Patents by Inventor Hubert Benzel

Hubert Benzel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100077862
    Abstract: A workpiece composite includes a preform part and a gel accommodated in a recess in the preform, the recess being enclosed by at least one edge which serves as a creep barrier to prevent the gel from spreading. The at least one edge of the recess defines a termination point of at least one surface which is provided with a coating made of an oleophobic material in an area adjacent to the at least one edge.
    Type: Application
    Filed: September 3, 2009
    Publication date: April 1, 2010
    Inventors: Hubert Benzel, Lutz Mueller, Roman Sellin
  • Patent number: 7679154
    Abstract: In a method for manufacturing a semiconductor component having a semiconductor substrate, a flat, porous diaphragm layer and a cavity underneath the porous diaphragm layer are produced to form unsupported structures for a component. In a first approach, the semiconductor substrate may receive a doping in the diaphragm region that is different from that of the cavity. This permits different pore sizes and/or porosities to be produced, which is used in producing the cavity for improved etching gas transport. Also, mesopores may be produced in the diaphragm region and nanopores may be produced as an auxiliary structure in what is to become the cavity region.
    Type: Grant
    Filed: December 10, 2007
    Date of Patent: March 16, 2010
    Assignee: Robert Bosch GmbH
    Inventors: Hubert Benzel, Heribert Weber, Hans Artmann, Thorsten Pannek, Frank Schäfer
  • Publication number: 20100035068
    Abstract: A method for producing a silicon substrate, including the steps of providing a silicon substrate having an essentially planar silicon surface, producing a porous silicon surface having a plurality of pores, in particular having macropores and/or mesopores and/or nanopores, applying a filling material that is to be inserted into the silicon, which has a diameter that is less than a diameter of the pores, inserting the filling material into the pores and removing the excess filling material form the silicon surface, if necessary, and tempering the silicon substrate that is furnished with the filling material that has been filled into the pores, at a temperature between ca. 1000° C. and ca. 1400° C., in order to close the generated pores again and to enclose the filling material.
    Type: Application
    Filed: April 27, 2007
    Publication date: February 11, 2010
    Inventors: Gerhard Lammel, Hubert Benzel, Matthias Illing, Franz Laermer, Silvia Kronmueller, Paul Farber, Simon Armbruster, Ralf Reichenbach, Christoph Schelling, Ando Feyh
  • Patent number: 7647832
    Abstract: A micromechanical device and a method for producing this device are provided, the device having a sensor pattern that includes a spring pattern and a seismic mass. The seismic mass may be connected to the substrate material via the spring pattern, and a clearance may be provided in a direction perpendicular to the major substrate plane between the spring pattern and the substrate material. Alternatively, the spring pattern and the seismic mass may have a common, essentially continuous, front side surface.
    Type: Grant
    Filed: November 15, 2006
    Date of Patent: January 19, 2010
    Assignee: Robert Bosch GmbH
    Inventors: Joerg Muchow, Hubert Benzel, Markus Lang, Regina Grote, Simon Armbruster, Gerhard Lammel, Christoph Schelling, Volkmar Senz
  • Publication number: 20090256219
    Abstract: A method for producing a micromechanical diaphragm sensor includes providing a semiconductor substrate having a first region, a diaphragm, and a cavity that is located at least partially below the diaphragm. Above at least one part of the first region, a second region is generated in or on the surface of the semiconductor substrate, with at least one part of the second region being provided as crosspieces. The diaphragm is formed by a deposited sealing layer, and includes at least a part of the crosspieces.
    Type: Application
    Filed: June 24, 2009
    Publication date: October 15, 2009
    Inventors: Hubert BENZEL, Frank Schaefer, Simon Armbruster, Gerhard Lammel, Christoph Schelling, Joerg Brasas
  • Publication number: 20090236610
    Abstract: A method for manufacturing a semiconductor structure is provided which includes the following operations: supplying a crystalline semiconductor substrate, providing a porous region adjacent to a surface of the semiconductor substrate, introducing a dopant into the porous region from the surface, and thermally recrystallizing the porous region into a crystalline doping region of the semiconductor substrate whose doping type and/or doping concentration and/or doping distribution are/is different from those or that of the semiconductor substrate. A corresponding semiconductor structure is likewise provided.
    Type: Application
    Filed: March 9, 2007
    Publication date: September 24, 2009
    Applicant: ROBERT BOSCH GMBH
    Inventors: Gerhard Lammel, Hubert Benzel, Matthias Illing, Franz Laermer, Silvia Kronmueller, Paul Farber, Simon Armbruster, Ralf Reichenbach, Christoph Schelling, Ando Feyh
  • Patent number: 7585662
    Abstract: A receptacle is provided for accommodating an analysis chip, which receptacle has openings in a housing having access to the analysis chip, which openings are protected from external influences by a movable protector, and for carrying out an analysis, a mechanism for moving the protector is provided such that an opening in the protector coincides with the receptacle openings.
    Type: Grant
    Filed: March 27, 2002
    Date of Patent: September 8, 2009
    Assignee: Robert Bosch GmbH
    Inventors: Kurt Weiblen, Hubert Benzel
  • Patent number: 7572661
    Abstract: Described is a method for manufacturing a micromechanical sensor element and a micromechanical sensor element manufactured in particular using such a method which has a hollow space or a cavity and a membrane for detecting a physical variable. Different method steps are performed for manufacturing the sensor element, among other things, a structured etch mask having a plurality of holes or apertures being applied on a semiconductor substrate. Moreover, an etch process is used to create depressions in the semiconductor substrate beneath the holes in the structured etch mask. Anodization of the semiconductor material is subsequently carried out, the anodization taking place preferably starting from the created depressions in the semiconductor substrate. Due to this process, porous areas are created beneath the depressions, a lattice-like structure made of untreated, i.e., non-anodized, substrate material remaining between the porous areas and the depressions.
    Type: Grant
    Filed: September 8, 2005
    Date of Patent: August 11, 2009
    Assignee: Robert Bosch GmbH
    Inventors: Hubert Benzel, Stefan Finkbeiner, Matthias Illing, Frank Schaefer, Simon Armbruster, Gerhard Lammel, Christoph Schelling, Joerg Brasas
  • Patent number: 7572660
    Abstract: A method for manufacturing a micromechanical component and a micromechanical component manufactured using this method are described, the micromechanical component having a first substrate, which in turn has at least one cavity and one printed conductor. At least a part of the printed conductor is applied to at least a part of the walls of the cavity. In particular, the floor of the cavity is considered part of the cavity walls.
    Type: Grant
    Filed: December 17, 2004
    Date of Patent: August 11, 2009
    Assignee: Robert Bosch GmbH
    Inventors: Hubert Benzel, Stefan Finkbeiner, Christoph Schelling, Julian Gonska
  • Patent number: 7569412
    Abstract: A method for producing a micromechanical diaphragm sensor includes providing a semiconductor substrate having a first region, a diaphragm, and a cavity that is located at least partially below the diaphragm. Above at least one part of the first region, a second region is generated in or on the surface of the semiconductor substrate, with at least one part of the second region being provided as crosspieces. The diaphragm is formed by a deposited sealing layer, and includes at least a part of the crosspieces.
    Type: Grant
    Filed: December 13, 2004
    Date of Patent: August 4, 2009
    Assignee: Robert Bosch GmbH
    Inventors: Hubert Benzel, Frank Schaefer, Simon Armbruster, Gerhard Lammel, Christoph Schelling, Joerg Brasas
  • Publication number: 20090189629
    Abstract: In the measurement of sensor elements in a wafer composite, whereby non-electric stimuli are to be applied to the sensor elements, a semiconductor wafer having a multitude of sensor elements, each sensor element having a voltage supply connection, a grounded connection, and at least one sensor signal output, is configured such that a bus system is integrated in the semiconductor wafer, to which bus system at least the grounded connections of the sensor elements are connected and via which a supply voltage may be applied to the sensor elements, and that each sensor element is equipped with at least one controllable switching element for selecting the sensor element, so that only a selected sensor element supplies a sensor signal to a diagnosis device.
    Type: Application
    Filed: November 24, 2008
    Publication date: July 30, 2009
    Inventors: Holger ROSS, Hubert BENZEL, Roland GUENSCHEL, Harald GUENSCHEL
  • Patent number: 7563634
    Abstract: A method is described for mounting semiconductor chips and a corresponding semiconductor chip system. The method may include providing a semiconductor chip having a surface that includes a diaphragm region and a peripheral region, the peripheral region having a mounting region, and a cavity being disposed underneath the diaphragm region, which extends into the mounting region and ends there in an opening. The method may also include providing a substrate which has a surface having a recess; mounting the mounting region of the semiconductor chip in flip-chip technology onto the surface of the substrate in such a way that an edge of the recess lies between the mounting region and the diaphragm region and the opening faces in the direction of the substrate.
    Type: Grant
    Filed: August 24, 2005
    Date of Patent: July 21, 2009
    Assignee: Robert Bosch GmbH
    Inventor: Hubert Benzel
  • Patent number: 7555956
    Abstract: A micromechanical device and a method for producing this device are provided, two sensor patterns being provided in the semiconductor material to record two mechanical variables, in particular the pressure and the acceleration. The functionality of both sensor patterns is based on the same predefined converter principle.
    Type: Grant
    Filed: July 13, 2006
    Date of Patent: July 7, 2009
    Assignee: Robert Bosch GmbH
    Inventors: Hubert Benzel, Christoph Schelling
  • Publication number: 20090142873
    Abstract: A method for producing a sensor array including a monolithically integrated circuit is described as well as a sensor array. This sensor array has a micromechanical sensor structure, in which a first partial structure which is associated with the sensor structure is produced at the same time as a second partial structure which is associated with the circuit, a process variation of the first partial structure being performed in order to adjust a structure property of the sensor structure while the second partial structure remains the same.
    Type: Application
    Filed: September 25, 2006
    Publication date: June 4, 2009
    Inventors: Hubert Benzel, Simon Armbruster
  • Publication number: 20090127640
    Abstract: A manufacturing method for a micromechanical semiconductor element includes providing on a semiconductor substrate a patterned stabilizing element having at least one opening. The opening is arranged such that it allows access to a first region in the semiconductor substrate, the first region having a first doping. Furthermore, a selective removal of at least a portion of the semiconductor material having the first doping out of the first region of the semiconductor substrate is provided. In addition, a membrane is produced above the first region using a first epitaxy layer applied on the stabilizing element. In a further method step, at least a portion of the first region is used to produce a cavity underneath the stabilizing element. In this manner, the present invention provides for the production of the patterned stabilizing element by means of a second epitaxy layer, which is applied on the semiconductor substrate.
    Type: Application
    Filed: January 26, 2009
    Publication date: May 21, 2009
    Inventors: Hubert Benzel, Frank Schaefer, Simon Armbruster, Gerhard Lammel, Christoph Schelling, Joerg Brasas
  • Publication number: 20090101997
    Abstract: The present invention describes a method for producing a micromechanical capacitive pressure transducer and a micromechanical component produced by this method. First, a first electrode is produced in a doped semiconductor substrate. In a further method step, a diaphragm with a second electrode is produced at the surface of the semiconductor substrate. Furthermore, it is provided to apply a first layer, which preferably is made of dielectric material, on the diaphragm and the semiconductor substrate. With the aid of this first layer, the diaphragm and the semiconductor substrate of the finished micromechanical capacitive pressure transducer are mechanically connected to one another directly or indirectly. Furthermore, a buried cavity is produced in the semiconductor substrate between the first and second electrode.
    Type: Application
    Filed: November 22, 2006
    Publication date: April 23, 2009
    Inventors: Gerhard Lammel, Hubert Benzel, Simon Armbruster, Christoph Schelling, Joerg Brasas
  • Publication number: 20090084182
    Abstract: A micromechanical sensor element (1) is provided, which has a sealed diaphragm (2) affixed in a frame (3), exhibits high sensitivity at high overload resistance and has a small size, and which allows a piezoresistive measured-value acquisition. To this end, at least one carrier element (4), which is connected to the frame (3) via at least one connection link (5), is formed in the region of the diaphragm (2). Furthermore, piezoresistors (6) for detecting a deformation are situated in the region of the connection link (5).
    Type: Application
    Filed: November 21, 2006
    Publication date: April 2, 2009
    Inventors: Joerg Muchow, Hubert Benzel, Simon Armbruster, Christoph Schelling
  • Patent number: 7494839
    Abstract: A manufacturing method for a micromechanical semiconductor element includes providing on a semiconductor substrate a patterned stabilizing element having at least one opening. The opening is arranged such that it allows access to a first region in the semiconductor substrate, the first region having a first doping. Furthermore, a selective removal of at least a portion of the semiconductor material having the first doping out of the first region of the semiconductor substrate is provided. In addition, a membrane is produced above the first region using a first epitaxy layer applied on the stabilizing element. In a further method step, at least a portion of the first region is used to produce a cavity underneath the stabilizing element. In this manner, the present invention provides for the production of the patterned stabilizing element by means of a second epitaxy layer, which is applied on the semiconductor substrate.
    Type: Grant
    Filed: December 13, 2004
    Date of Patent: February 24, 2009
    Assignee: Robert Bosch GmbH
    Inventors: Hubert Benzel, Frank Schaefer, Simon Armbruster, Gerhard Lammel, Christoph Schelling, Joerg Brasas
  • Patent number: 7493819
    Abstract: A micromechanical pressure sensor includes a substrate having a front side and a back side, the front side facing a medium and the back side being situated on the opposite side of the substrate. A sensor diaphragm having at least one sensor area is situated on the front side, and a recess or cavity is situated behind the sensor diaphragm, and electrical contacting is provided on the back side.
    Type: Grant
    Filed: November 2, 2006
    Date of Patent: February 24, 2009
    Assignee: Robert Bosch GmbH
    Inventors: Hubert Benzel, Roland Guenschel
  • Patent number: 7479232
    Abstract: A method is for producing a semiconductor component, e.g., a multilayer semiconductor element, e.g., a micromechanical component, e.g., a pressure sensor, having a semiconductor substrate, e.g., made of silicon, and a semiconductor component produced according to the method. To reduce the production cost of such a semiconductor component, in a first step a first porous layer is produced in the semiconductor component, and in a second step a hollow or cavity is produced under or from the first porous layer in the semiconductor component, with the hollow or cavity capable of being provided with an external access opening.
    Type: Grant
    Filed: September 6, 2005
    Date of Patent: January 20, 2009
    Assignee: Robert Bosch GmbH
    Inventors: Hubert Benzel, Heribert Weber, Hans Artmann, Frank Schaefer