Patents by Inventor Chia-Ta Hsieh

Chia-Ta Hsieh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6965144
    Abstract: A new structure is disclosed for semiconductor devices in which contact regions are self-aligned to conductive lines. Openings to a gate oxide layer, in partially fabricated devices on a silicon substrate, have insulating sidewalls. First polysilicon lines disposed against the insulating sidewalls extend from below the top of the openings to the gate oxide layer. Oxide layers are grown over the top and exposed sides of the first polysilicon lines serving to insulate the first polysilicon lines. Polysilicon contact regions are disposed directly over and connect to silicon substrate regions through openings in the gate oxide layer and fill the available volume of the openings. Second polysilicon lines connect to the contact regions and are disposed over the oxide layers grown on the first polysilicon lines.
    Type: Grant
    Filed: July 29, 2004
    Date of Patent: November 15, 2005
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventor: Chia Ta Hsieh
  • Patent number: 6958939
    Abstract: A flash memory cell of an EEPROM split-gate flash memory, the memory cell including a substrate having a plurality of active regions, and a floating gate structure disposed over the substrate. The floating gate structure extends across at least three of the active regions of the substrate such that the floating gate structure and the at least three active regions define at least two channel regions dedicated for programming.
    Type: Grant
    Filed: September 15, 2003
    Date of Patent: October 25, 2005
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chia-Ta Hsieh, Chin-Huang Wang, I-Ming Chang, Hsiang-Tai Lu
  • Publication number: 20050232007
    Abstract: A multi-bit split-gate (MSG) flash cell with multi-shared source/drain, a method of making and a method of programming the same are disclosed. Furthermore, a method of bit-by-bit erasing, in addition to page erasing, of a plurality of cells of two or more is disclosed through the application of a positive voltage forced onto the control gate of the unselected cell. Thus, by providing the bit-by-bit erasing flexibility, the bit alterability is enhanced. The MSG is formed with N+1 stacked gates comprising floating gates and control gates, separated by N select gates, all sharing the same source/drain between a pair of bit lines. The programming, that is, writing of the plurality of N+1 bits is accomplished also bit by bit where the programmed bits are selected by word line, bit line and control gate. The read operation is similar to the write operation.
    Type: Application
    Filed: June 20, 2005
    Publication date: October 20, 2005
    Inventor: Chia-Ta Hsieh
  • Publication number: 20050207264
    Abstract: A split-gate flash memory cell having a three-dimensional source capable of three-dimensional coupling with the floating gate of the cell, as well as a method of forming the same are provided. This is accomplished by first forming an isolation trench, lining it with a conformal oxide, then filling with an isolation oxide and then etching the latter to form a three-dimensional coupling region in the upper portion of the trench. A floating gate is next formed by first filling the three-dimensional region of the trench with polysilicon and etching it. The control gate is formed over the floating gate with an intervening inter-poly oxide. The floating gate forms legs extending into the three-dimensional coupling region of the trench thereby providing a three-dimensional coupling with the source which also assumes a three-dimensional region. The leg or the side-wall of the floating gate forming the third dimension provides the extra area through which coupling between the source and the floating gate is increased.
    Type: Application
    Filed: May 5, 2005
    Publication date: September 22, 2005
    Inventors: Chia-Ta Hsieh, Yai-Fen Lin, Di-Son Kuo, Hung-Cheng Sung, Jack Yeh
  • Publication number: 20050190595
    Abstract: A split-gate, P-channel flash memory cell having a band-to-band hot electron (BBHE) programming method is defined to improve the endurance characteristics of performance of the cell. The split-gate, P-channel structure, which includes a P+ drain, P+ source, floating gate and a control gate, advantageously improves protection from over-erase and hot-hole trap conditions, and improves programming speed and higher injection efficiency. The cell is erased by a polysilicon-polysilicon tunneling technique.
    Type: Application
    Filed: February 27, 2004
    Publication date: September 1, 2005
    Inventors: Wen-Ting Chu, Chia-Ta Hsieh
  • Patent number: 6933555
    Abstract: A multi-bit split-gate (MSG) flash cell with multi-shared source/drain, a method of making and a method of programming the same are disclosed. Furthermore, a method of bit-by-bit erasing, in addition to page erasing, of a plurality of cells of two or more is disclosed through the application of a positive voltage forced onto the control gate of the unselected cell. Thus, by providing the bit-by-bit erasing flexibility, the bit alterability is enhanced. The MSG is formed with N+1 stacked gates comprising floating gates and control gates, separated by N select gates, all sharing the same source/drain between a pair of bit lines. The programming, that is, writing of the plurality of N+1 bits is accomplished also bit by bit where the programmed bits are selected by word line, bit line and control gate. The read operation is similar to the write operation.
    Type: Grant
    Filed: October 16, 2003
    Date of Patent: August 23, 2005
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventor: Chia-Ta Hsieh
  • Patent number: 6933198
    Abstract: A method for forming a floating gate electrode within a split gate field effect transistor device provides for isotropically processing a blanket isotropically processable material layer having a patterned mask layer formed thereover to form a patterned isotropically processed material layer which encroaches beneath the patterned mask layer. The patterned isotropically processed material layer may then be employed as a mask for forming a floating gate electrode from a blanket floating gate electrode material layer. The method provides for forming adjacent floating gate electrodes with less than minimally photolithographically resolvable separation.
    Type: Grant
    Filed: December 20, 2002
    Date of Patent: August 23, 2005
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd
    Inventors: Wen-Ting Chu, Chia-Ta Hsieh, Chrong-Jung Lin
  • Patent number: 6921695
    Abstract: A split gate FET wordline electrode structure and method for forming the same including an improved polysilicon etching process including providing a semiconductor wafer process surface comprising first exposed polysilicon portions and adjacent oxide portions; forming a first oxide layer on the exposed polysilicon portions; blanket depositing a polysilicon layer on the first exposed polysilicon portions and adjacent oxide portions; forming a hardmask layer on the polysilicon layer; carrying out a multi-step reactive ion etching (RIE) process to etch through the hardmask layer and etch through a thickness portion of the polysilicon layer to form second polysilicon portions adjacent the oxide portions having upward protruding outer polysilicon fence portions; contacting the semiconductor wafer process surface with an aqueous HF solution; and, carrying out a downstream plasma etching process to remove polysilicon fence portions.
    Type: Grant
    Filed: October 14, 2003
    Date of Patent: July 26, 2005
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hsiu Ouyang, Chi-Hsin Lo, Chen-Ming Huang, Chia-Ta Hsieh, Chia-Shiung Tsai
  • Publication number: 20050156224
    Abstract: A new method to form MOS gates in an integrated circuit device is achieved. The method is particularly useful for forming floating gates in split gate flash transistors. The method comprises providing a substrate. A dielectric layer is formed overlying the substrate. A conductor layer is formed overlying the dielectric layer. A first masking layer is deposited overlying the conductor layer. The first masking layer is patterned to selectively expose the conductor layer. A second masking layer is deposited overlying the first masking layer and the conductor layer. The second masking layer is etched back to form spacers on sidewalls of the first masking layer. The conductor layer is etched through where exposed by the first masking layer and the spacers to thereby form MOS gates in the manufacture of the integrated circuit device.
    Type: Application
    Filed: February 17, 2005
    Publication date: July 21, 2005
    Inventors: Chia-Ta Hsieh, Yi-Jiun Lin, Feng-Jia Shiu, Hung-Cheng Sung, Chi-Hsin Lo
  • Publication number: 20050156223
    Abstract: A structure for flash memory cells with improved endurance characteristics is disclosed. Isolation regions are formed in a semiconductor region separating cells and also separating programming bit line channel regions of a cell from reading bit line channel regions of a cell. A conductive floating gates has a first portion in the programming bit line channel region of a cell and a second portion in the reading bit line channel region of the cell and a third connecting portion passing over an isolation region.
    Type: Application
    Filed: January 21, 2004
    Publication date: July 21, 2005
    Inventors: Hsiang-Tai Lu, Chia-Ta Hsieh
  • Patent number: 6903408
    Abstract: A new method to form flash memory devices in the manufacture of an integrated circuit device is achieved. The method comprises providing a substrate. A first film is formed comprising a first oxide layer overlying the substrate and a floating gate layer overlying the first oxide layer. A second film is formed comprising a second oxide layer overlying the first film, a control gate layer overlying the second oxide layer, and an insulating layer overlying the control gate layer. The first and second films are patterned to form stacked gates comprising floating gates and control gates. Ions are implanted into the substrate between the stacked gates to form source and drain regions. A third oxide layer is then formed on the sidewalls of the stacked gates. A plug layer is then deposited overlying the substrate and the stacked gates and filling spaces between the stacked gates.
    Type: Grant
    Filed: October 9, 2003
    Date of Patent: June 7, 2005
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventor: Chia-Ta Hsieh
  • Patent number: 6893917
    Abstract: A new structure is disclosed for semiconductor devices with which contact regions are self-aligned to conductive lines. Openings to a gate oxide layer, in partially fabricated devices on a silicon substrate, having insulating sidewalls. First polysilicon lines disposed against the insulating sidewalls extend from below the top of the openings to the gate oxide layer. Oxide layers are grown over the top and exposed sides of the first polysilicon lines serving to insulate the first polysilicon lines. Polysilicon contact regions are disposed directly over and connect to silicon substrate regions through openings in the gate oxide layer and fill the available volume of the openings. Second polysilicon lines connect to the contact regions and are disposed over the oxide layers grown on the first polysilicon lines.
    Type: Grant
    Filed: June 24, 2002
    Date of Patent: May 17, 2005
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventor: Chia-Ta Hsieh
  • Patent number: 6881629
    Abstract: A new method to form MOS gates in an integrated circuit device is achieved. The method is particularly useful for forming floating gates in split gate flash transistors. The method comprises providing a substrate. A dielectric layer is formed overlying the substrate. A conductor layer is formed overlying the dielectric layer. A first masking layer is deposited overlying the conductor layer. The first masking layer is patterned to selectively expose the conductor layer. A second masking layer is deposited overlying the first masking layer and the conductor layer. The second masking layer is etched back to form spacers on sidewalls of the first masking layer. The conductor layer is etched through where exposed by the first masking layer and the spacers to thereby form MOS gates in the manufacture of the integrated circuit device.
    Type: Grant
    Filed: September 5, 2003
    Date of Patent: April 19, 2005
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Chia-Ta Hsieh, Yi-Jiun Lin, Feng-Jia Shiu, Hung-Cheng Sung, Chi-Hsin Lo
  • Publication number: 20050079672
    Abstract: A split gate FET wordline electrode structure and method for forming the same including an improved polysilicon etching process including providing a semiconductor wafer process surface comprising first exposed polysilicon portions and adjacent oxide portions; forming a first oxide layer on the exposed polysilicon portions; blanket depositing a polysilicon layer on the first exposed polysilicon portions and adjacent oxide portions; forming a hardmask layer on the polysilicon layer; carrying out a multi-step reactive ion etching (RIE) process to etch through the hardmask layer and etch through a thickness portion of the polysilicon layer to form second polysilicon portions adjacent the oxide portions having upward protruding outer polysilicon fence portions; contacting the semiconductor wafer process surface with an aqueous HF solution; and, carrying out a downstream plasma etching process to remove polysilicon fence portions.
    Type: Application
    Filed: October 14, 2003
    Publication date: April 14, 2005
    Inventors: Hsiu Ouyang, Chi-Hsin Lo, Chen-Ming Huang, Chia-Ta Hsieh, Chia-Shiung Tsai
  • Patent number: 6876032
    Abstract: A finger-like floating gate structure in flash memory cells is disclosed. Raised isolation regions within a semiconductor region separate parallel active regions. A gate dielectric layer is disposed over the active regions. Finger-like floating gates are equally spaced along the active regions. The finger-like floating gates are comprised of a conductive base section that is disposed over the gate dielectric layer and three conductive finger sections that are in intimate electrical contact with the base section. An interlevel dielectric layer is patterned into equally spaced parallel stripes perpendicular to the active regions and each stripe is disposed over the corresponding composite floating gate for each active region. Word lines, which are composed of a third conductive layer, are parallel lines disposed over the interlevel dielectric layer and serve as control gates.
    Type: Grant
    Filed: August 10, 2004
    Date of Patent: April 5, 2005
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventor: Chia-Ta Hsieh
  • Publication number: 20050062095
    Abstract: A new structure for split gate flash memory devices is disclosed with multi-self-alignment. Active regions, arranged in rows, are disposed over a semiconductor region and separated by isolation regions. Split gate memory cells are arranged in identical order along the rows of active regions, each memory cell being composed of four elements: drain, word line, floating gate and source elements denoted by D, W, F and S respectively, which are arranged as . . . DWFSFWDWFSFWD . . . so that drain elements, which adjoin word elements on either side, and source elements, which adjoin floating gate elements on either side, are each shared by two memory cells. Floating gate elements are composed of a gate insulator layer disposed over the semiconductor region, conductive floating gates disposed over the gate insulator layer, an insulator layer disposed over the floating gates, and sidewall insulator layers.
    Type: Application
    Filed: October 12, 2004
    Publication date: March 24, 2005
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY
    Inventor: Chia-Ta Hsieh
  • Publication number: 20050059249
    Abstract: A new method to form MOS gates in an integrated circuit device is achieved. The method comprises forming a dielectric layer overlying a substrate. A polysilicon layer is formed overlying the dielectric layer. A silicon oxide layer is formed overlying the polysilicon layer. A masking layer is deposited overlying the silicon oxide layer. The masking layer is patterned to selectively expose the silicon oxide layer. Thereafter the polysilicon layer is oxidized to increase the thickness of the exposed silicon oxide layer. The thickened silicon oxide layer encroaches under the edges of the masking layer. The silicon oxide layer does not thicken under other interior areas of the masking layer. Thereafter the masking layer is removed. Thereafter the silicon oxide layer is etched to selectively expose the polysilicon layer where the silicon oxide layer did not thicken. Thereafter the exposed polysilicon layer is etched through to thereby form MOS gates in the manufacture of the integrated circuit device.
    Type: Application
    Filed: September 12, 2003
    Publication date: March 17, 2005
    Inventor: Chia-Ta Hsieh
  • Publication number: 20050057971
    Abstract: A flash memory cell of an EEPROM split-gate flash memory, the memory cell including a substrate having a plurality of active regions, and a floating gate structure disposed over the substrate. The floating gate structure extends across at least three of the active regions of the substrate such that the floating gate structure and the at least three active regions define at least two channel regions dedicated for programming.
    Type: Application
    Filed: September 15, 2003
    Publication date: March 17, 2005
    Inventors: Chia-Ta Hsieh, Chin-Huang Wang, I-Ming Chang, Hsiang-Tai Lu
  • Publication number: 20050054162
    Abstract: A new method to form MOS gates in an integrated circuit device is achieved. The method is particularly useful for forming floating gates in split gate flash transistors. The method comprises providing a substrate. A dielectric layer is formed overlying the substrate. A conductor layer is formed overlying the dielectric layer. A first masking layer is deposited overlying the conductor layer. The first masking layer is patterned to selectively expose the conductor layer. A second masking layer is deposited overlying the first masking layer and the conductor layer. The second masking layer is etched back to form spacers on sidewalls of the first masking layer. The conductor layer is etched through where exposed by the first masking layer and the spacers to thereby form MOS gates in the manufacture of the integrated circuit device.
    Type: Application
    Filed: September 5, 2003
    Publication date: March 10, 2005
    Inventors: Chia-Ta Hsieh, Yi-Jiun Lin, Feng-Jia Shiu, Hung-Cheng Sung, Chi-Hsin Lo
  • Patent number: 6858494
    Abstract: A new structure is disclosed for semiconductor devices in which contact regions are self-aligned to conductive lines. Openings to a gate oxide layer, in partially fabricated devices on a silicon substrate, have insulating sidewalls. First polysilicon lines disposed against the insulating sidewalls extend from below the top of the openings to the gate oxide layer. Oxide layers are grown over the top and exposed sides of the first polysilicon lines serving to insulate the first polysilicon lines. Polysilicon contact regions are disposed directly over and connect to silicon substrate regions through openings in the gate oxide layer and fill the available volume of the openings. Second polysilicon lines connect to the contact regions and are disposed over the oxide layers grown on the first polysilicon lines.
    Type: Grant
    Filed: August 20, 2002
    Date of Patent: February 22, 2005
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventor: Chia Ta Hsieh