Patents by Inventor Ru Huang

Ru Huang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200098680
    Abstract: A conductive structure includes a first wire, a second wire, and a conductive pillar. The second wire is disposed over the first wire and intersected with the first wire. The conductive pillar is disposed between the first wire and the second wire. A bottom surface area of the conductive pillar is greater than an area at which the first wire overlaps the conductive pillar.
    Type: Application
    Filed: August 22, 2019
    Publication date: March 26, 2020
    Inventors: Guan-Ru HUANG, Wen-Yu KUO, Ya-Tang CHUANG
  • Publication number: 20200087071
    Abstract: An item picking and replenishment method is provided. According to the item picking and replenishment method, an item position corresponding to at least one item is output according to an order by a host, and the item position is received by a processing unit of a picking vehicle. A moving signal is generated by the processing unit according to a current position of the picking vehicle and the item position. A rotary encoder of the picking vehicle is used to move the picking vehicle to the item position according to the moving signal. The item is obtained from a shelf by an insertion fork of the picking vehicle. The insertion fork is disposed on a placement layer of a placement shelf, and the placement layer is a tilted layer.
    Type: Application
    Filed: December 26, 2018
    Publication date: March 19, 2020
    Applicant: Industrial Technology Research Institute
    Inventors: Chen-Jyh FAN, Wan-Ru HUANG
  • Patent number: 10593829
    Abstract: A method of manufacturing a light-emitting device is disclosed. The method includes providing a light-emitting diode wafer, including a substrate and a semiconductor stack on the substrate, wherein the semiconductor stack has a lower surface facing the substrate and an upper surface opposite to the lower surface; providing a first laser on the light-emitting diode wafer and irradiating the light-emitting diode wafer from the upper surface to form a plurality of scribing lines on the upper surface; providing an etching process; providing and focusing a second laser on an interior of the substrate to form one or a plurality of textured areas in the substrate; and providing force on the light-emitting diode wafer to separate the light-emitting diode wafer into a plurality of light-emitting diode chips along the plurality of scribing lines.
    Type: Grant
    Filed: October 12, 2018
    Date of Patent: March 17, 2020
    Assignee: EPISTAR CORPORATION
    Inventors: Po-Shun Chiu, De-Shan Kuo, Jhih-Jheng Yang, Jiun-Ru Huang, Jian-Huei Li, Ying-Chieh Chen, Zi-Jin Lin
  • Publication number: 20200075821
    Abstract: A light emitting diode chip including an epitaxy stacked layer, first and second electrodes and a first reflective layer is provided. The epitaxy stacked layer includes first-type and second-type semiconductor layers and a light-emitting layer. The first and second electrodes are respectively electrically connected to the first-type and second-type semiconductor layers. An orthogonal projection of the light-emitting layer on the first-type semiconductor layer is misaligned with an orthogonal projection of the first electrode on the first-type semiconductor layer. The first reflective layer is disposed on the epitaxy stacked layer, the first and second electrodes. An orthogonal projection of the first reflective layer on the second-type semiconductor layer is misaligned with an orthogonal projection of the second electrode on the second-type semiconductor layer. Furthermore, a light emitting diode device is also provided.
    Type: Application
    Filed: August 5, 2019
    Publication date: March 5, 2020
    Applicant: Genesis Photonics Inc.
    Inventors: Tung-Lin Chuang, Yi-Ru Huang, Yu-Chen Kuo, Yan-Ting Lan, Chih-Ming Shen, Jing-En Huang
  • Patent number: 10580934
    Abstract: A ?LED including an epitaxial stacked layer, a first electrode and a second electrode is provided. The epitaxial stacked layer includes a first type doped semiconductor layer, a light emitting layer and a second type doped semiconductor layer. The epitaxial stacked layer has a first mesa portion and a second mesa portion to form a first type conductive region and a second type conductive region respectively. The first electrode is disposed on the first mesa portion. The second electrode is disposed on the second mesa portion. The second electrode contacts the first type doped semiconductor layer, the light emitting layer and the second type doped semiconductor layer located at the second mesa portion. Moreover, a manufacturing method of the ?LED is also provided.
    Type: Grant
    Filed: November 19, 2018
    Date of Patent: March 3, 2020
    Assignee: Genesis Photonics Inc.
    Inventors: Shao-Ying Ting, Yan-Ting Lan, Jing-En Huang, Yi-Ru Huang
  • Patent number: 10573779
    Abstract: A method for manufacturing a light emitting unit is provided. A semiconductor structure including a plurality of light emitting dice separated from each other is provided. A molding compound is formed to encapsulate the light emitting dice. Each of the light emitting dice includes a light emitting element, a first electrode and a second electrode. A patterned metal layer is formed on the first electrodes and the second electrodes of the light emitting dice. A substrate is provided, where the molding compound is located between the substrate and the light emitting elements of the light emitting dice. A cutting process is performed to cut the semiconductor structure, the patterned metal layer, the molding compound and the substrate so as to define a light emitting unit with a series connection loop, a parallel connection loop or a series-parallel connection loop.
    Type: Grant
    Filed: December 24, 2018
    Date of Patent: February 25, 2020
    Assignee: Genesis Photonics Inc.
    Inventors: Shao-Ying Ting, Kuan-Chieh Huang, Jing-En Huang, Yi-Ru Huang, Sie-Jhan Wu, Long-Lin Ke
  • Publication number: 20200052159
    Abstract: The invention provides an LED including a first-type semiconductor layer, an emitting layer, a second-type semiconductor layer, a first electrode, a second electrode, a Bragg reflector structure, a conductive layer and insulation patterns. The first electrode and the second electrode are located on the same side of the Bragg reflector structure. The conductive layer is disposed between the Bragg reflector structure and the second-type semiconductor layer. The insulation patterns are disposed between the conductive layer and the second-type semiconductor layer. Each insulating layer has a first surface facing toward the second-type semiconductor layer, a second surface facing away from the second-type semiconductor layer, and an inclined surface. The inclined surface connects the first surface and the second surface and is inclined with respect to the first surface and the second surface.
    Type: Application
    Filed: October 21, 2019
    Publication date: February 13, 2020
    Applicant: Genesis Photonics Inc.
    Inventors: Yi-Ru Huang, Tung-Lin Chuang, Yan-Ting Lan, Sheng-Tsung Hsu, Chih-Ming Shen, Jing-En Huang, Teng-Hsien Lai, Hung-Chuan Mai, Kuan-Chieh Huang, Shao-Ying Ting, Cheng-Pin Chen, Wei-Chen Chien, Chih-Chin Cheng, Chih-Hung Tseng
  • Patent number: 10453999
    Abstract: The invention provides an LED including a first-type semiconductor layer, an emitting layer, a second-type semiconductor layer, a first electrode, a second electrode, a Bragg reflector structure, a conductive layer and insulation patterns. The first electrode and the second electrode are located on the same side of the Bragg reflector structure. The conductive layer is disposed between the Bragg reflector structure and the second-type semiconductor layer. The insulation patterns are disposed between the conductive layer and the second-type semiconductor layer. Each insulating layer has a first surface facing toward the second-type semiconductor layer, a second surface facing away from the second-type semiconductor layer, and an inclined surface. The inclined surface connects the first surface and the second surface and is inclined with respect to the first surface and the second surface.
    Type: Grant
    Filed: May 16, 2018
    Date of Patent: October 22, 2019
    Assignee: Genesis Photonics Inc.
    Inventors: Yi-Ru Huang, Tung-Lin Chuang, Yan-Ting Lan, Sheng-Tsung Hsu, Chih-Ming Shen, Jing-En Huang, Teng-Hsien Lai, Hung-Chuan Mai, Kuan-Chieh Huang, Shao-Ying Ting, Cheng-Pin Chen, Wei-Chen Chien, Chih-Chin Cheng, Chih-Hung Tseng
  • Publication number: 20190312176
    Abstract: A light-emitting diode including a semiconductor epitaxial layer, a first electrode, and a second electrode is provided. The semiconductor epitaxial layer includes a first-type doped semiconductor layer, a second-type doped semiconductor layer, and a quantum well layer. A recessed portion is formed in the semiconductor epitaxial layer. The recessed portion separates the second-type doped semiconductor layer, the quantum well layer, and a portion of the first-type doped semiconductor layer and defines a first region and a second region on the semiconductor epitaxial layer. The first electrode is located in the first region and electrically connected to at least a portion of the first-type doped semiconductor layer and at least a portion of the second-type doped semiconductor layer. The second electrode is located in the second region and electrically connected to the second-type doped semiconductor layer.
    Type: Application
    Filed: June 17, 2019
    Publication date: October 10, 2019
    Applicant: Genesis Photonics Inc.
    Inventors: Tsung-Syun Huang, Jing-En Huang, Yu-Chen Kuo, Yan-Ting Lan, Kai-Shun Kang, Fei-Lung Lu, Teng-Hsien Lai, Yi-Ru Huang
  • Patent number: 10396255
    Abstract: A light emitting component includes a light emitting unit, a molding compound and a wavelength converting layer. The light emitting unit has a forward light emitting surface. The molding compound covers the light emitting unit. The wavelength converting layer is disposed above the molding compound. The wavelength converting layer has a first surface and a second surface opposite to the first surface, wherein the first surface is located between the forward light emitting surface and the second surface, and at least one of the first and second surfaces is non-planar.
    Type: Grant
    Filed: November 27, 2017
    Date of Patent: August 27, 2019
    Assignee: Genesis Photonics Inc.
    Inventors: Kuan-Chieh Huang, Shao-Ying Ting, Jing-En Huang, Yi-Ru Huang
  • Publication number: 20190237627
    Abstract: A light emitting diode structure including a substrate, a semiconductor epitaxial structure, a first insulating layer, a first reflective layer, a second reflective layer, a second insulating layer and at least one electrode. The substrate has a tilt surface. The semiconductor epitaxial structure at least exposes the tilt surface. The first insulating layer exposes a portion of the semiconductor epitaxial structure. The first reflective layer is at least partially disposed on the portion of the semiconductor epitaxial structure and electrically connected to the semiconductor epitaxial structure. The second reflective layer is disposed on the first reflective layer and the first insulating layer, and covers at least the portion of the tilt surface. The second insulating layer is disposed on the second reflective layer. The electrode is disposed on the second reflective layer and electrically connected to the first reflective layer and the semiconductor epitaxial structure.
    Type: Application
    Filed: April 15, 2019
    Publication date: August 1, 2019
    Applicant: Genesis Photonics Inc.
    Inventors: Yi-Ru Huang, Yu-Yun Lo, Chih-Ling Wu, Jing-En Huang, Shao-Ying Ting
  • Publication number: 20190214374
    Abstract: A light emitting component includes an epitaxial structure, an adhesive layer, a first reflective layer, a second reflective layer, a block layer, a first electrode and a second electrode. The epitaxial structure includes a substrate, a first semiconductor layer, a light emitting layer and a second semiconductor layer. The adhesive layer is disposed on the second semiconductor layer of the epitaxial structure. The first reflective layer is disposed on the adhesive layer. The second reflective layer is disposed on the first reflective layer and extended onto the adhesive layer. A projection area of the second reflective layer is larger than a projection area of the first reflective layer. The block layer is disposed on the second reflective layer. The first electrode is electrically connected to the first semiconductor layer. The second electrode is electrically connected to the second semiconductor layer.
    Type: Application
    Filed: March 13, 2019
    Publication date: July 11, 2019
    Applicant: Genesis Photonics Inc.
    Inventors: Yi-Ru Huang, Tung-Lin Chuang, Chih-Ming Shen, Sheng-Tsung Hsu, Kuan-Chieh Huang, Jing-En Huang
  • Patent number: 10339847
    Abstract: A display apparatus including a display panel and a driver circuit is provided. The display panel includes a display region and a non-display region. The non-display region includes a plurality of dummy pixels connected to one another. The driver circuit provides gate driving voltages and a test data voltage, so as to make the dummy pixels connected to one another generate a charging rate test signal in response to the test data voltage.
    Type: Grant
    Filed: October 18, 2017
    Date of Patent: July 2, 2019
    Assignee: E Ink Holdings Inc.
    Inventors: Wen-Yu Kuo, Guan-Ru Huang, Pei-Lin Huang, Wei-Tsung Chen
  • Patent number: 10326047
    Abstract: A light-emitting diode including a semiconductor epitaxial layer, a first electrode, and a second electrode is provided. The semiconductor epitaxial layer includes a first-type doped semiconductor layer, a second-type doped semiconductor layer, and a quantum well layer. A recessed portion is formed in the semiconductor epitaxial layer. The recessed portion separates the second-type doped semiconductor layer, the quantum well layer, and a portion of the first-type doped semiconductor layer and defines a first region and a second region on the semiconductor epitaxial layer. The first electrode is located in the first region and electrically connected to at least a portion of the first-type doped semiconductor layer and at least a portion of the second-type doped semiconductor layer. The second electrode is located in the second region and electrically connected to the second-type doped semiconductor layer.
    Type: Grant
    Filed: September 2, 2016
    Date of Patent: June 18, 2019
    Assignee: Genesis Photonics Inc.
    Inventors: Tsung-Syun Huang, Jing-En Huang, Yu-Chen Kuo, Yan-Ting Lan, Kai-Shun Kang, Fei-Lung Lu, Teng-Hsien Lai, Yi-Ru Huang
  • Publication number: 20190174661
    Abstract: An electronic-component assembly system is provided in the invention. The electronic-component assembly system includes a gripping device, a light-source device, a photographing device, and an image-processing device. The gripping device grips an electronic component, wherein the electronic component includes at least one pin. The light-source device includes a light source and emits light of the light source. The photographing device senses the light and generates a plurality of first one-dimensional images corresponding to the pins at different rotation angles. The image-processing device is coupled to the photographing device to receive the plurality of first one-dimensional images.
    Type: Application
    Filed: June 5, 2018
    Publication date: June 6, 2019
    Inventors: Yu-Ru HUANG, Hung-Wen CHEN
  • Publication number: 20190139932
    Abstract: A method of mass transferring electronic devices includes following steps. A wafer is provided. The wafer includes a substrate and a plurality of electronic devices. The electronic devices are arranged in a matrix on a surface of the substrate. The wafer is attached to a temporary fixing film. The wafer is cut so that the wafer is divided into a plurality of blocks. Each of the blocks includes at least a part of the electronic devices and a sub-substrate. The temporary fixing film is stretched so that the blocks on the temporary fixing film are separated from each other as the temporary fixing film is stretched. At least a part of the blocks is selected as a predetermined bonding portion, and each of the blocks in the predetermined bonding portion is transferred to a carrying substrate in sequence, so that the electronic devices in the predetermined bonding portion are bonded to the carrying substrate. The sub-substrates of the blocks are removed.
    Type: Application
    Filed: January 7, 2019
    Publication date: May 9, 2019
    Applicant: Genesis Photonics Inc.
    Inventors: Shao-Ying Ting, Yan-Ting Lan, Jing-En Huang, Yi-Ru Huang
  • Publication number: 20190131490
    Abstract: A method for manufacturing a light emitting unit is provided. A semiconductor structure including a plurality of light emitting dice separated from each other is provided. A molding compound is formed to encapsulate the light emitting dice. Each of the light emitting dice includes a light emitting element, a first electrode and a second electrode. A patterned metal layer is formed on the first electrodes and the second electrodes of the light emitting dice. A substrate is provided, where the molding compound is located between the substrate and the light emitting elements of the light emitting dice. A cutting process is performed to cut the semiconductor structure, the patterned metal layer, the molding compound and the substrate so as to define a light emitting unit with a series connection loop, a parallel connection loop or a series-parallel connection loop.
    Type: Application
    Filed: December 24, 2018
    Publication date: May 2, 2019
    Applicant: Genesis Photonics Inc.
    Inventors: Shao-Ying Ting, Kuan-Chieh Huang, Jing-En Huang, Yi-Ru Huang, Sie-Jhan Wu, Long-Lin Ke
  • Patent number: 10263156
    Abstract: A light emitting diode structure including a substrate, a semiconductor epitaxial structure, a first insulating layer, a first reflective layer, a second reflective layer, a second insulating layer and at least one electrode. The substrate has a tilt surface. The semiconductor epitaxial structure at least exposes the tilt surface. The first insulating layer exposes a portion of the semiconductor epitaxial structure. The first reflective layer is at least partially disposed on the portion of the semiconductor epitaxial structure and electrically connected to the semiconductor epitaxial structure. The second reflective layer is disposed on the first reflective layer and the first insulating layer, and covers at least the portion of the tilt surface. The second insulating layer is disposed on the second reflective layer. The electrode is disposed on the second reflective layer and electrically connected to the first reflective layer and the semiconductor epitaxial structure.
    Type: Grant
    Filed: January 15, 2018
    Date of Patent: April 16, 2019
    Assignee: Genesis Photonics Inc.
    Inventors: Yi-Ru Huang, Yu-Yun Lo, Chih-Ling Wu, Jing-En Huang, Shao-Ying Ting
  • Publication number: 20190094632
    Abstract: A pixel structure including a substrate, a signal line, a plurality of pixel units and a light blocking pattern layer is provided. The signal line is disposed on the substrate and has opposing first and second sides. Two adjacent pixel units are disposed respectively on the first side and the second side of the signal line. Each pixel units includes an active device, a common electrode, an insulating layer, and a pixel electrode. The insulating layer is located on the common electrode. The pixel electrode is located on the insulating layer and is electrically connected to the active device. The pixel electrode includes an edge strip electrode and a plurality of extension electrodes. The extension electrodes respectively extend from the edge strip electrode toward the signal line. The light blocking pattern layer is located between two adjacent pixel units, and the light blocking pattern layer and the signal line overlap with each other.
    Type: Application
    Filed: July 12, 2018
    Publication date: March 28, 2019
    Applicant: Au Optronics Corporation
    Inventors: Chan-Yuen Chang, Chun-Ru Huang, Chao-Wei Yeh
  • Patent number: D872701
    Type: Grant
    Filed: June 11, 2018
    Date of Patent: January 14, 2020
    Assignee: GENESIS PHOTONICS INC.
    Inventors: Shao-Ying Ting, Yan-Ting Lan, Jing-En Huang, Yi-Ru Huang