Patents by Inventor Rajeev Kumar

Rajeev Kumar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11610620
    Abstract: A memory is provided which comprises a capacitor including non-linear polar material. The capacitor may have a first terminal coupled to a node (e.g., a storage node) and a second terminal coupled to a plate-line. The capacitors can be a planar capacitor or non-planar capacitor (also known as pillar capacitor). The memory includes a transistor coupled to the node and a bit-line, wherein the transistor is controllable by a word-line, wherein the plate-line is parallel to the bit-line. The memory includes a refresh circuitry to refresh charge on the capacitor periodically or at a predetermined time. The refresh circuit can utilize one or more of the endurance mechanisms. When the plate-line is parallel to the bit-line, a specific read and write scheme may be used to reduce the disturb voltage for unselected bit-cells. A different scheme is used when the plate-line is parallel to the word-line.
    Type: Grant
    Filed: November 18, 2021
    Date of Patent: March 21, 2023
    Assignee: Kepler Computing Inc.
    Inventors: Rajeev Kumar Dokania, Amrita Mathuriya, Sasikanth Manipatruni
  • Patent number: 11609270
    Abstract: An Integrated Circuit (IC) includes a storage element and control circuitry. The control circuitry is configured to select, responsively to a scan-enable control, between a functional-data input and a scan-data input to serve as an input to the storage element, to selectively disable toggling of an output of the storage element, responsively to a clock-enable control, by gating a clock signal provided to the storage element, and, while the clock-enable control indicates that the output of the storage element is to be disabled from toggling, to select the input of the storage element to be the scan-data input.
    Type: Grant
    Filed: August 8, 2022
    Date of Patent: March 21, 2023
    Assignee: APPLE INC.
    Inventors: FNU Rajeev Kumar, Chandan Shantharaj
  • Patent number: 11611345
    Abstract: A low power sequential circuit (e.g., latch) uses a non-linear polar capacitor to retain charge with fewer transistors than traditional CMOS sequential circuits. In one example, a sequential circuit includes pass-gates and inverters, but without a feedback mechanism or memory element. In another example, a sequential uses load capacitors (e.g., capacitors coupled to a storage node and a reference supply). The load capacitors are implemented using ferroelectric material, paraelectric material, or linear dielectric. In one example, a sequential uses minority, majority, or threshold gates with ferroelectric or paraelectric capacitors. In one example, a sequential circuit uses minority, majority, or threshold gates configured as NAND gates.
    Type: Grant
    Filed: August 20, 2021
    Date of Patent: March 21, 2023
    Assignee: Kepler Computing Inc.
    Inventors: Amrita Mathuriya, Ikenna Odinaka, Rajeev Kumar Dokania, Rafael Rios, Sasikanth Manipatruni
  • Publication number: 20230077581
    Abstract: Ferroelectric capacitor is formed by conformably depositing a non-conductive dielectric over the etched first and second electrodes, and forming a metal cap or helmet over a selective part of the non-conductive dielectric, wherein the metal cap conforms to portions of sidewalls of the non-conductive dielectric. The metal cap is formed by applying physical vapor deposition at a grazing angle to selectively deposit a metal mask over the selective part of the non-conductive dielectric. The metal cap can also be formed by applying ion implantation with tuned etch rate. The method further includes isotopically etching the metal cap and the non-conductive dielectric such that non-conductive dielectric remains on sidewalls of the first and second electrodes but not on the third and fourth electrodes.
    Type: Application
    Filed: November 16, 2022
    Publication date: March 16, 2023
    Applicant: Kepler Computing Inc.
    Inventors: Gaurav Thareja, Sasikanth Manipatruni, Rajeev Kumar Dokania, Ramamoorthy Ramesh, Amrita Mathuriya
  • Publication number: 20230078374
    Abstract: Aspects present herein relate to methods and devices for wireless communication including an apparatus, e.g., a UE and/or a base station. The apparatus may receive, from a base station, a logged measurement configuration including a PLMN ID and a NID, the logged measurement configuration further including at least one of a trace reference, a logging area, a MDT PLMN list, or a MDT NPN list. The apparatus may also store the PLMN ID and the NID based on the received logged measurement configuration. Additionally, the apparatus may compare the PLMN ID and the NID to an MDT SNPN list to identify if the PLMN ID and the NID are included in the MDT SNPN list. The apparatus may also transmit, to the base station, an availability indicator if the PLMN ID and the NID are included in the MDT SNPN list.
    Type: Application
    Filed: September 13, 2021
    Publication date: March 16, 2023
    Inventors: Shankar KRISHNAN, Luis Fernando Brisson LOPES, Rajeev KUMAR, Xipeng ZHU, Ozcan OZTURK, Rajat PRAKASH
  • Patent number: 11605411
    Abstract: A high-density low voltage ferroelectric (or paraelectric) memory bit-cell that includes a planar ferroelectric or paraelectric capacitor. The memory bit-cell comprises 1T1C configuration, where a plate-line is parallel to a word-line, or the plate-line is parallel to a bit-line. The memory bit-cell can be 1TnC, where ā€˜n’ is a number. In a 1TnC bit-cell, the capacitors are vertically stacked allowing for multiple values to be stored in a single bit-cell. The memory bit-cell can be multi-element FE gain bit-cell. In a multi-element FE gain bit-cell, data sensing is done with signal amplified by a gain transistor in the bit-cell. As such, higher storage density is realized using multi-element FE gain bit-cells. In some examples, the 1T1C, 1TnC, and multi-element FE gain bit-cells are multi-level bit-cells. To realize multi-level bit-cells, the capacitor is placed in a partially switched polarization state by applying different voltage levels or different time pulse widths at the same voltage level.
    Type: Grant
    Filed: July 30, 2021
    Date of Patent: March 14, 2023
    Assignee: Kepler Computing Inc.
    Inventors: Rajeev Kumar Dokania, Noriyuki Sato, Tanay Gosavi, Pratyush Pandey, Debo Olaosebikan, Amrita Mathuriya, Sasikanth Manipatruni
  • Patent number: 11605413
    Abstract: A memory is provided which comprises a capacitor including non-linear polar material. The capacitor may have a first terminal coupled to a node (e.g., a storage node) and a second terminal coupled to a plate-line. The capacitors can be a planar capacitor or non-planar capacitor (also known as pillar capacitor). The memory includes a transistor coupled to the node and a bit-line, wherein the transistor is controllable by a word-line, wherein the plate-line is parallel to the bit-line. The memory includes a refresh circuitry to refresh charge on the capacitor periodically or at a predetermined time. The refresh circuit can utilize one or more of the endurance mechanisms. When the plate-line is parallel to the bit-line, a specific read and write scheme may be used to reduce the disturb voltage for unselected bit-cells. A different scheme is used when the plate-line is parallel to the word-line.
    Type: Grant
    Filed: November 19, 2021
    Date of Patent: March 14, 2023
    Assignee: Kepler Computing Inc.
    Inventors: Rajeev Kumar Dokania, Amrita Mathuriya, Sasikanth Manipatruni
  • Publication number: 20230073071
    Abstract: A pocket integration for high density memory and logic applications and methods of fabrication are described. While various examples are described with reference to FeRAM, capacitive structures formed herein can be used for any application where a capacitor is desired. For instance, the capacitive structure can be used for fabricating ferroelectric based or paraelectric based majority gate, minority gate, and/or threshold gate.
    Type: Application
    Filed: September 17, 2021
    Publication date: March 9, 2023
    Applicant: Kepler Computing, Inc.
    Inventors: Noriyuki Sato, Tanay Gosavi, Niloy Mukherjee, Amrita Mathuriya, Rajeev Kumar Dokania, Sasikanth Manipatruni
  • Publication number: 20230077054
    Abstract: A pocket integration for high density memory and logic applications and methods of fabrication are described. While various embodiments are described with reference to FeRAM, capacitive structures formed herein can be used for any application where a capacitor is desired. For example, the capacitive structure can be used for fabricating ferroelectric based or paraelectric based majority gate, minority gate, and/or threshold gate.
    Type: Application
    Filed: September 24, 2021
    Publication date: March 9, 2023
    Applicant: Kepler Computing, Inc.
    Inventors: Noriyuki Sato, Tanay Gosavi, Niloy Mukherjee, Amrita Mathuriya, Rajeev Kumar Dokania, Sasikanth Manipatruni
  • Publication number: 20230074222
    Abstract: Techniques and apparatus for allowing a network fabric to accept network devices associated with other fabric networks are described. An example technique involves establishing a communication session between a first network node and a first control plane of the network fabric, wherein the first network node supports a second control plane different from the first control plane; First routing information from the first network node is imported into a first routing table of the first control plane. Second routing information from a second network node is imported into a second routing table of the first network node.
    Type: Application
    Filed: September 3, 2021
    Publication date: March 9, 2023
    Inventors: Rajeev KUMAR, Sanjay K. HOODA, Balaji PITTA VENKATACHALAPATHY, Prakash C. JAIN, Rajagopal VENKATRAMAN
  • Publication number: 20230076825
    Abstract: A pocket integration for high density memory and logic applications and methods of fabrication are described. While various embodiments are described with reference to FeRAM, capacitive structures formed herein can be used for any application where a capacitor is desired. For example, the capacitive structure can be used for fabricating ferroelectric based or paraelectric based majority gate, minority gate, and/or threshold gate.
    Type: Application
    Filed: September 17, 2021
    Publication date: March 9, 2023
    Applicant: Kepler Computing, Inc.
    Inventors: Noriyuki Sato, Tanay Gosavi, Niloy Mukherjee, Amrita Mathuriya, Rajeev Kumar Dokania, Sasikanth Manipatruni
  • Publication number: 20230077101
    Abstract: In one embodiment, network node-to-node connectivity verification is performed in a network including data path processing of packets within a packet switching device. In one embodiment, an echo request connectivity test packet, emulating an echo request connectivity test packet received from a first connected network node, is inserted by the packet switching device prior in its data processing path prior to ingress processing performed for packets received from the first connected network node. A correspondingly received echo reply connectivity test packet is intercepted by the packet switching device during data path egress processing performed for packets to be forwarded to the first connected network node.
    Type: Application
    Filed: September 5, 2021
    Publication date: March 9, 2023
    Applicant: Cisco Technology, Inc., a California corporation
    Inventors: Rajagopal VENKATRAMAN, Rajeev KUMAR, Roberto Mitsuo KOBO, Vikash AGARWAL
  • Publication number: 20230075276
    Abstract: Methods, systems, and devices for wireless communications are described. In some examples, a wireless communications system may support machine learning and may configure a user equipment (UE) for machine learning. The UE may transmit, to a base station, a request message that includes an indication of a machine learning model or a neural network function based at least in part on a trigger event. In response to the request message, the base station may transmit a machine learning model, a set of parameters corresponding to the machine learning model, or a configuration corresponding to a neural network function and may transmit an activation message to the UE to implement the machine learning model and the neural network function.
    Type: Application
    Filed: September 3, 2021
    Publication date: March 9, 2023
    Inventors: Xipeng Zhu, Gavin Bernard Horn, Vanitha Aravamudhan Kumar, Vishal Dalmiya, Shankar Krishnan, Rajeev Kumar, Taesang Yoo, Eren Balevi, Aziz Gholmieh, Rajat Prakash
  • Publication number: 20230070073
    Abstract: A pocket integration for high density memory and logic applications and methods of fabrication are described. While various examples are described with reference to FeRAM, capacitive structures formed herein can be used for any application where a capacitor is desired. For instance, the capacitive structure can be used for fabricating ferroelectric based or paraelectric based majority gate, minority gate, and/or threshold gate.
    Type: Application
    Filed: September 24, 2021
    Publication date: March 9, 2023
    Applicant: Kepler Computing, Inc.
    Inventors: Noriyuki Sato, Tanay Gosavi, Niloy Mukherjee, Amrita Mathuriya, Rajeev Kumar Dokania, Sasikanth Manipatruni
  • Publication number: 20230064266
    Abstract: Methods, systems, and devices for wireless communications are described. A user equipment (UE) may communicate with a network entity within a wireless communications network. The UE may transmit a request for information to the network entity and, in response to the request, the UE may receive the requested information from the network entity. For example, the UE may request data from one or more data repositories associated with the network entity. In some examples, the information request may be associated with one or more measurements associated with operations of the network. In some instances, the UE may use a machine learning model to perform training or inference based on the information associated with the one or more measurements.
    Type: Application
    Filed: August 26, 2021
    Publication date: March 2, 2023
    Inventors: Shankar Krishnan, Xipeng Zhu, Taesang Yoo, Rajeev Kumar, Gavin Bernard Horn, Aziz Gholmieh, Eren Balevi
  • Publication number: 20230067612
    Abstract: A pocket integration for high density memory and logic applications and methods of fabrication are described. While various embodiments are described with reference to FeRAM, capacitive structures formed herein can be used for any application where a capacitor is desired. For example, the capacitive structure can be used for fabricating ferroelectric based or paraelectric based majority gate, minority gate, and/or threshold gate.
    Type: Application
    Filed: September 2, 2021
    Publication date: March 2, 2023
    Applicant: Kepler Computing, Inc.
    Inventors: Noriyuki Sato, Tanay Gosavi, Niloy Mukherjee, Amrita Mathuriya, Rajeev Kumar Dokania, Sasikanth Manipatruni
  • Publication number: 20230060250
    Abstract: Certain aspects of the present disclosure provide techniques for data collection for non-terrestrial networks (NTN). One aspect provides a method for wireless communications by a user equipment (UE). The method generally includes transmitting an indication of a capability of the UE to connect to a network via both terrestrial network (TN) cells and non-terrestrial network (NTN) cells and transmitting one or more data collection reports in accordance with the indicated capability.
    Type: Application
    Filed: September 16, 2021
    Publication date: March 2, 2023
    Inventors: Rajeev KUMAR, Bharat SHRESTHA, Alberto RICO ALVARINO, Umesh PHUYAL, Xipeng ZHU, Shankar KRISHNAN
  • Publication number: 20230067555
    Abstract: A pocket integration for high density memory and logic applications and methods of fabrication are described. While various examples are described with reference to FeRAM, capacitive structures formed herein can be used for any application where a capacitor is desired. For instance, the capacitive structure can be used for fabricating ferroelectric based or paraelectric based majority gate, minority gate, and/or threshold gate.
    Type: Application
    Filed: September 2, 2021
    Publication date: March 2, 2023
    Applicant: Kepler Computing, Inc.
    Inventors: Noriyuki Sato, Tanay Gosavi, Niloy Mukherjee, Amrita Mathuriya, Rajeev Kumar Dokania, Sasikanth Manipatruni
  • Publication number: 20230068504
    Abstract: Certain aspects of the present disclosure provide techniques for data collection for non-terrestrial networks (NTN). One aspect provides a method for wireless communications by a user equipment (UE). The method generally includes transmitting an indication of a capability of the UE to connect to a network via both terrestrial network (TN) cells and non-terrestrial network (NTN) cells and transmitting one or more data collection reports in accordance with the indicated capability.
    Type: Application
    Filed: September 2, 2021
    Publication date: March 2, 2023
    Inventors: Rajeev KUMAR, Bharat SHRESTHA, Alberto RICO ALVARINO, Umesh PHUYAL, Xipeng ZHU, Shankar KRISHNAN
  • Publication number: 20230061624
    Abstract: Certain aspects of the present disclosure provide techniques for data collection for non-terrestrial networks (NTN). One aspect provides a method for wireless communications by a user equipment (UE). The method generally includes transmitting an indication of a capability of the UE to connect to a network via both terrestrial network (TN) cells and non-terrestrial network (NTN) cells and transmitting one or more data collection reports in accordance with the indicated capability.
    Type: Application
    Filed: September 16, 2021
    Publication date: March 2, 2023
    Inventors: Rajeev KUMAR, Bharat SHRESTHA, Alberto RICO ALVARINO, Umesh PHUYAL, Xipeng ZHU, Shankar KRISHNAN