Patents by Inventor Chung-Yen Chou

Chung-Yen Chou has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150249121
    Abstract: The mechanisms for forming an inductor structure are provided. The inductor structure includes a substrate and a first dielectric layer formed over the substrate. The inductor structure also includes a first metal layer formed in the first dielectric layer and a magnetic layer formed over the first dielectric layer, and the magnetic layer has edges more than four in a cross section view.
    Type: Application
    Filed: May 14, 2015
    Publication date: September 3, 2015
    Inventors: Yuan-Tai TSENG, Ming-Chyi LIU, Chung-Yen CHOU, Chia-Shiung TSAI
  • Patent number: 9105759
    Abstract: A capacitive device includes a well, a first dielectric layer, a first conductive layer, a cap dielectric layer, and a first electrode. The well includes a first shoulder portion having an upper surface, a second shoulder portion having an upper surface, and a first trench, sandwiched between the first and second shoulder portions, having sidewalls and a bottom surfaces. The first dielectric layer is lined along at least a portion of the upper surfaces of the first and second shoulder portions, the sidewalls of the first trench, and the bottom surface of the first trench. The first conductive layer is lined along the first dielectric layer. The cap dielectric layer is over the well, the first dielectric layer, and the first conductive layer. The first electrode is in contact with the first shoulder portion.
    Type: Grant
    Filed: November 27, 2013
    Date of Patent: August 11, 2015
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chung-Yen Chou, Po-Ken Lin, Chia-Shiung Tsai, Ru-Liang Lee
  • Patent number: 9048128
    Abstract: Embodiments of mechanisms of forming an inductor structure are provided. The inductor structure includes a substrate and a first dielectric layer formed over the substrate. The inductor structure includes a first metal layer formed in the first dielectric layer and a second dielectric layer over the first metal layer. The inductor structure further includes a magnetic layer formed over the first dielectric layer, and the magnetic layer has a top surface, a bottom surface and sidewall surfaces between the top surface and the bottom surface, and the sidewall surfaces have at least two intersection points.
    Type: Grant
    Filed: October 3, 2013
    Date of Patent: June 2, 2015
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD
    Inventors: Yuan-Tai Tseng, Ming-Chyi Liu, Chung-Yen Chou, Chia-Shiung Tsai
  • Publication number: 20150145103
    Abstract: A capacitive device includes a well, a first dielectric layer, a first conductive layer, a cap dielectric layer, and a first electrode. The well includes a first shoulder portion having an upper surface, a second shoulder portion having an upper surface, and a first trench, sandwiched between the first and second shoulder portions, having sidewalls and a bottom surfaces. The first dielectric layer is lined along at least a portion of the upper surfaces of the first and second shoulder portions, the sidewalls of the first trench, and the bottom surface of the first trench. The first conductive layer is lined along the first dielectric layer. The cap dielectric layer is over the well, the first dielectric layer, and the first conductive layer. The first electrode is in contact with the first shoulder portion.
    Type: Application
    Filed: November 27, 2013
    Publication date: May 28, 2015
    Applicant: Taiwan Semiconductor Mnaufacturing Company, Ltd.
    Inventors: Chung-Yen CHOU, Po-Ken LIN, Chia-Shiung TSAI, Ru-Liang LEE
  • Publication number: 20150140774
    Abstract: A method of fabricating a semiconductor device comprises forming a first etch stop layer over a first dielectric layer. The method also comprises forming a first trench in the first etch stop layer and the first dielectric layer. The method further comprises filling the first trench with a conductive material. The method additionally comprises forming a second etch stop layer over the first etch stop layer. The method also comprises forming a second dielectric layer over the second etch stop layer. The method further comprises forming a second trench to expose the conductive material. The second trench is formed having a depth less than a total thickness of the first etch stop layer, the second etch stop layer and the second dielectric layer. The method additionally comprises depositing a first metal layer over sidewalls of the second trench and in contact with the conductive material.
    Type: Application
    Filed: January 27, 2015
    Publication date: May 21, 2015
    Inventors: Chih-Yang PAI, Kuo-Chi TU, Wen-Chuan CHIANG, Chung-Yen CHOU
  • Publication number: 20150097267
    Abstract: Embodiments of mechanisms of forming an inductor structure are provided. The inductor structure includes a substrate and a first dielectric layer formed over the substrate. The inductor structure includes a first metal layer formed in the first dielectric layer and a second dielectric layer over the first metal layer. The inductor structure further includes a magnetic layer formed over the first dielectric layer, and the magnetic layer has a top surface, a bottom surface and sidewall surfaces between the top surface and the bottom surface, and the sidewall surfaces have at least two intersection points.
    Type: Application
    Filed: October 3, 2013
    Publication date: April 9, 2015
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd
    Inventors: Yuan-Tai TSENG, Ming-Chyi LIU, Chung-Yen CHOU, Chia-Shiung TSAI
  • Publication number: 20150076657
    Abstract: A novel method for manufacturing a semiconductor device and a semiconductor device are provided. The semiconductor device includes a substrate, a trench capacitor, a contact pad, an inter-layer dielectric (ILD) layer and contact elements. The trench capacitor includes a doped region, a first dielectric layer, a bottom electrode, a second dielectric layer and a top electrode, in which the contact pad is positioned on the doped region. The ILD layer has contact windows, and the contact elements are disposed therein. Because of the presence of the contact pad positioned on the doped region, the thickness of the ILD layer over the top electrode is increased but still satisfying the requirement of the maximum depth limit to the contact windows of etching the ILD layer.
    Type: Application
    Filed: September 16, 2013
    Publication date: March 19, 2015
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chung-Yen CHOU, Po-Ken LIN, Chia-Shiung TSAI, Xiao-Meng CHEN
  • Publication number: 20150069581
    Abstract: A method of etching a trench in a substrate is provided. The method repeatedly alternates between using a fluorine-based plasma to etch a trench, which has trench sidewalls, into a selected region of the substrate; and using a fluorocarbon plasma to deposit a liner on the trench sidewalls. The liner, when formed and subsequently etched, has an exposed sidewall surface that includes scalloped recesses. The trench, which includes the scalloped recesses, is then bombarded with a molecular beam where the molecules are directed on an axis parallel to the trench sidewalls to reduce the scalloped recesses.
    Type: Application
    Filed: September 11, 2013
    Publication date: March 12, 2015
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Che-Ming Chang, Lee-Chuan Tseng, Shih-Wei Lin, Chih-Jen Chan, Yuan-Chih Hsieh, Ming Chyi Liu, Chung-Yen Chou
  • Publication number: 20150069574
    Abstract: A novel integrated circuit and method thereof are provided. The integrated circuit includes a plurality of first interconnect pads, a plurality of second interconnect pads, a first inter-level dielectric layer, a thin film resistor, and at least two end-caps. The end-caps, which are connectors for the thin film resistor, are positioned at the same level with the plurality of second interconnect pads. Therefore, an electrical connection between the end-caps and the plurality of second interconnect pads can be formed by directly connection of them. An integrated circuit with a thin film resistor can be made in a cost benefit way accordingly, so as to overcome disadvantages mentioned above.
    Type: Application
    Filed: September 6, 2013
    Publication date: March 12, 2015
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yuan-Tai TSENG, Ming-Chyi LIU, Chung-Yen CHOU, Chia-Shiung TSAI
  • Publication number: 20150069539
    Abstract: The present disclosure relates to a method of gettering that provides for a high efficiency gettering process by increasing an area in which a getter layer is deposited, and an associated apparatus. In some embodiments, the method is performed by providing a substrate into a processing chamber having one or more residual gases. A cavity is formed within a top surface of the substrate. The cavity has a bottom surface and sidewalls extending from the bottom surface to the top surface. A getter layer, which absorbs the one or more residual gases, is deposited over the substrate at a position extending from the bottom surface of the cavity to a location on the sidewalls. By depositing the getter layer to extend to a location on the sidewalls of the cavity, the area of the substrate that is able to absorb the one or more residual gases is increased.
    Type: Application
    Filed: September 11, 2013
    Publication date: March 12, 2015
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chih-Jen Chan, Lee-Chuan Tseng, Shih-Wei Lin, Che-Ming Chang, Chung-Yen Chou, Yuan-Chih Hsieh
  • Patent number: 8969171
    Abstract: A method for forming a semiconductor device includes providing a semiconductor-on-insulator (SOI) structure, and forming at least one hard mask (HM) layer over the SOI structure. The SOI structure includes an insulator layer and a semiconductor layer over the insulator layer. The method further comprises forming a trench inside the at least one HM layer and the semiconductor layer, and depositing a spacer layer in the trench. The spacer layer comprises a bottom surface portion over the bottom surface of the trench, and a side wall portion along the side wall of the trench. The method further comprises etching the bottom surface portion of the spacer layer while the side wall portion of the spacer layer remains, and etching the insulator layer to extend the trench into the insulator layer.
    Type: Grant
    Filed: April 19, 2013
    Date of Patent: March 3, 2015
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yuan-Tai Tseng, Chung-Yen Chou, Chia-Shiung Tsai
  • Patent number: 8969937
    Abstract: A semiconductor device includes a first insulating layer, a contact plug formed in the first insulating layer, a first etch stop layer over the first insulating layer, a second etch stop layer over the first etch stop layer, a second insulating layer over the second etch stop layer and having a contact opening over the contact plug, and a conductive layer disposed in the contact opening and over the contact plug. The contact opening is substantially free of the second etch stop layer, and the first etch stop layer is present in the contact opening.
    Type: Grant
    Filed: May 30, 2014
    Date of Patent: March 3, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Yang Pai, Kuo-Chi Tu, Wen-Chuan Chiang, Chung-Yen Chou
  • Publication number: 20150044008
    Abstract: The present disclosure relates to a wafer transfer robot having a robot blade that can be used to handle substrates that are patterned on both sides without causing warpage of the substrates. In some embodiments, the wafer transfer robot has a robot blade coupled to a transfer arm that varies a position of the robot blade. The robot blade has a wafer reception area that receives a substrate. Two or more spatially distinct contact points are located at positions along a perimeter of the wafer reception area that provide support to opposing edges of the substrate. The two or more contact points are separated by a cavity in the robot blade. The cavity mitigates contact between a backside of the substrate and the robot blade, while providing support to opposing sides of the substrate to prevent warpage of the substrate.
    Type: Application
    Filed: August 6, 2013
    Publication date: February 12, 2015
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Lee-Chuan Tseng, Chih-Jen Chan, Shih-Wei Lin, Che-Ming Chang, Chung-Yen Chou, Yuan-Chih Hsieh
  • Publication number: 20150035021
    Abstract: Embodiments of the present disclosure include a method for forming a semiconductor device, a method for forming a MISFET device, and a MISFET device. An embodiment is a method for forming a semiconductor device, the method including forming a source/drain over a substrate, forming a first etch stop layer on the source/drain, and forming a gate dielectric layer on the first etch stop layer and along the substrate. The method further includes forming a gate electrode on the gate dielectric layer, forming a second etch stop layer on the gate electrode, and removing the gate dielectric layer from over the source/drain.
    Type: Application
    Filed: August 5, 2013
    Publication date: February 5, 2015
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Sheng-De Liu, Ming-Chyi Liu, Chung-Yen Chou, Chia-Shiung Tsai
  • Publication number: 20150031176
    Abstract: A semiconductor structure with a MISFET and a HEMT region includes a first III-V compound layer. A second III-V compound layer is disposed on the first III-V compound layer and is different from the first III-V compound layer in composition. A third III-V compound layer is disposed on the second III-V compound layer is different from the second III-V compound layer in composition. A source feature and a drain feature are disposed in each of the MISFET and HEMT regions on the third III-V compound layer. A gate electrode is disposed over the second III-V compound layer between the source feature and the drain feature. A gate dielectric layer is disposed under the gate electrode in the MISFET region but above the top surface of the third III-V compound layer.
    Type: Application
    Filed: October 15, 2014
    Publication date: January 29, 2015
    Inventors: Chung-Yen Chou, Sheng-De Liu, Fu-Chih Yang, Shih-Chang Liu, Chia-Shiung Tsai
  • Publication number: 20150008556
    Abstract: Among other things, one or more semiconductor arrangements comprising isolation trenches, and techniques for forming such isolation trenches are provided. A substrate comprises a front side surface and a backside surface. One or more devices are formed over the front side surface. A wet etch is performed to form a tapered portion of an isolation trench. A dry etch is performed to form a non-tapered portion of the isolation trench. Because both the wet etch and the dry etch are performed, etching time is reduced compared to merely using the dry etch due to the wet etch having a relatively faster etch rate than the dry etch. In an embodiment, the isolation trench provides isolation for a current leakage path associated with a device or other material formed over the front side surface. In an embodiment, metal is formed within the isolation trench for backside metallization.
    Type: Application
    Filed: July 5, 2013
    Publication date: January 8, 2015
    Inventors: Ming Chyi Liu, Sheng-de Liu, Chi-Ming Chen, Che-Ming Chang, Chung-Yen Chou, Chia-Shiung Tsa
  • Patent number: 8928120
    Abstract: Among other things, one or more wafer edge protection structures and techniques for forming such wafer edge protection structures are provided. A substrate of a semiconductor wafer comprises an edge, such as a beveled wafer edge portion, that is susceptible to Epi growth which results in undesirable particle contamination of the semiconductor wafer. Accordingly, a wafer edge protection structure is formed over the beveled wafer edge portion. The wafer edge protection structure comprises an Epi growth resistant material, such as an amorphous material, a non-crystalline material, oxide, or other material. In this way, the wafer edge protection structure mitigates Epi growth on the beveled wafer edge portion, where the Epi growth increases a likelihood of particle contamination from cracking or peeling of an Epi film resulting from the Epi growth. The wafer edge protection structure thus mitigates at least some contamination of the wafer.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: January 6, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Ming Chyi Liu, Sheng-de Liu, Chi-Ming Chen, Yuan-Tai Tseng, Chung-Yen Chou, Chia-Shiung Tsai
  • Publication number: 20150001682
    Abstract: Among other things, one or more wafer edge protection structures and techniques for forming such wafer edge protection structures are provided. A substrate of a semiconductor wafer comprises an edge, such as a beveled wafer edge portion, that is susceptible to Epi growth which results in undesirable particle contamination of the semiconductor wafer. Accordingly, a wafer edge protection structure is formed over the beveled wafer edge portion. The wafer edge protection structure comprises an Epi growth resistant material, such as an amorphous material, a non-crystalline material, oxide, or other material. In this way, the wafer edge protection structure mitigates Epi growth on the beveled wafer edge portion, where the Epi growth increases a likelihood of particle contamination from cracking or peeling of an Epi film resulting from the Epi growth. The wafer edge protection structure thus mitigates at least some contamination of the wafer.
    Type: Application
    Filed: June 28, 2013
    Publication date: January 1, 2015
    Inventors: Ming Chyi Liu, Sheng-de Liu, Chi-Ming Chen, Yuan-Tai Tseng, Chung-Yen Chou, Chia-Shiung Tsai
  • Patent number: 8912573
    Abstract: A semiconductor structure with a MISFET and a HEMT region includes a first III-V compound layer. A second III-V compound layer is disposed on the first III-V compound layer and is different from the first III-V compound layer in composition. A third III-V compound layer is disposed on the second III-V compound layer is different from the second III-V compound layer in composition. A source feature and a drain feature are disposed in each of the MISFET and HEMT regions on the third III-V compound layer. A gate electrode is disposed over the second III-V compound layer between the source feature and the drain feature. A gate dielectric layer is disposed under the gate electrode in the MISFET region but above the top surface of the third III-V compound layer.
    Type: Grant
    Filed: February 26, 2013
    Date of Patent: December 16, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chung-Yen Chou, Sheng-De Liu, Fu-Chih Yang, Shih-Chang Liu, Chia-Shiung Tsai
  • Publication number: 20140264749
    Abstract: A semiconductor device includes a first insulating layer, a contact plug formed in the first insulating layer, a first etch stop layer over the first insulating layer, a second etch stop layer over the first etch stop layer, a second insulating layer over the second etch stop layer and having a contact opening over the contact plug, and a conductive layer disposed in the contact opening and over the contact plug. The contact opening is substantially free of the second etch stop layer, and the first etch stop layer is present in the contact opening.
    Type: Application
    Filed: May 30, 2014
    Publication date: September 18, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chih-Yang PAI, Kuo-Chi TU, Wen-Chuan CHIANG, Chung-Yen CHOU