen WU, Chia-Jung HSU
  • Publication number: 20200006361
    Abstract: An erasable programmable non-volatile memory includes a first select transistor, a first floating gate transistor, a second select transistor and a second floating gate transistor. A select gate and a first source/drain terminal of the first select transistor receive a select gate voltage and a first source line voltage, respectively. A first source/drain terminal and a second source/drain terminal of the first floating gate transistor are connected with a second source/drain terminal of the first select transistor and a first bit line voltage, respectively. The second select transistor also includes the select gate. A first source/drain terminal of the second select transistor receive a second source line voltage. A first source/drain terminal and a second source/drain terminal of the second floating gate transistor are connected with the second source/drain terminal of the second select transistor and a second bit line voltage, respectively.
    Type: Application
    Filed: April 29, 2019
    Publication date: January 2, 2020
    Inventor: Chia-Jung HSU
  • Publication number: 20200006363
    Abstract: An erasable programmable non-volatile memory includes a first select transistor, a first floating gate transistor, a second select transistor and a second floating gate transistor. A select gate and a first source/drain terminal of the first select transistor receive a first select gate voltage and a first source line voltage, respectively. A first source/drain terminal and a second source/drain terminal of the first floating gate transistor are connected with a second source/drain terminal of the first select transistor and a first bit line voltage, respectively. A select gate and a first source/drain terminal of the second select transistor receive a second select gate voltage and a second source line voltage, respectively. A first source/drain terminal and a second source/drain terminal of the second floating gate transistor are connected with the second source/drain terminal of the second select transistor and a second bit line voltage, respectively.
    Type: Application
    Filed: February 21, 2019
    Publication date: January 2, 2020
    Inventors: Chia-Jung HSU, Wein-Town SUN
  • Patent number: 10516810
    Abstract: A method of performing gamut mapping on an input image for an image output device includes receiving the input image to analyze a color distribution of the input image; determining a protect range corresponding to a first percentage of color codes of the input image and a compression range corresponding to a second percentage of the color codes of the input image based on the color distribution of the input image; and moving at least one of the color codes of the input image outside the protect range of the color codes to the compression range by a compression algorithm to perform gamut mapping on the input image.
    Type: Grant
    Filed: May 30, 2018
    Date of Patent: December 24, 2019
    Assignee: NOVATEK Microelectronics Corp.
    Inventors: Chia-Jung Hsu, Wan-Ching Tsai, Chao-Wei Ho, Chih-Chia Kuo