Patents by Inventor Liang Chu

Liang Chu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10276596
    Abstract: Some embodiments of the present disclosure relate to deceasing off-state leakage current within a metal-oxide-semiconductor field-effect transistor (MOSFET). The MOSFET includes source and drain regions. The source and drain regions are separated by a channel region. A gate is arranged over the channel region. The gate has a first gate region adjacent to the source region and a second gate region adjacent to the drain region. The first gate region is selectively doped adjacent the source region. The second gate region is undoped or lightly-doped. The undoped or lightly-doped second gate region reduces the electric field between the gate and the drain region, and hence reduces a gate induced drain leakage (GIDL) current between the gate and drain region. The undoped or lightly-doped region of the gate can reduce the GIDL current within the MOSFET by about three orders of magnitude. Other embodiments are also disclosed.
    Type: Grant
    Filed: August 6, 2014
    Date of Patent: April 30, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chen-Liang Chu, Chih-Wen Albert Yao, Ruey-Hsin Liu, Ming-Ta Lei
  • Publication number: 20190123585
    Abstract: The present application provides a wireless charging module and a modularized sensing device therewith. A first charging unit is disposed around the inside of the wireless charging module for wirelessly charging a sensing module. Without introducing a transmission line as an electricity transmitting medium, the sensing module can be directly disposed inside and charged by the wireless charging module, which improves flexibility of implementation. Further, since the first charging unit is configured to surround the inside of the wireless charging module shaped as a bowl structure, the sensing module can be simply disposed into the bowl structure and wirelessly charged by the surrounding first charging units, which saves the inconvenience of setting the sensing module to a specific location or area for stable wireless charging and increases effective charging angles.
    Type: Application
    Filed: July 17, 2018
    Publication date: April 25, 2019
    Inventors: Po-Chun Yang, Chun-Liang Chu, Yu-San Lin, Yu-Cheng Chang
  • Publication number: 20190074272
    Abstract: A dummy cell arrangement in a semiconductor device includes a substrate with a dummy region, unit dummy cells arranged in rows and columns in the dummy region, and flexible extended dummy cells arranged in rows and columns filling up remaining dummy region. The unit dummy cell includes exactly one base dummy cell and exactly two fixed dummy cells at opposite sides of the base dummy cell in row direction or in column direction and the flexible extended dummy cell includes at least two base dummy units and a plurality of flexible dummy units at two opposite sides of the two base dummy units in row direction or in column direction. The base dummy cell consists of at least one fin, at least one gate and at least one contact, while the flexible dummy cell consists of one gate and one contact without any fin.
    Type: Application
    Filed: October 31, 2018
    Publication date: March 7, 2019
    Inventors: Chung-Liang Chu, Yu-Ruei Chen, Yu-Hsiang Lin
  • Patent number: 10164037
    Abstract: A semiconductor device structure is provided. The semiconductor device structure includes a semiconductor substrate having a top surface, a source region, and a drain region. The semiconductor device structure includes a gate structure over the top surface and extending into the semiconductor substrate. The gate structure in the semiconductor substrate is between the source region and the drain region and separates the source region from the drain region. The semiconductor device structure includes an isolation structure in the semiconductor substrate and surrounding the source region, the drain region, and the gate structure in the semiconductor substrate.
    Type: Grant
    Filed: March 31, 2017
    Date of Patent: December 25, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Ker-Hsiao Huo, Kong-Beng Thei, Chih-Wen Albert Yao, Fu-Jier Fan, Chen-Liang Chu, Ta-Yuan Kung, Yi-Huan Chen, Yu-Bin Zhao, Ming-Ta Lei, Li-Hsuan Yeh
  • Patent number: 10153265
    Abstract: A dummy cell arrangement in a semiconductor device includes a substrate with a dummy region, unit dummy cells arranged in rows and columns in the dummy region, and flexible extended dummy cells arranged in rows and columns filling up remaining dummy region. The unit dummy cell includes exactly one base dummy cell and exactly two fixed dummy cells at opposite sides of the base dummy cell in row direction or in column direction and the flexible extended dummy cell includes at least two base dummy units and a plurality of flexible dummy units at two opposite sides of the two base dummy units in row direction or in column direction. The base dummy cell consists of at least one fin, at least one gate and at least one contact, while the flexible dummy cell consists of one gate and one contact without any fin.
    Type: Grant
    Filed: August 21, 2017
    Date of Patent: December 11, 2018
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chung-Liang Chu, Yu-Ruei Chen, Yu-Hsiang Lin
  • Publication number: 20180286960
    Abstract: A semiconductor device structure is provided. The semiconductor device structure includes a semiconductor substrate having a top surface, a source region, and a drain region. The semiconductor device structure includes a gate structure over the top surface and extending into the semiconductor substrate. The gate structure in the semiconductor substrate is between the source region and the drain region and separates the source region from the drain region. The semiconductor device structure includes an isolation structure in the semiconductor substrate and surrounding the source region, the drain region, and the gate structure in the semiconductor substrate.
    Type: Application
    Filed: March 31, 2017
    Publication date: October 4, 2018
    Inventors: Ker-Hsiao HUO, Kong-Beng THEI, Chih-Wen Albert YAO, Fu-Jier FAN, Chen-Liang CHU, Ta-Yuan KUNG, Yi-Huan CHEN, Yu-Bin ZHAO, Ming-Ta LEI, Li-Hsuan YEH
  • Publication number: 20180197985
    Abstract: A semiconductor device is provided. The semiconductor device comprises a substrate, a gate, a first doped region and a second doped region. The gate is over the substrate. The first doped region and the second doped region are in the substrate. The first doped region and the second doped region are of a same conductivity type and separated by the gate. The length of the first doped region is greater than a length of the second doped region in a direction substantially perpendicular to a channel length defined between the first doped region and the second doped region.
    Type: Application
    Filed: March 5, 2018
    Publication date: July 12, 2018
    Inventors: Ker-Hsiao HUO, Kong-Beng THEI, Chien-Chih CHOU, Yi-Min CHEN, Chen-Liang CHU
  • Publication number: 20180110255
    Abstract: The present invention provides a method to convert the intrinsic sugar of a juice into indigestible oligosaccharides (such as, low-polymerization fructose and sorbitol). The present method comprises using a Zymomonas mobilis biomass and fructosyltransferase as well as pressure treatment. Taking advantage of the present method, the drawbacks of drinking juices, such as too many sugar and calorie intake can be obviated, and thereby the present invention can offer healthier option to the consumers.
    Type: Application
    Filed: May 19, 2017
    Publication date: April 26, 2018
    Inventors: Chung-Liang Chu, Ta-Ching Cheng, Yu-Chuan Tseng
  • Publication number: 20180076322
    Abstract: A semiconductor structure is disclosed. The semiconductor structure includes: a substrate of a first conductivity; a first region of the first conductivity formed in the substrate; a second region of the first conductivity formed in the first region, wherein the second region has a higher doping density than the first region; a source region of a second conductivity formed in the second region; a drain region of the second conductivity formed in the substrate; a pickup region of the first conductivity formed in the second region and adjacent to the source region; and a resist protective oxide (RPO) layer formed on a top surface of the second region. An associated fabricating method is also disclosed.
    Type: Application
    Filed: November 16, 2017
    Publication date: March 15, 2018
    Inventors: CHEN-LIANG CHU, TA-YUAN KUNG, KER-HSIAO HUO, YI-HUAN CHEN
  • Patent number: 9911845
    Abstract: A semiconductor device is provided. The semiconductor device comprises a substrate, a gate, a first doped region and a second doped region. The gate is over the substrate. The first doped region and the second doped region are in the substrate. The first doped region and the second doped region are of a same conductivity type and separated by the gate. The length of the first doped region is greater than a length of the second doped region in a direction substantially perpendicular to a channel length defined between the first doped region and the second doped region.
    Type: Grant
    Filed: December 10, 2015
    Date of Patent: March 6, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ker-Hsiao Huo, Kong-Beng Thei, Chien-Chih Chou, Yi-Min Chen, Chen-Liang Chu
  • Publication number: 20170365675
    Abstract: A dummy pattern arrangement and a method of arranging dummy patterns are provided in the present invention. The dummy pattern arrangement includes a substrate with a dummy region, a plurality of first base dummy cells arranged spaced apart from each other along a first direction in the dummy region, and two first edge dummy cells arranged respectively at two opposite sides of the first base dummy cells along the first direction in the dummy region.
    Type: Application
    Filed: June 16, 2016
    Publication date: December 21, 2017
    Inventors: Ching-Yu Chang, Ying-Chiao Wang, Hon-Huei Liu, Jyh-Shyang Jenq, Chung-Liang Chu, Yu-Ruei Chen
  • Patent number: 9831340
    Abstract: A semiconductor structure is disclosed. The semiconductor structure includes: a substrate of a first conductivity; a first region of the first conductivity formed in the substrate; a second region of the first conductivity formed in the first region, wherein the second region has a higher doping density than the first region; a source region of a second conductivity formed in the second region; a drain region of the second conductivity formed in the substrate; a pickup region of the first conductivity formed in the second region and adjacent to the source region; and a resist protective oxide (RPO) layer formed on a top surface of the second region. An associated fabricating method is also disclosed.
    Type: Grant
    Filed: February 5, 2016
    Date of Patent: November 28, 2017
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Chen-Liang Chu, Ta-Yuan Kung, Ker-Hsiao Huo, Yi-Huan Chen
  • Publication number: 20170229575
    Abstract: A semiconductor structure is disclosed. The semiconductor structure includes: a substrate of a first conductivity; a first region of the first conductivity formed in the substrate; a second region of the first conductivity formed in the first region, wherein the second region has a higher doping density than the first region; a source region of a second conductivity formed in the second region; a drain region of the second conductivity formed in the substrate; a pickup region of the first conductivity formed in the second region and adjacent to the source region; and a resist protective oxide (RPO) layer formed on a top surface of the second region. An associated fabricating method is also disclosed.
    Type: Application
    Filed: February 5, 2016
    Publication date: August 10, 2017
    Inventors: CHEN-LIANG CHU, TA-YUAN KUNG, KER-HSIAO HUO, YI-HUAN CHEN
  • Publication number: 20170209388
    Abstract: The present invention provides a method for preparing a reconstituted apolipoprotein B lipoparticle and the method comprises steps of (a) dissolving an apolipoprotein B and a lipid in a first buffer containing 2 M to 8 M urea and 1 wt % to 15 wt % amphiphilic compounds to form a mixture; and (b) dialyzing the mixture against a second buffer containing 0 M to 2M urea and 0 wt % to 0.5 wt % amphiphilic compounds for 1 to several times for lowering concentrations of the urea and the amphiphilic compounds in the mixture. The present invention further provides an apolipoprotein B lipoparticle and a use for the production of an apolipoprotein B lipoparticle used for delivering a hydrophobic substance.
    Type: Application
    Filed: April 6, 2017
    Publication date: July 27, 2017
    Inventors: Chia-Ching Chang, Gong-Shen Chen, Tsai-Mu Cheng, Hsueh-Liang Chu
  • Publication number: 20170170311
    Abstract: A semiconductor device is provided. The semiconductor device comprises a substrate, a gate, a first doped region and a second doped region. The gate is over the substrate. The first doped region and the second doped region are in the substrate. The first doped region and the second doped region are of a same conductivity type and separated by the gate. The length of the first doped region is greater than a length of the second doped region in a direction substantially perpendicular to a channel length defined between the first doped region and the second doped region.
    Type: Application
    Filed: December 10, 2015
    Publication date: June 15, 2017
    Inventors: KER-HSIAO HUO, KONG-BENG THEI, CHIEN-CHIH CHOU, YI-MIN CHEN, CHEN-LIANG CHU
  • Patent number: 9601585
    Abstract: A transistor includes an isolation region surrounding an active region. The transistor also includes a gate dielectric layer over a portion of the active region. The transistor further includes a gate electrode over the gate dielectric layer. The portion of the active region under the gate dielectric layer includes a channel region between a drain region and a source region, and at least one wing region adjoining the channel region. The at least one wing region has a base edge adjoining the channel region. The at least one wing region is polygonal or curved.
    Type: Grant
    Filed: June 26, 2015
    Date of Patent: March 21, 2017
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chen-Liang Chu, Fei-Yuh Chen, Yi-Sheng Chen, Shih-Kuang Hsiao, Chun Lin Tsai, Kong-Beng Thei
  • Patent number: 9522848
    Abstract: A method for producing a silicon-containing zirconia calcined body includes wet mixing a mixture to obtain a mixed slurry, with the mixture including a silicon-containing zirconia powder, a sodium carbonate powder, a tetraethoxysilane, and an adhesive; drying the mixed slurry to obtain a caked mass; grinding and sieving the caked mass to obtain a mixed powder; pressurizing and shaping the mixed powder to obtain a blank; and calcining the blank in an environment at 900-1200° C. to obtain a silicon-containing zirconia calcined body. The silicon-containing zirconia calcined body can be sintered at 1415-1450° C. into a silicon-containing zirconia sintered body, with a shrinkage ratio during sintering the silicon-containing zirconia calcined body into the silicon-containing zirconia sintered body being 22-31%.
    Type: Grant
    Filed: September 4, 2014
    Date of Patent: December 20, 2016
    Assignee: KAOHSIUNG MEDICAL UNIVERSITY
    Inventors: Moo-Chin Wang, Hsueh-Liang Chu, Cheng-Li Wang, Horng-Huey Ko
  • Patent number: 9466681
    Abstract: The present disclosure provides an apparatus and method for fabricating a semiconductor gate. The apparatus includes, a substrate having an active region and a dielectric region that forms an interface with the active region; a gate electrode located above a portion of the active region and a portion of the dielectric region; and a dielectric material disposed within the gate electrode, the dielectric material being disposed near the interface between the active region and the dielectric region. The method includes, providing a substrate having an active region and a dielectric region that forms an interface with the active region; forming a gate electrode over the substrate, the gate electrode having an opening near a region of the gate electrode that is above the interface; and filling the opening with a dielectric material.
    Type: Grant
    Filed: June 12, 2015
    Date of Patent: October 11, 2016
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chen-Liang Chu, Fei-Yun Chen, Chih-Wen Albert Yao
  • Patent number: 9437494
    Abstract: A semiconductor arrangement and method of formation are provided. A method of semiconductor formation includes using a single photoresist to mask off an area where low voltage devices are to be formed as well as gate structures of high voltage devices while performing high energy implants for the high voltage devices. Another method of semiconductor fabrication includes performing high energy implants for high voltage devices through a patterned photoresist where the photoresist is patterned prior to forming gate structures for high voltage devices and prior to forming gate structures for low voltage devices. After the high energy implants are performed, subsequent processing is performed to form high voltage devices and low voltage devices. High voltage device and low voltage devices are thus formed in a CMOS process without need for additional masks.
    Type: Grant
    Filed: February 20, 2014
    Date of Patent: September 6, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Alexander Kalnitsky, Kong-Beng Thei, Chien-Chih Chou, Chen-Liang Chu, Hsiao-Chin Tuan
  • Publication number: 20160235669
    Abstract: The present invention provides a process for preparing a water dispersion containing a high concentration of nano/submicron, hydrophobic, functional compounds. The process is carried out by using a complex stabilizer having an HLB value of about 10 to about 17, comprising lecithin and at least one non-phospholipid selected from polysorbate, sucrose ester, and polyglycerol fatty acid ester; selecting a specific weight ratio of the hydrophobic functional compounds and the stabilizer; and using homogenization technique, media milling technique, and/or centrifugal technique. The water dispersion containing a high concentration of nano/submicron, hydrophobic, functional compound produced by the process of the invention has stable dispersibility and improved bioavailability, and can be applied to the fields of foods and pharmaceuticals.
    Type: Application
    Filed: April 26, 2016
    Publication date: August 18, 2016
    Inventors: RU-YIN CHEN, CHUNG-JEN CHEN, YI-JIE TSAI, JIA-JIU WU, CHIH-PING HUANG, CHUNG-LIANG CHU