Patents by Inventor Chien-Min Sung

Chien-Min Sung has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130228120
    Abstract: A method of growing a diamond mass in a liquid growth medium. The liquid growth medium can include a carbon source, a diamond growth catalyst such as a diamond catalyst metal-rare earth element alloy or nanocatalyst, and a dissociated hydrogen of a hydrogen source. The carbon source provides carbon atoms for growing diamond and can include a diamond seed material for diamond growth. The molten liquid phase provides a diamond growth catalyst which allows the carbon to form diamond at the temperature and low pressure conditions discussed. Furthermore, the dissociated hydrogen acts as a concentrator for assembling carbon atoms at a relatively high concentration which mimicks, in some respects, diamond growth under more conventional high pressure processes without the high pressure.
    Type: Application
    Filed: August 28, 2012
    Publication date: September 5, 2013
    Inventor: Chien-Min Sung
  • Publication number: 20130221268
    Abstract: A thermally-conductive paste comprises a carrier, at least one graphene platelet, and a plurality of packing materials. The graphene platelets and the packing materials are dispersed in the carrier. At least a portion of the packing materials contact the surface of the graphene platelet. The graphene platelet has a very high thermal conductivity coefficient and a characteristic 2D structure and thus can provide continuous and long-distance thermal conduction paths for the thermally-conductive paste. Thereby is greatly improved the thermal conduction performance of the thermally-conductive paste.
    Type: Application
    Filed: May 30, 2012
    Publication date: August 29, 2013
    Inventors: Chien-Min SUNG, I-Chiao Lin, Hung-Cheng Lin
  • Publication number: 20130217308
    Abstract: Polycrystalline grits and methods of making grits which allow for self-sharpening are provided. In one aspect, for example, a method of sharpening a superabrasive cutting element during cutting can include abrading a self-sharpening superabrasive particle against a work piece to facilitate dulling of a cutting surface of the superabrasive particle, wherein the superabrasive particle includes a superabrasive material and a catalyst material, the catalyst material being located within inclusions in the superabrasive particle. The method can further include interacting the catalyst material and the superabrasive material to cause microfracturing of the superabrasive particle to expose a new cutting surface.
    Type: Application
    Filed: January 7, 2013
    Publication date: August 22, 2013
    Inventor: Chien-Min Sung
  • Patent number: 8506707
    Abstract: A compositionally graded material having low defect densities and improved electronic properties is disclosed and described. A compositionally graded inorganic crystalline material can be formed by preparing a crystalline substrate by forming crystallographically oriented pits across an exposed surface of the substrate. A transition region can be deposited on the substrate under substantially epitaxial growth conditions. Single crystal substrates of a wide variety of materials such as diamond, aluminum nitride, silicon carbide, etc. can be formed having relatively low defect rates.
    Type: Grant
    Filed: April 16, 2012
    Date of Patent: August 13, 2013
    Inventor: Chien-Min Sung
  • Publication number: 20130200394
    Abstract: Semiconductor-on-diamond devices and methods for making such devices are provided. One such method may include depositing a semiconductor layer on a semiconductor substrate, depositing an adynamic diamond layer on the semiconductor layer opposite the semiconductor substrate, and coupling a support substrate to the adynamic diamond layer opposite the semiconductor layer to support the adynamic layer.
    Type: Application
    Filed: August 6, 2012
    Publication date: August 8, 2013
    Inventor: Chien-Min Sung
  • Patent number: 8491358
    Abstract: Methods for orienting superabrasive particles in a superabrasive tool are provided. In one aspect, for example, a method for orienting superabrasive particles in a tool is provided. Such a method can include providing a plurality of superabrasive particles having a preselected average size, preselecting a thickness for an amorphous braze layer to be applied to a substrate, wherein the thickness is based on the average size of the plurality of superabrasive particles, and applying an amorphous braze layer to the substrate at the preselected thickness.
    Type: Grant
    Filed: December 31, 2009
    Date of Patent: July 23, 2013
    Inventor: Chien-Min Sung
  • Publication number: 20130180576
    Abstract: Materials, devices, and methods for enhancing performance of electronic devices such as solar cells, fuels cells, LEDs, thermoelectric conversion devices, and other electronic devices are disclosed and described. A diamond-like carbon electronic device can include a conductive diamond-like carbon cathode having specified carbon, hydrogen and sp2 bonded carbon contents. In some cases, the sp2 bonded carbon content may be sufficient to provide the conductive diamond-like carbon material with a visible light transmissivity of greater than about 0.70. A charge carrier separation layer can be coupled adjacent and between the diamond-like carbon cathode and an anode. The conductive diamond-like carbon material of the present invention can be useful for any other application which can benefit from the use of conductive and transparent electrodes which are also chemically inert, radiation damage resistance, and are simple to manufacture.
    Type: Application
    Filed: July 16, 2012
    Publication date: July 18, 2013
    Inventor: Chien-Min Sung
  • Publication number: 20130183625
    Abstract: A method for fabricating patterned graphene structures, which adopts a photolithographic etching process to fabricate patterned graphene structures, comprises steps: providing a substrate; forming a catalytic layer on the substrate; forming a carbon layer on the catalytic layer; heating the carbon layer to a synthesis temperature to form a graphene layer. A photolithographic etching process is performed on the catalytic layer before formation of the carbon layer. Alternatively, a photolithographic etching process is performed on the carbon layer before heating. Alternatively, a photolithographic etching process is performed on the graphene layer after heating. Compared with the laser etching process, the photolithographic etching process is suitable to fabricate large-area patterned graphene structures and has advantages of high productivity and low cost.
    Type: Application
    Filed: April 11, 2012
    Publication date: July 18, 2013
    Inventors: Chien-Min SUNG, I-Chiao Lin, Hung-Cheng Lin
  • Publication number: 20130175540
    Abstract: LED devices and methods for making such devices are provided. One such method may include forming epitaxially a substantially single crystal SiC layer on a substantially single crystal Si wafer, forming epitaxially a substantially single crystal diamond layer on the SiC layer, doping the diamond layer to form a conductive diamond layer, removing the Si wafer to expose the SiC layer opposite to the conductive diamond layer, forming epitaxially a plurality of semiconductor layers on the SiC layer such that at least one of the semiconductive layers contacts the SiC layer, and coupling an n-type electrode to at least one of the semiconductor layers such that the plurality of semiconductor layers is functionally located between the conductive diamond layer and the n-type electrode.
    Type: Application
    Filed: November 20, 2012
    Publication date: July 11, 2013
    Inventor: Chien-Min Sung
  • Publication number: 20130175020
    Abstract: A heat spreader is presented which can provide effective thermal management in a cost effective manner. The heat spreader includes a plurality of diamond particles arranged in a single layer surrounded by a metallic mass. The metallic mass cements the diamond particles together. The layer of diamond particles is a single particle thick. Besides the single layer of diamond particles, the metallic mass has substantially no other diamond particles therein. A thermal management system including a heat source and a heat spreader is also presented, along with methods for making and methods for use of such heat spreaders.
    Type: Application
    Filed: July 16, 2012
    Publication date: July 11, 2013
    Inventor: Chien-Min Sung
  • Publication number: 20130178007
    Abstract: LED devices incorporating diamond materials and methods for making such devices are provided. One such method may include forming epitaxially a substantially single crystal SiC layer on a substantially single crystal Si wafer, forming epitaxially a substantially single crystal diamond layer on the SiC layer, doping the diamond layer to form a conductive diamond layer, removing the Si wafer to expose the SiC layer opposite to the conductive diamond layer, forming epitaxially a plurality of semiconductor layers on the SiC layer such that at least one of the semiconductive layers contacts the SiC layer, and coupling an n-type electrode to at least one of the semiconductor layers such that the plurality of semiconductor layers is functionally located between the conductive diamond layer and the n-type electrode.
    Type: Application
    Filed: November 13, 2012
    Publication date: July 11, 2013
    Inventor: Chien-Min Sung
  • Patent number: 8481007
    Abstract: The present invention provides sunscreen compositions and associated methods. In one aspect, for example, a sunscreen composition can include a cosmetically acceptable carrier and a plurality of nanoparticles dispersed in the carrier with a dispersant. The nanoparticles include at least one sun-block functional group operable to provide UV radiation protection. In one aspect the nanoparticles can be nanodiamond particles.
    Type: Grant
    Filed: March 24, 2011
    Date of Patent: July 9, 2013
    Inventor: Chien-Min Sung
  • Publication number: 20130165023
    Abstract: Dual dressing systems for conditioning CMP pads, including associated methods, are provided. In one aspect, for example, a method of dressing a CMP pad can include applying a deglazing dresser to a working surface of a CMP pad, deglazing the working surface of the CMP pad with the deglazing dresser, applying an asperity-forming dresser to the working surface of the CMP pad, and forming asperities in the working surface of the CMP pad with the asperity-forming dresser.
    Type: Application
    Filed: June 22, 2012
    Publication date: June 27, 2013
    Inventor: Chien-Min Sung
  • Patent number: 8453916
    Abstract: A thermal conduction device and a method for fabricating the same are disclosed. Firstly, arrange a plurality of diamond particles on a plane according to a predetermined pattern to form a diamond particle monolayer. Next, apply a forming process on a metal material such that the metal material forms a metal matrix wrapping the diamond particles to form a composite body including the diamond particle monolayer embedded in the metal matrix. Next, stack a plurality of the composite bodies and perform a heating process to join the metal matrixes to each other to form the thermal conduction device. The device is characterized in arranging diamond particles on a plane to form a two-dimensional monolayer structure and manufactured via assembling the two-dimensional monolayer structures to form a three-dimensional multilayer structure. By controlling the arrangement of the diamond particles, the thermal conduction device can have superior thermal conduction performance.
    Type: Grant
    Filed: January 11, 2011
    Date of Patent: June 4, 2013
    Assignee: Ritedia Corporation
    Inventors: Shao-Chung Hu, Hsing Hung, Hung-Cheng Lin, I-Chiao Lin, Chien-Min Sung
  • Patent number: 8454714
    Abstract: Growth precursors to form discrete superabrasive particles including associated methods are disclosed. Such growth precursor may include a crystalline seed, an initiation material, and a feed material. The initiation material may substantially encompass the crystalline seed, and may include a catalyst and a raw material source. The raw material source makes up less than 50 wt % of the initiation material. The feed material may contact the initiation material and may also include raw material source and catalyst. The catalyst may be present in less than 50 wt % in the feed material. In one aspect, the growth precursor may be configured to form diamond particles.
    Type: Grant
    Filed: June 18, 2008
    Date of Patent: June 4, 2013
    Inventor: Chien-Min Sung
  • Patent number: 8449357
    Abstract: Polishing tools and their methods of manufacture and use are disclosed. In one aspect, a polishing device is provided, including a plurality of polymeric fibers longitudinally arranged and embedded in a polymeric binder, the polymeric binder having a stiffness that is less than a stiffness of the polymeric fibers, and a working end of the plurality of polymeric fibers configured such that tips of the polymeric fibers are oriented to contact a work piece.
    Type: Grant
    Filed: October 6, 2008
    Date of Patent: May 28, 2013
    Inventor: Chien-Min Sung
  • Publication number: 20130126903
    Abstract: Semiconductor devices and methods of making thereof are provided. In one aspect, for example, a method for making a semiconductor device can include polishing a working surface of a diamond layer to a substantially flat surface, depositing a buffer layer on the working surface of the diamond layer, and depositing a semiconductor layer on the buffer layer. In one specific aspect, the c-axis of the buffer layer is oriented perpendicular to the working surface of the diamond layer.
    Type: Application
    Filed: May 21, 2012
    Publication date: May 23, 2013
    Inventor: Chien-Min Sung
  • Publication number: 20130122784
    Abstract: Methods for extending the service life of a CMP pad dresser having a substrate and a plurality of superabrasive particles disposed thereon which is used to dress a CMP pad are disclosed and described. The method may include dressing the chemical mechanical polishing pad with the dresser; determining superabrasive particle wear by measuring a mechanical property of the pad, dresser, or combination thereof; and responding to the mechanical property measurement by varying pressure and RPM between the pad and the dresser in relation to the superabrasive particle wear in order to extend dresser life. Additionally, a method may include dressing the chemical mechanical polishing pad with the dresser; vibrating, in a direction substantially parallel to a working surface of the pad, a member selected from the pad, the dresser, a wafer being polished by the pad, or any combination thereof, to minimize a mechanical stress on the pad, dresser, wafer, or combination thereof.
    Type: Application
    Filed: October 30, 2012
    Publication date: May 16, 2013
    Inventor: Chien-Min Sung
  • Patent number: 8414362
    Abstract: Superabrasive tools and their methods of manufacture are disclosed. In one aspect, a method of improving retention of superabrasive particles held in a solidified organic material layer of an abrading tool, a portion of each of said superabrasive particles protruding out of the solidified organic material layer is provided. The method may include securing a plurality of superabrasive particles in the solidified organic material layer in an arrangement that minimizes mechanical stress impinging on the protruding portion of any individual superabrasive particle when used to abrade a work piece. As an example, the arrangement of the plurality of superabrasive particles may be configured to uniformly distribute frictional forces across substantially each superabrasive particle.
    Type: Grant
    Filed: March 2, 2010
    Date of Patent: April 9, 2013
    Inventor: Chien-Min Sung
  • Patent number: 8398462
    Abstract: A method of creating pores in a CMP pad in-situ includes impregnating a first material with a second material to form a CMP pad. The second material can have a resistance to frictional erosion that is less than that of the first material. The CMP pad thus has two materials with differing frictional erosion resistances. The working surface of the CMP pad can be contacted to a wafer to be polished wherein the second material can be frictionally eroded during polishing.
    Type: Grant
    Filed: February 20, 2009
    Date of Patent: March 19, 2013
    Inventor: Chien-Min Sung