Patents by Inventor Eugene J. O'Sullivan

Eugene J. O'Sullivan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140216939
    Abstract: A laminating structure includes a first magnetic layer, a second magnetic layer, a first spacer disposed between the first and second magnetic layers and a second spacer disposed on the second magnetic layer.
    Type: Application
    Filed: February 6, 2013
    Publication date: August 7, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Robert E. Fontana, JR., William J. Gallagher, Philipp Herget, Eugene J. O'Sullivan, Lubomyr T. Romankiw, Naigang Wang, Bucknell C. Webb
  • Publication number: 20140216943
    Abstract: A laminating structure includes a first magnetic layer, a second magnetic layer, a first spacer disposed between the first and second magnetic layers and a second spacer disposed on the second magnetic layer.
    Type: Application
    Filed: August 19, 2013
    Publication date: August 7, 2014
    Applicant: International Business Machines Corporation
    Inventors: Robert E. Fontana, JR., William J. Gallagher, Philipp Herget, Eugene J. O'Sullivan, Lubomyr T. Romankiw, Naigang Wang, Bucknell C. Webb
  • Patent number: 8796041
    Abstract: A semiconductor device includes a substrate including an M2 patterned area. A VA pillar structure is formed over the M2 patterned area. The VA pillar structure includes a substractively patterned metal layer. The VA pillar structure is a sub-lithographic contact. An MTJ stack is formed over the oxide layer and the metal layer of the VA pillar. A size of the MTJ stack and a shape anisotropy of the MTJ stack are independent of a size and a shape anisotropy of the sub-lithographic contact.
    Type: Grant
    Filed: August 28, 2009
    Date of Patent: August 5, 2014
    Assignee: International Business Machines Corporation
    Inventors: Solomon Assefa, Michael C. Gaidis, Eric A. Joseph, Eugene J. O'Sullivan
  • Publication number: 20140191362
    Abstract: A method for forming an on-chip magnetic structure includes forming a seed layer over a substrate of a semiconductor chip. The seed layer is patterned to provide a plating location. A cobalt based alloy is electrolessly plated at the plating location to form an inductive structure on the semiconductor chip.
    Type: Application
    Filed: August 15, 2013
    Publication date: July 10, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: William J. Gallagher, Eugene J. O'Sullivan, Naigang Wang
  • Publication number: 20140191361
    Abstract: A method for forming an on-chip magnetic structure includes forming a seed layer over a substrate of a semiconductor chip. The seed layer is patterned to provide a plating location. A cobalt based alloy is electrolessly plated at the plating location to form an inductive structure on the semiconductor chip.
    Type: Application
    Filed: January 10, 2013
    Publication date: July 10, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: William J. Gallagher, Eugene J. O'Sullivan, Naigang Wang
  • Publication number: 20140190003
    Abstract: A method for forming a thin film inductor having yokes, one or more of which is laminated, and one or more conductors passing between the yokes. The laminated yoke or yokes help reduce eddy currents and/or hysteresis losses.
    Type: Application
    Filed: March 12, 2014
    Publication date: July 10, 2014
    Applicant: International Business Machines Corporation
    Inventors: Robert E. Fontana, JR., William J. Gallagher, Philipp Herget, Eugene J. O'Sullivan, Lubomyr T. Romankiw, Naigang Wang, Bucknell C. Webb
  • Patent number: 8717136
    Abstract: A thin film inductor having yokes, one or more of which is laminated, and one or more conductors passing between the yokes. The laminated yoke or yokes help reduce eddy currents and/or hysteresis losses.
    Type: Grant
    Filed: January 10, 2012
    Date of Patent: May 6, 2014
    Assignee: International Business Machines Corporation
    Inventors: Robert E. Fontana, Jr., William J. Gallagher, Philipp Herget, Eugene J. O'Sullivan, Lubomyr T. Romankiw, Naigang Wang, Bucknell C. Webb
  • Patent number: 8658461
    Abstract: A field effect transistor includes a metal carbide source portion, a metal carbide drain portion, an insulating carbon portion separating the metal carbide source portion from the metal carbide portion, a nanostructure formed over the insulating and carbon portion and connecting the metal carbide source portion to the metal carbide drain portion, and a gate stack formed on over at least a portion of the insulating carbon portion and at least a portion of the nanostructure.
    Type: Grant
    Filed: August 3, 2012
    Date of Patent: February 25, 2014
    Assignee: International Business Machines Corporation
    Inventors: Cyril Cabral, Jr., Josephine B. Chang, Alfred Grill, Michael A. Guillorn, Christian Lavoie, Eugene J. O'Sullivan
  • Publication number: 20130314192
    Abstract: A thin film coupled inductor, a thin film spiral inductor, and a system that includes an electronic device and a power supply or power converter incorporating one or more such inductors. A thin film coupled inductor includes a wafer substrate; a bottom yoke comprising a magnetic material above the wafer substrate; a first insulating layer above the bottom yoke; a first conductor above the bottom yoke and separated therefrom by the first insulating layer; a second insulating layer above the first conductor; a second conductor above the second insulating layer; a third insulating layer above the second conductor; and a non-planar top yoke above the third insulating layer, the top yoke comprising a magnetic material.
    Type: Application
    Filed: May 22, 2012
    Publication date: November 28, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Robert E. Fontana, JR., Philipp Herget, Eugene J. O'Sullivan, Lubomyr T. Romankiw, Naigang Wang, Bucknell C. Webb
  • Patent number: 8535953
    Abstract: Processes for selectively patterning a magnetic film structure generally include selectively etching an exposed portion of a freelayer disposed on a tunnel barrier layer by a wet process, which includes exposing the freelayer to an etchant solution comprising at least one acid and an organophosphorus acid inhibitor or salt thereof, stopping on the tunnel barrier layer.
    Type: Grant
    Filed: January 13, 2012
    Date of Patent: September 17, 2013
    Assignee: International Business Machines Corporation
    Inventors: David W. Abraham, Solomon Assefa, Eugene J. O'Sullivan
  • Patent number: 8497212
    Abstract: Generally, the subject matter disclosed herein relates to modern sophisticated semiconductor devices and methods for forming the same, wherein a multilayer metal fill may be used to fill narrow openings formed in an interlayer dielectric layer. One illustrative method disclosed herein includes forming an opening in a dielectric material layer of a semiconductor device formed above a semiconductor substrate, the opening having sidewalls and a bottom surface. The method also includes forming a first layer of first fill material above the semiconductor device by forming the first layer inside the opening and at least above the sidewalls and the bottom surface of the opening.
    Type: Grant
    Filed: February 28, 2011
    Date of Patent: July 30, 2013
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Katherina E. Babich, Alessandro C. Callegari, Christopher D. Sheraw, Eugene J. O'Sullivan
  • Publication number: 20130176095
    Abstract: A thin film inductor having yokes, one or more of which is laminated, and one or more conductors passing between the yokes. The laminated yoke or yokes help reduce eddy currents and/or hysteresis losses.
    Type: Application
    Filed: January 10, 2012
    Publication date: July 11, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Robert E. Fontana, JR., William J. Gallagher, Philipp Herget, Eugene J. O'Sullivan, Lubomyr T. Romankiw, Naigang Wang, Bucknell C. Webb
  • Publication number: 20130106552
    Abstract: A thin film inductor according to one embodiment includes a bottom yoke; a first insulating layer above the bottom yoke; one or more conductors above the bottom yoke and separated therefrom by the first insulating layer; a second insulating layer above the one or more conductors; a third insulating layer above the second insulating layer; and a top yoke above the third insulating layer. A thin film inductor according to another embodiment includes a bottom yoke; a first insulating layer above the bottom yoke, the first insulating layer being polymeric; one or more conductors above the bottom yoke and separated therefrom by the first insulating layer; an upper insulating layer above the one or more conductors, the upper insulating layer being polymeric; and a top yoke above the second insulating layer.
    Type: Application
    Filed: November 2, 2011
    Publication date: May 2, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Robert E. Fontana, JR., William J. Gallagher, Philipp Herget, Eugene J. O'Sullivan, Naigang Wang, Bucknell C. Webb
  • Patent number: 8404145
    Abstract: An indium cap layer is formed by blanket depositing indium onto a surface of metallic interconnects separated by interlayer dielectric, and then selectively chemically etching the indium located on the interlayer dielectric leaving an indium cap layer. Etchants containing a strong acid are provided for selectively removing the indium.
    Type: Grant
    Filed: June 21, 2010
    Date of Patent: March 26, 2013
    Assignee: International Business Machines Corporation
    Inventors: Maurice McGlashan-Powell, Eugene J. O'Sullivan, Daniel C. Edelstein
  • Publication number: 20120302005
    Abstract: A field effect transistor includes a metal carbide source portion, a metal carbide drain portion, an insulating carbon portion separating the metal carbide source portion from the metal carbide portion, a nanostructure formed over the insulating and carbon portion and connecting the metal carbide source portion to the metal carbide drain portion, and a gate stack formed on over at least a portion of the insulating carbon portion and at least a portion of the nanostructure.
    Type: Application
    Filed: August 3, 2012
    Publication date: November 29, 2012
    Applicant: International Business Machines Corporation
    Inventors: Cyril Cabral, JR., Josephine B. Chang, Alfred Grill, Michael A. Guillorn, Christian Lavoie, Eugene J. O'Sullivan
  • Publication number: 20120299136
    Abstract: A semiconductor device includes a substrate including an M2 patterned area. A VA pillar structure is formed over the M2 patterned area. The VA pillar structure includes a substractively patterned metal layer. The VA pillar structure is a sub-lithographic contact. An MTJ stack is formed over the oxide layer and the metal layer of the VA pillar. A size of the MTJ stack and a shape anisotropy of the MTJ stack are independent of a size and a shape anisotropy of the sub-lithographic contact.
    Type: Application
    Filed: August 7, 2012
    Publication date: November 29, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Solomon ASSEFA, Michael C. GAIDIS, Eric A. JOSEPH, Eugene J. O'SULLIVAN
  • Publication number: 20120217590
    Abstract: Generally, the subject matter disclosed herein relates to modern sophisticated semiconductor devices and methods for forming the same, wherein a multilayer metal fill may be used to fill narrow openings formed in an interlayer dielectric layer. One illustrative method disclosed herein includes forming an opening in a dielectric material layer of a semiconductor device formed above a semiconductor substrate, the opening having sidewalls and a bottom surface. The method also includes forming a first layer of first fill material above the semiconductor device by forming the first layer inside the opening and at least above the sidewalls and the bottom surface of the opening.
    Type: Application
    Filed: February 28, 2011
    Publication date: August 30, 2012
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Katherina E. Babich, Alessandro C. Callegari, Christopher D. Sheraw, Eugene J. O'Sullivan
  • Publication number: 20120115251
    Abstract: Processes for selectively patterning a magnetic film structure generally include selectively etching an exposed portion of a freelayer disposed on a tunnel barrier layer by a wet process, which includes exposing the freelayer to an etchant solution comprising at least one acid and an organophosphorus acid inhibitor or salt thereof, stopping on the tunnel barrier layer.
    Type: Application
    Filed: January 13, 2012
    Publication date: May 10, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: David W. Abraham, Solomon Assefa, Eugene J. O'Sullivan
  • Patent number: 8105850
    Abstract: Processes for selectively patterning a magnetic film structure generally include selectively etching an exposed portion of a freelayer disposed on a tunnel barrier layer by a wet process, which includes exposing the freelayer to an etchant solution comprising at least one acid and an organophosphorus acid inhibitor or salt thereof, stopping on the tunnel barrier layer.
    Type: Grant
    Filed: November 2, 2010
    Date of Patent: January 31, 2012
    Assignee: International Business Machines Corporation
    Inventors: David W. Abraham, Assefa Solomon, Eugene J. O'Sullivan
  • Patent number: 8083955
    Abstract: An etching process is employed to selectively pattern an exposed magnetic layer of a magnetic thin film structure. The etching process generally includes selectively patterning a magnetic film structure comprises providing a magnetic structure comprising at least one bottom magnetic layer, at least one top magnetic layer, wherein the at least one bottom magnetic layer is separated from the at least one top magnetic layer by a tunnel barrier layer; and selectively etching the top magnetic layer with an etching solution comprising at least one weakly absorbing acid, a surfactant inhibitor soluble in the at least one weakly absorbing acid, and at least one cation additive, wherein etching of the tunnel barrier layer is substantially prevented. In some embodiments, etching solution comprises at least one perfluoroalkane sulfonic acid, an alkylsulfonate salt soluble in the at least one perfluoroalkane sulfonic acid, and at least one cation additive.
    Type: Grant
    Filed: October 3, 2008
    Date of Patent: December 27, 2011
    Assignee: International Business Machines Corporation
    Inventor: Eugene J. O'Sullivan