Patents by Inventor Chung-Yen Chou

Chung-Yen Chou has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180076276
    Abstract: The present disclosure provides a semiconductor structure, comprising a substrate, dielectric layers and conductive layers. A first dielectric layer is disposed on a bottom surface and sidewall surfaces of a filled trench of the substrate. A first conductive layer is disposed on the first dielectric layer and has a first surface in the filled trench and a second surface above the substrate. A second dielectric layer is disposed on the first conductive layer. A second conductive layer is disposed on the second dielectric layer and has a first surface in the filled trench and a second surface above the substrate. A third dielectric layer is disposed on the second conductive layer. A third conductive layer is disposed in the filled trench and on the third dielectric layer. A top surface of the third conductive layer is lower than the second surface of the second conductive layer.
    Type: Application
    Filed: September 9, 2016
    Publication date: March 15, 2018
    Inventors: CHUNG-YEN CHOU, CHIH-JEN CHAN, SHIH-CHANG LIU, CHIA-SHIUNG TSAI
  • Patent number: 9911734
    Abstract: A semiconductor structure with a MISFET and a HEMT region includes a first III-V compound layer. A second III-V compound layer is disposed on the first III-V compound layer and is different from the first III-V compound layer in composition. A third III-V compound layer is disposed on the second III-V compound layer is different from the second III-V compound layer in composition. A source feature and a drain feature are disposed in each of the MISFET and HEMT regions on the third III-V compound layer. A gate electrode is disposed over the second III-V compound layer between the source feature and the drain feature. A gate dielectric layer is disposed under the gate electrode in the MISFET region but above the top surface of the third III-V compound layer.
    Type: Grant
    Filed: July 29, 2016
    Date of Patent: March 6, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chung-Yen Chou, Sheng-De Liu, Fu-Chih Yang, Shih-Chang Liu, Chia-Shiung Tsai
  • Publication number: 20180022599
    Abstract: A semiconductor arrangement and methods of formation are provided. The semiconductor arrangement includes a micro-electro mechanical system (MEMS). A via opening is formed through a substrate, first dielectric layer and a first plug of the MEMS. The first plug comprises a first material, where the first material has an etch selectivity different than an etch selectivity of the first dielectric layer. The different etch selectivity of first plug allows the via opening to be formed relatively quickly and with a relatively high aspect ratio and desired a profile, as compared to forming the via opening without using the first plug.
    Type: Application
    Filed: September 18, 2017
    Publication date: January 25, 2018
    Inventors: Chung-Yen CHOU, Lee-Chuan TSENG, Chia-Shiung TSAI, Ru-Liang LEE
  • Patent number: 9876169
    Abstract: The present disclosure relates to integrated circuits having a resistive random access memory (RRAM) cell, and associated methods of forming such RRAM cells. In some embodiments, the RRAM cell includes a bottom electrode and a top electrode which are separated from one another by an RRAM dielectric. A bottom electrode sidewall and a top electrode sidewall are vertically aligned to one another, and an RRAM dielectric sidewall is recessed back from the bottom electrode sidewall and the top electrode sidewall.
    Type: Grant
    Filed: June 12, 2015
    Date of Patent: January 23, 2018
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Fu-Ting Sung, Chung-Yen Chou, Shih-Chang Liu
  • Patent number: 9865389
    Abstract: An inductor structure is provided. The inductor structure includes a first dielectric layer formed over a substrate and a first metal layer formed in the first dielectric layer. The inductor structure includes a magnetic layer formed over the first dielectric layer, and the magnetic layer has a main portion and a tapered portion extending from the main portion.
    Type: Grant
    Filed: February 10, 2017
    Date of Patent: January 9, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD
    Inventors: Yuan-Tai Tseng, Ming-Chyi Liu, Chung-Yen Chou, Chia-Shiung Tsai
  • Patent number: 9853091
    Abstract: The present disclosure relates to an integrated circuits device having an RRAM cell, and an associated method of formation. In some embodiments, the integrated circuit device has a lower metal interconnect line disposed within a lower inter-level dielectric (ILD) layer and an upper metal interconnect line disposed within an upper inter-level dielectric (ILD) layer. The integrated circuit device also has a memory cell array disposed between the lower metal interconnect line and the upper metal interconnect line, including memory cells arranged in rows and columns, the memory cells respectively includes a bottom electrode and a top electrode separated by a RRAM dielectric having a variable resistance. A bottom contact structure is disposed on the lower metal interconnect line and along sidewalls of the bottom electrode, electrically coupling the lower metal interconnect line and the bottom electrode.
    Type: Grant
    Filed: April 26, 2016
    Date of Patent: December 26, 2017
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chung-Yen Chou, Ching-Pei Hsieh, Chia-Shiung Tsai, Shih-Chang Liu
  • Publication number: 20170355598
    Abstract: An integrated circuit (IC) device is provided. The IC device includes a first die including a first substrate and a second die including a second substrate. A plasma-reflecting layer is included on an upper surface of the first die. The plasma-reflecting layer is configured to reflect a plasma therefrom. The second substrate is bonded to the first die so as to form a cavity, wherein a lower surface of the cavity is lined by the plasma-reflecting layer. A dielectric protection layer is present on a lower surface of the second die and lines the upper surface of the cavity. A material of the second substrate has a first etch rate for the plasma and a material of the dielectric protection layer has a second etch rate for the plasma. The second etch rate is less than the first etch rate.
    Type: Application
    Filed: August 8, 2017
    Publication date: December 14, 2017
    Inventors: Chung-Yen Chou, Chih-Jen Chan, Chia-Shiung Tsai, Ru-Liang Lee, Yuan-Chih Hsieh
  • Publication number: 20170345812
    Abstract: A process for manufacturing an integrated circuit (IC) with a through via extending through a group III-V layer to a diode is provided. An etch is performed through the group III-V layer, into a semiconductor substrate underlying the group III-V layer, to form a via opening. A doped region is formed in the semiconductor substrate, through the via opening. Further, the doped region is formed with an opposite doping type as a surrounding region of the semiconductor substrate. The through via is formed in the via opening and in electrical communication with the doped region.
    Type: Application
    Filed: July 22, 2016
    Publication date: November 30, 2017
    Inventors: Chung-Yen Chou, Chia-Shiung Tsai, Shih-Chang Liu, Yung-Chang Chang
  • Patent number: 9825224
    Abstract: The present disclosure relates to an integrated circuit device having an RRAM cell, and an associated method of formation. In some embodiments, the integrated circuit device has a bottom electrode disposed over a lower metal interconnect layer. The integrated circuit device also has a resistance switching layer with a variable resistance located on the bottom electrode, and a top electrode located over the resistance switching layer. The integrated circuit device also has a self-sputtering spacer having a lateral portion that surrounds the bottom electrode at a position that is vertically disposed between the resistance switching layer and a bottom etch stop layer and a vertical portion abutting sidewalls of the resistance switching layer and the top electrode. The integrated circuit device also has a top etch stop layer located over the bottom etch stop layer abutting sidewalls of the self-sputtering spacer and overlying the top electrode.
    Type: Grant
    Filed: August 10, 2016
    Date of Patent: November 21, 2017
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ching-Pei Hsieh, Chung-Yen Chou, Shih-Chang Liu
  • Publication number: 20170309682
    Abstract: The present disclosure relates to an integrated circuits device having an RRAM cell, and an associated method of formation. In some embodiments, the integrated circuit device has a lower metal interconnect line disposed within a lower inter-level dielectric (ILD) layer and an upper metal interconnect line disposed within an upper inter-level dielectric (ILD) layer. The integrated circuit device also has a memory cell array disposed between the lower metal interconnect line and the upper metal interconnect line, including memory cells arranged in rows and columns, the memory cells respectively includes a bottom electrode and a top electrode separated by a RRAM dielectric having a variable resistance. A bottom contact structure is disposed on the lower metal interconnect line and along sidewalls of the bottom electrode, electrically coupling the lower metal interconnect line and the bottom electrode.
    Type: Application
    Filed: April 26, 2016
    Publication date: October 26, 2017
    Inventors: Chung-Yen Chou, Ching-Pei Hsieh, Chia-Shiung Tsai, Shih-Chang Liu
  • Patent number: 9796584
    Abstract: A bio-sensing semiconductor structure is provided. A transistor includes a channel region and a gate underlying the channel region. A first dielectric layer overlies the transistor. A first opening extends through the first dielectric layer to expose the channel region. A bio-sensing layer lines the first opening and covers an upper surface of the channel region. A second dielectric layer lines the first opening over the bio-sensing layer. A second opening within the first opening extends to the bio-sensing layer, through a region of the second dielectric layer overlying the channel region. A method for manufacturing the bio-sensing semiconductor structure is also provided.
    Type: Grant
    Filed: February 20, 2017
    Date of Patent: October 24, 2017
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Che-Ming Chang, Chih-Jen Chan, Chung-Yen Chou, Lee-Chuan Tseng, Shih-Wei Lin, Yuan-Chih Hsieh
  • Publication number: 20170288135
    Abstract: A semiconductor structure includes an Nth metal layer, a diffusion barrier layer over the Nth metal layer, a first deposition of bottom electrode material over the diffusion barrier layer, a second deposition of bottom electrode material over the first deposition of bottom electrode material, a magnetic tunneling junction (MTJ) layer over the second deposition of bottom electrode material, a top electrode over the MTJ layer; and an (N+1)th metal layer over the top electrode; wherein the diffusion barrier layer and the first deposition of bottom electrode material are laterally in contact with a dielectric layer, the first deposition of bottom electrode material spacing the diffusion harrier layer and the second deposition of bottom electrode material apart, and N is an integer greater than or equal to 1. An associated electrode structure and method are also disclosed.
    Type: Application
    Filed: June 15, 2017
    Publication date: October 5, 2017
    Inventors: CHUNG-YEN CHOU, FU-TING SUNG, YAO-WEN CHANG, SHIH-CHANG LIU
  • Patent number: 9771256
    Abstract: A semiconductor arrangement and methods of formation are provided. The semiconductor arrangement includes a micro-electro mechanical system (MEMS). A via opening is formed through a substrate, first dielectric layer and a first plug of the MEMS. The first plug comprises a first material, where the first material has an etch selectivity different than an etch selectivity of the first dielectric layer. The different etch selectivity of first plug allows the via opening to be formed relatively quickly and with a relatively high aspect ratio and desired a profile, as compared to forming the via opening without using the first plug.
    Type: Grant
    Filed: June 29, 2014
    Date of Patent: September 26, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Chung-Yen Chou, Lee-Chuan Tseng, Chia-Shiung Tsai, Ru-Liang Lee
  • Publication number: 20170271434
    Abstract: The present disclosure provides a semiconductor device. The semiconductor device includes: a semiconductor substrate; a first dielectric layer over the semiconductor substrate; a second dielectric layer over the first dielectric layer; an via extending through the second dielectric layer; a bottom conductive layer conformably formed at a bottom and along side walls of the via; a third dielectric layer conformably formed over the bottom conductive layer; an upper conductive layer conformably formed over the third dielectric layer; and an upper contact formed over and coupled to the upper conductive layer and filling the via; wherein the upper conductive layer provide a diffusion barrier between the upper contact and the third dielectric layer. A metal-insulator-metal (MIM) capacitor and an associated manufacturing method are also disclosed.
    Type: Application
    Filed: March 17, 2016
    Publication date: September 21, 2017
    Inventors: CHUNG-YEN CHOU, SHIH-CHANG LIU
  • Publication number: 20170267516
    Abstract: A method for manufacturing a microelectromechanical systems (MEMS) structure with sacrificial supports to prevent stiction is provided. A first etch is performed into an upper surface of a carrier substrate to form a sacrificial support in a cavity. A thermal oxidation process is performed to oxidize the sacrificial support, and to form an oxide layer lining the upper surface and including the oxidized sacrificial support. A MEMS substrate is bonded to the carrier substrate over the carrier substrate and through the oxide layer. A second etch is performed into the MEMS substrate to form a movable mass overlying the cavity and supported by the oxidized sacrificial support. A third etch is performed into the oxide layer to laterally etch the oxidized sacrificial support and to remove the oxidized sacrificial support. A MEMS structure with anti-stiction bumps is also provided.
    Type: Application
    Filed: June 6, 2017
    Publication date: September 21, 2017
    Inventor: Chung-Yen Chou
  • Publication number: 20170256636
    Abstract: The present disclosure provides a semiconductor device and a method for manufacturing the same. The semiconductor device comprises a substrate, a first III-V compound layer over the substrate, a first passivation layer on the first III-V compound layer, a source region and a drain region. The source region penetrates the first passivation layer to electrically contact the first III-V compound layer. The drain region penetrates the first passivation layer to electrically contact the first III-V compound layer. A sidewall of the first passivation layer contacting with the source region comprises a stair shape.
    Type: Application
    Filed: March 7, 2016
    Publication date: September 7, 2017
    Inventors: SHENG-DE LIU, CHUNG-YEN CHOU, SHIH-CHANG LIU
  • Patent number: 9748373
    Abstract: Embodiments of the present disclosure include a MISFET device. An embodiment includes a source/drain over a substrate, a first etch stop layer on the source/drain, and a gate dielectric layer on the first etch stop layer and along the substrate. The embodiment also includes a gate electrode on the gate dielectric layer, and a second etch stop layer on the gate electrode.
    Type: Grant
    Filed: February 1, 2016
    Date of Patent: August 29, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Sheng-De Liu, Ming-Chyi Liu, Chung-Yen Chou, Chia-Shiung Tsai
  • Patent number: 9738516
    Abstract: A method of forming an IC (integrated circuit) device is provided. The method includes receiving a first wafer including a first substrate and including a plasma-reflecting layer disposed on an upper surface thereof. The plasma-reflecting layer is configured to reflect a plasma therefrom. A dielectric protection layer is formed on a lower surface of a second wafer, wherein the second wafer includes a second substrate. The second wafer is bonded to the first wafer, such that a cavity is formed between the plasma-reflecting layer and the dielectric protection layer. An etch process is performed with the plasma to form an opening extending from an upper surface of the second wafer and through the dielectric protection layer into the cavity. A resulting structure of the above method is also provided.
    Type: Grant
    Filed: April 29, 2015
    Date of Patent: August 22, 2017
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chung-Yen Chou, Chih-Jen Chan, Chia-Shiung Tsai, Ru-Liang Lee, Yuan-Chih Hsieh
  • Publication number: 20170229646
    Abstract: The present disclosure provides a semiconductor structure, including an Nth metal layer, a planar bottom barrier layer over and in contact with the Nth metal layer, a data storage layer over the planar bottom barrier layer, an electrode over the data storage layer, and an (N+1)th metal layer over the electrode. N is a positive integer. A manufacturing method for the semiconductor structure is also provided.
    Type: Application
    Filed: April 10, 2017
    Publication date: August 10, 2017
    Inventors: CHUNG-YEN CHOU, CHING-PEI HSIEH, SHIH-CHANG LIU
  • Publication number: 20170221797
    Abstract: A novel integrated circuit and method thereof are provided. The integrated circuit includes a plurality of first interconnect pads, a plurality of second interconnect pads, a first inter-level dielectric layer, a thin film resistor, and at least two end-caps. The end-caps, which are connectors for the thin film resistor, are positioned at the same level with the plurality of second interconnect pads. Therefore, an electrical connection between the end-caps and the plurality of second interconnect pads can be formed by directly connection of them. An integrated circuit with a thin film resistor can be made in a cost benefit way accordingly, so as to overcome disadvantages mentioned above.
    Type: Application
    Filed: April 17, 2017
    Publication date: August 3, 2017
    Inventors: Yuan-Tai Tseng, Chia-Shiung Tsai, Chung-Yen Chou, Ming-Chyi Liu