Patents by Inventor Chun Chieh

Chun Chieh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10310776
    Abstract: An output method and an output device include steps below. A first electronic device sends a file to a server and generates a piece of verification information corresponding to the file. A second electronic device receives the piece of verification information. An output device reads the piece of verification information, and obtains the file from the server according to the piece of verification information. The output device receives a first verification code via a user interface, determines whether the first verification code matches the piece of verification information, and outputs the paper document of the file when the first verification code matches the piece of verification information. The output device sends a second verification code, generated according to encode data of the file, to the second electronic device for a further verification and deletes the file after the output device output the paper document of the file.
    Type: Grant
    Filed: June 20, 2018
    Date of Patent: June 4, 2019
    Assignee: AVISION INC.
    Inventor: Chun-Chieh Liao
  • Patent number: 10312098
    Abstract: An interconnect structure and a method of forming an interconnect structure are disclosed. The interconnect structure includes a conductive plug over a substrate; a conductive feature over the conductive plug, wherein the conductive feature has a first sidewall, a second sidewall facing the first sidewall, and a bottom surface; and a carbon-containing barrier layer having a first portion along the first sidewall of the conductive feature, a second portion along the second sidewall of the conductive feature, and a third portion along the bottom surface of the conductive feature.
    Type: Grant
    Filed: July 31, 2018
    Date of Patent: June 4, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Rueijer Lin, Ya-Lien Lee, Chun-Chieh Lin, Hung-Wen Su
  • Publication number: 20190165267
    Abstract: A memory cell includes: a first electrode contact formed as a cylinder shape that extends along a first direction; a resistive material layer comprising a first portion that extends along the first direction and surrounds the first electrode contact; and a second electrode contact coupled to the resistive material layer, wherein the second electrode contact surrounds the first electrode contact and the first portion of the resistive material layer.
    Type: Application
    Filed: September 6, 2018
    Publication date: May 30, 2019
    Inventors: Chun-Chieh Mo, Shih-Chi Kuo
  • Publication number: 20190164747
    Abstract: Generally, the present disclosure provides example embodiments relating to conductive features, such as metal contacts, vias, lines, etc., and methods for forming those conductive features. In a method embodiment, a dielectric layer is formed on a semiconductor substrate. The semiconductor substrate has a source/drain region. An opening is formed through the dielectric layer to the source/drain region. A silicide region is formed on the source/drain region and a barrier layer is formed in the opening along sidewalls of the dielectric layer by a same Plasma-Enhance Chemical Vapor Deposition (PECVD) process.
    Type: Application
    Filed: January 2, 2018
    Publication date: May 30, 2019
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Cheng-Wei CHANG, Huang-Yi HUANG, Chun-chieh WANG, Yu-Ting LIN, Min-Hsiu HUNG
  • Publication number: 20190164585
    Abstract: Vertical memory cells and memory devices using the same are disclosed. In one example, a memory cell formed on a backend layer over a substrate is disclosed. The memory cell includes: a first electrode, a second electrode and a magnetic tunnel junction. The first electrode has sidewalls and a bottom surface disposed over the backend layer. The second electrode has sidewalls and a bottom surface in contact with the backend layer. The magnetic tunnel junction is formed between the first electrode and the second electrode. The magnetic tunnel junction is coupled to a sidewall of the first electrode and coupled to a sidewall of the second electrode.
    Type: Application
    Filed: April 28, 2018
    Publication date: May 30, 2019
    Inventors: Chun-Chieh Mo, Shih-Chi Kuo
  • Publication number: 20190164972
    Abstract: An integrated semiconductor device includes a first semiconductor device, an ILD layer and a second semiconductor device. The semiconductor device has a first transistor structure. The ILD layer is over the semiconductor device and has a thickness in a range substantially from 10 nm to 100 nm. The second semiconductor device is over the ILD layer and has a 2D material layer as a channel layer of a second transistor structure thereof.
    Type: Application
    Filed: September 17, 2018
    Publication date: May 30, 2019
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Cheng-Yi PENG, Chun-Chieh LU, Meng-Hsuan HSIAO, Ling-Yen YEH, Carlos H. DIAZ, Tung-Ying LEE
  • Publication number: 20190165103
    Abstract: A semiconductor device includes a fin structure, a channel layer and a gate stack. The channel layer is disposed on sidewalls of the fin structure, wherein the channel layer contains a two-dimensional (2D) material. The gate stack is disposed over the channel layer, wherein the gate stack includes a ferroelectric layer.
    Type: Application
    Filed: February 26, 2018
    Publication date: May 30, 2019
    Inventors: Chun-Chieh Lu, Meng-Hsuan Hsiao, Tung-Ying Lee, Ling-Yen Yeh, Chih-Sheng Chang, Carlos H. Diaz
  • Publication number: 20190165148
    Abstract: A semiconductor device and method for making the semiconductor device comprising a flash memory cell is provided. In accordance with some embodiments, the method includes: patterning a first gate material layer and a gate insulating film over a substrate, the first gate material layer comprising a first gate material, the gate insulating film disposed on the first gate material layer; forming a second gate material layer over the substrate, the gate insulating film, and side walls of the first gate material layer, the second gate material layer comprising a second gate material; etching the second gate material layer to expose the substrate and the gate insulating film and provide a portion of the second gate material layer along each of the side walls of the first gate material layer; and etching the gate insulating film and the first gate material layer so as to form a plurality of gate structures.
    Type: Application
    Filed: July 11, 2018
    Publication date: May 30, 2019
    Inventors: Chien-Hung Lin, Chun-Chieh Mo, Shih-Chi Kuo
  • Publication number: 20190164822
    Abstract: The present disclosure relates generally to techniques for forming a continuous adhesion layer for a contact plug. A method includes forming an opening through a dielectric layer to an active area on a substrate. The method includes performing a first plasma treatment along a sidewall of the opening. The method includes performing an atomic layer deposition (ALD) process to form a metal nitride layer along the sidewall of the opening. The ALD process includes a plurality of cycles. Each cycle includes flowing a precursor to form a metal monolayer along the sidewall and performing a second plasma treatment to treat the metal monolayer with nitrogen. The method includes depositing a conductive material on the metal nitride layer in the opening to form a conductive feature.
    Type: Application
    Filed: February 2, 2018
    Publication date: May 30, 2019
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Tien-Pei CHOU, Ken-Yu CHANG, Chun-Chieh WANG, Yueh-Ching PAI, Yu-Ting LIN, Yu-Wen CHENG
  • Publication number: 20190164850
    Abstract: A method for testing a semiconductor structure includes forming a dielectric layer over a test region of a substrate. A cap layer is formed over the dielectric layer. The dielectric layer and the cap layer are annealed. The annealed cap layer is removed. A ferroelectricity of the annealed dielectric layer is in-line tested.
    Type: Application
    Filed: June 27, 2018
    Publication date: May 30, 2019
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Ming-Shiang LIN, Chia-Cheng HO, Chun-Chieh LU, Cheng-Yi PENG, Chih-Sheng CHANG
  • Publication number: 20190156523
    Abstract: A fast projection matching method for computed tomography (CT) images is provided. The method mainly bases on an iterative algorithm. The algorithm simplifies a traditional issue of three-dimensional projection matching into a two-dimensional projection-matching problem by pre-correcting the Y-axis offset and ? shift of each projection intensity image using common-line concept, thereby making the complex CT alignment processing faster and more reliable. This majorly reduces the hardware requirements for CT and data processing, which facilitates the applications in other three dimensional tomographic techniques, such as X-ray micro-CT or electron tomography.
    Type: Application
    Filed: June 29, 2018
    Publication date: May 23, 2019
    Applicant: National Synchrotron Radiation Research Center
    Inventor: Chun-Chieh Wang
  • Publication number: 20190157154
    Abstract: The present disclosure describes an exemplary fabrication method of a p-type fully strained channel that can suppress the formation of {111} facets during a silicon germanium epitaxial growth. The exemplary method includes the formation of silicon epitaxial layer on a top, carbon-doped region of an n-type region. A recess is formed in the silicon epitaxial layer via etching, where the recess exposes the top, carbon-doped region of the n-type region. A silicon seed layer is grown in the recess, and a silicon germanium layer is subsequently epitaxially grown on the silicon seed layer to fill the recess. The silicon seed layer can suppress the formation of growth defects such as, for example, {111} facets, during the silicon germanium epitaxial layer growth.
    Type: Application
    Filed: November 21, 2017
    Publication date: May 23, 2019
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chun-Chieh Wang, Huai-Tei Yang, Zheng-Yang Pan, Shahaji B. More, Shih-Chieh Chang, Cheng-Han Lee
  • Publication number: 20190155531
    Abstract: A flash memory controller for controlling a flash memory module includes a communication interface for receiving a first data and a second data; and a processing circuit for dynamically controlling a data writing mode of the flash memory module according to an amount of stored data in the flash memory module. If the amount of stored data in the flash memory module is less than a first threshold when the communication interface receives the first data, the processing circuit controls the flash memory module so that the first data is written into the first data block under an one-bit-per-cell mode. If the amount of stored data in the flash memory module is greater than the first threshold when the communication interface receives the second data, the processing circuit controls the flash memory module so that the second data is written into the second data block under a two-bit-per-cell mode.
    Type: Application
    Filed: January 29, 2019
    Publication date: May 23, 2019
    Inventors: Tsung-Chieh Yang, Chun-Chieh Kuo, Ching-Hui Lin, Yang-Chih Shen
  • Publication number: 20190157554
    Abstract: A memory cell includes: a resistive material layer comprising a first portion that extends along a first direction and a second portion that extends along a second direction, wherein the first and second directions are different from each other; a first electrode coupled to a bottom surface of the first portion of the resistive material layer; and a second electrode coupled to the second portion of the resistive material layer.
    Type: Application
    Filed: October 18, 2018
    Publication date: May 23, 2019
    Inventors: Chun-Chieh MO, Shih-Chi KUO
  • Publication number: 20190152016
    Abstract: A chemical mechanical polishing apparatus is provided. The chemical mechanical polishing apparatus includes a polishing pad, a pad conditioner, a measurement tool, and a controller. The polishing pad is provided in a processing chamber for polishing a wafer placed on the polishing surface of the polishing pad. The pad conditioner is configured to condition the polishing surface. The measurement tool is provided in the processing chamber and configured to measure the downward force of the pad conditioner. The controller is coupled to the pad conditioner and the measurement tool, and is configured to adjust the downward force of the pad conditioner in response to an input from the measurement tool.
    Type: Application
    Filed: February 26, 2018
    Publication date: May 23, 2019
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yu-Chen WEI, Jheng-Si SU, Shih-Ho LIN, Jen-Chieh LAI, Chun-Chieh CHAN
  • Publication number: 20190148556
    Abstract: A semiconductor structure and a method for forming the same are provided. The semiconductor structure includes a gate structure, a gate spacer and a source/drain structure. The gate structure is positioned over a fin structure. The gate spacer is positioned over the fin structure and on a sidewall surface of the gate structure. The source/drain structure is positioned in the fin structure and adjacent to the gate spacer. The source/drain structure includes a first source/drain epitaxial layer and a second source/drain epitaxial layer. The first source/drain epitaxial layer is in contact with the fin structure. The first source/drain epitaxial layer is connected to a portion of the second source/drain epitaxial layer below a top surface of the fin structure. The lattice constant of the first source/drain epitaxial layer is different from the lattice constant of the second source/drain epitaxial layer.
    Type: Application
    Filed: July 24, 2018
    Publication date: May 16, 2019
    Inventors: Chun-Chieh WANG, Yu-Ting LIN, Yueh-Ching PAI, Shih-Chieh CHANG, Huai-Tei YANG
  • Publication number: 20190142488
    Abstract: A minimally invasive bone fracture positioning device includes a sleeve, a movable unit, and a support. The sleeve includes an alignment portion located on a longitudinal axis of the sleeve. The movable unit includes a positioning portion. The positioning portion is located on the longitudinal axis and is spaced from the alignment portion. The movable unit is mounted in a radial direction of the sleeve. The movable unit is slideable relative to the sleeve along the longitudinal axis. A support is coupled to the sleeve and the movable unit. The movable unit is spaced from the sleeve by the support.
    Type: Application
    Filed: November 16, 2017
    Publication date: May 16, 2019
    Inventors: Yue-Jun Wang, Chih-Hao Chang, Shih-Hua Huang, Chih-Lung Lin, Tung-Lin Tsai, Chun-Chieh Tseng, Li-Wen Weng
  • Publication number: 20190148552
    Abstract: A method for forming a semiconductor device is provided. The method includes forming a gate stack to partially cover a semiconductor structure. The method also includes forming a first semiconductor material over the semiconductor structure. The method further includes forming a second semiconductor material over the first semiconductor material. In addition, the method includes forming a third semiconductor material over the second semiconductor material. The first semiconductor material and the third semiconductor material together surround the second semiconductor material. The second semiconductor material has a greater dopant concentration than that of the first semiconductor material or that of the third semiconductor material.
    Type: Application
    Filed: December 24, 2018
    Publication date: May 16, 2019
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Shahaji B. MORE, Zheng-Yang PAN, Chun-Chieh WANG, Cheng-Han LEE, Shih-Chieh CHANG
  • Publication number: 20190146326
    Abstract: In a method of manufacturing a photo mask, a resist layer is formed over a mask blank, which includes a mask substrate, a phase shift layer disposed on the mask substrate and a light blocking layer disposed on the phase shift layer. A resist pattern is formed by using a lithographic operation. The light blocking layer is patterned by using the resist pattern as an etching mask. The phase shift layer is patterned by using the patterned light blocking layer as an etching mask. A border region of the mask substrate is covered with an etching hard cover, while a pattern region of the mask substrate is opened. The patterned light blocking layer in the pattern region is patterned through the opening of the etching hard cover. A photo-etching operation is performed on the pattern region to remove residues of the light blocking layer.
    Type: Application
    Filed: February 26, 2018
    Publication date: May 16, 2019
    Inventors: Chun-Chieh TIEN, Cheng-Hsuen CHIANG, Chih-Ming CHEN, Cheng-Ming LIN, Yen-Wei HUANG, Hao-Ming CHANG, Kuo Chin LIN, Kuan-Shien LEE
  • Patent number: 10290671
    Abstract: An image sensor device includes a first substrate, an interconnect structure, a conductive layer, a conductive via and a second substrate. The first substrate includes a first region including a pixel array and a second region including a circuit. The interconnect structure is over the pixel array or the circuit. The interconnect structure electrically connecting the circuit to the pixel array. The conductive layer is on the interconnect structure. The conductive via passes through the second substrate and at least partially embedded in the conductive layer. The second substrate is over the conductive layer.
    Type: Grant
    Filed: September 25, 2017
    Date of Patent: May 14, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Wen-De Wang, Dun-Nian Yaung, Jen-Cheng Liu, Chun-Chieh Chuang, Jeng-Shyan Lin