Patents by Inventor Shogo Mochizuki

Shogo Mochizuki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200279779
    Abstract: Device structures and methods are provided for fabricating vertical field-effect transistor devices with non-uniform thickness bottom spacers to achieve increased device performance. For example, a semiconductor substrate surface is etched to form semiconductor fins having bottom portions with concave sidewall surfaces that undercut upper portions of the fins. A doped epitaxial source/drain layer is formed on the concave sidewall surfaces, wherein portions of the doped epitaxial source/drain layer disposed between the fins have a raised curved surface. A bottom spacer layer is formed on the doped epitaxial source/drain layer, wherein portions of the bottom spacer layer disposed between the fins have a curved-shaped profile with a non-uniform thickness.
    Type: Application
    Filed: February 28, 2019
    Publication date: September 3, 2020
    Inventors: Juntao Li, Kangguo Cheng, ChoongHyun Lee, Shogo Mochizuki
  • Patent number: 10763343
    Abstract: A vertical transistor structure is provided that includes a bottom source/drain structure that includes a doped semiconductor buffer layer that contains a first dopant species having a first diffusion rate, and an epitaxial doped semiconductor layer that contains a second dopant species that has a second diffusion rate that is less than the first diffusion rate. During a junction anneal, the first dopant species readily diffuses from the doped semiconductor buffer layer into a pillar portion of a base semiconductor substrate to provide the bottom source/drain extension and bottom source/drain junction. No diffusion overrun is observed. During the junction anneal, the second dopant species remains in the epitaxial doped semiconductor layer providing a low resistance contact. The second dopant species does not interfere with the bottom source/drain extension and bottom source/drain junction due to limited diffusion of the second dopant species.
    Type: Grant
    Filed: March 29, 2019
    Date of Patent: September 1, 2020
    Assignee: ELPIS TECHNOLOGIES INC.
    Inventors: Alexander Reznicek, Shogo Mochizuki
  • Patent number: 10756170
    Abstract: Vertical field effect transistor (VFET) structures and methods of fabrication with improved junction sharpness and reduced parasitic capacitance between the top source or drain and the surrounding metal gate includes a non-uniform top spacer in the top source or drain formed by an oxidation process. The top spacer has a thickness that is thinner at an interface between the top source or drain region and the vertically oriented channel region of the fin structure relative to the thickness of the top spacer layer away from the interface.
    Type: Grant
    Filed: April 17, 2018
    Date of Patent: August 25, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kangguo Cheng, Juntao Li, Choonghyun Lee, Shogo Mochizuki
  • Patent number: 10755985
    Abstract: Gate metal patterning techniques enable the incorporation of different work function metals in CMOS devices such as nanosheet transistor devices, vertical FETs, and FinFETs. Such techniques facilitate removal of gate metal from one region of a device without damage from over-etching to an adjacent region. The fabrication of CMOS devices with adjoining nFET/pFET gate structures and having very tight gate pitch is also facilitated. The techniques further enable the fabrication of CMOS devices with adjoining gate structures that require relatively long etch times for removal of gate metal therefrom, such as nanosheet transistors. A nanosheet transistor device including dual metal gates as fabricated allows tight integration.
    Type: Grant
    Filed: June 16, 2018
    Date of Patent: August 25, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Shogo Mochizuki, Alexander Reznicek, Joshua M. Rubin, Junli Wang
  • Patent number: 10756175
    Abstract: A nanosheet field effect transistor device includes a semiconductor substrate including a stack of semiconductor nanosheets and a gate structure. The gate structure has an electrically conductive gate contact on the nanosheets and defines a channel region interposed between opposing source or drain (S/D) regions. The nanosheet field effect transistor further includes an electrically conductive cladding layer that encapsulates an outer surface of the S/D regions, and inner spacers on the sidewalls of the gate structure. The inner spacers are interposed between the cladding layer and the gate contact.
    Type: Grant
    Filed: September 18, 2018
    Date of Patent: August 25, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Choonghyun Lee, Kangguo Cheng, Juntao Li, Shogo Mochizuki
  • Patent number: 10749012
    Abstract: A method of fabricating a semiconductor device includes forming a fin on a substrate. Source/drain regions are arranged on the substrate on opposing sides of the fin. The method includes depositing a semiconductor layer on the source/drain regions. The method includes depositing a germanium containing layer on the fin and the semiconductor layer. The method further includes applying an anneal operation configured to chemically react the semiconductor layer with the germanium containing layer and form a silicon oxide layer.
    Type: Grant
    Filed: June 27, 2019
    Date of Patent: August 18, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ruqiang Bao, Hemanth Jagannathan, Choonghyun Lee, Shogo Mochizuki
  • Publication number: 20200259000
    Abstract: A method of forming a semiconductor structure includes patterning a hard mask layer over a top surface of a substrate. The method also includes forming a first portion of one or more vertical fins below the patterned hard mask layer. The method further includes forming a top spacer on sidewalls of the hard mask layer and the first portion of the one or more vertical fins. The method further includes forming a second portion of the one or more vertical fins in the substrate below the top spacer and trimming sidewalls of the second portion of the one or more vertical fins. The method further includes forming an interfacial layer on the trimmed sidewalls of the second portion of the one or more vertical fins. The one or more vertical fins provide one or more vertical transport channels for one or more vertical transport field-effect transistors.
    Type: Application
    Filed: February 12, 2019
    Publication date: August 13, 2020
    Inventors: Shogo Mochizuki, ChoongHyun Lee, Kangguo Cheng, Juntao Li
  • Patent number: 10734490
    Abstract: BJT devices with 3D wrap around emitter are provided. In one aspect, a method of forming a BJT device includes: forming a substrate including a first doped layer having a dopant concentration of from about 1×1020 at. % to about 5×1020 at. % and ranges therebetween, and a second doped layer having a dopant concentration of from about 1×1015 at. % to about 1×1018 at. % and ranges therebetween, wherein the first and second doped layers form a collector; patterning a fin(s) in the substrate; forming bottom spacers at a bottom of the fin(s); forming a base(s) that wraps around the fin(s); forming an emitter(s) that wraps around the base(s); and forming sidewall spacers alongside the emitter(s). A BJT device is also provided.
    Type: Grant
    Filed: March 22, 2019
    Date of Patent: August 4, 2020
    Assignee: International Business Machines Corporation
    Inventors: Choonghyun Lee, Injo Ok, Shogo Mochizuki, Soon-Cheon Seo
  • Patent number: 10734518
    Abstract: A semiconductor structure is provided that includes a bulk semiconductor substrate of a first semiconductor material. The structure further includes a plurality of fin pedestal structures of a second semiconductor material located on the bulk semiconductor substrate of the first semiconductor material, wherein the second semiconductor material is different from the first semiconductor material. In accordance with the present application, each fin pedestal structure includes a pair of spaced apart semiconductor fins of the second semiconductor material.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: August 4, 2020
    Assignee: International Business Machines Corporation
    Inventors: Veeraraghavan S. Basker, Oleg Gluschenkov, Shogo Mochizuki, Alexander Reznicek
  • Patent number: 10734281
    Abstract: A self-assembled heteroepitaxial oxide nanocomposite film including alternating layers of a first metal oxide having a first melting point and a second metal oxide having a second melting point that differs from the first melting point is formed in an opening formed in a semiconductor substrate. After forming a metal or metal alloy via structure in the semiconductor substrate, first and second thermal treatments are performed to remove each layer of first or second metal oxide providing a nanoporous membrane.
    Type: Grant
    Filed: September 8, 2017
    Date of Patent: August 4, 2020
    Assignee: ELPIS TECHNOLOGIES INC.
    Inventors: Zhenxing Bi, Kangguo Cheng, Shogo Mochizuki, Hao Tang
  • Publication number: 20200243681
    Abstract: A method of forming a semiconductor device that includes forming at least two semiconductor fin structures having sidewalls with {100} crystalline planes that is present atop a supporting substrate; and epitaxially growing a source/drain region in a lateral direction from the sidewalls of each fin structure. The second source/drain regions have substantially planar sidewalls. A metal wrap around electrode is formed on an upper surface and the substantially planar sidewalls of the source/drain regions. Air gaps are formed between the source/drain regions of the at least two semiconductor fin structures.
    Type: Application
    Filed: April 10, 2020
    Publication date: July 30, 2020
    Inventors: Choonghyun Lee, Kangguo Cheng, Juntao Li, Shogo Mochizuki
  • Publication number: 20200235015
    Abstract: A method for fabricating a vertical transistor device includes forming a first plurality of fins in a first device region and a second plurality of fins in a second device region on a substrate. The first plurality of fins have a SiGe portion exposed above a top surface of the first region and a portion of the second plurality of fins are exposed above a top surface of the second region. The method further includes depositing a first GeO2 layer on the top surface of the device and over the exposed SiGe portion of the first plurality of fins and the exposed portion of the second plurality of fins.
    Type: Application
    Filed: April 3, 2020
    Publication date: July 23, 2020
    Inventors: ChoongHyun Lee, Shogo Mochizuki, Injo Ok, Soon-Cheon Seo
  • Publication number: 20200227322
    Abstract: Semiconductor devices include a substrate layer and a semiconductor layer formed over the substrate layer. A dielectric layer fills a gap between the semiconductor layer and the substrate layer, on end faces of the semiconductor layer, and on a top surface of the semiconductor layer.
    Type: Application
    Filed: March 31, 2020
    Publication date: July 16, 2020
    Inventors: Huimei Zhou, Shogo Mochizuki, Gen Tsutsui, Ruqiang Bao
  • Patent number: 10714399
    Abstract: A method of forming a semiconductor structure includes forming a plurality of fins over a top surface of a substrate, and forming one or more vertical transport field-effect transistors from the plurality of fins, the plurality of fins providing channels for the one or more vertical transport field-effect transistors. The method also includes forming a gate stack for the one or more vertical transport field-effect transistors surrounding at least a portion of the plurality of fins, the gate stack including a gate dielectric formed over the plurality of fins, a work function metal layer formed over the gate dielectric, and a gate conductor formed over the work function metal layer. The gate stack comprises a box profile in an area between at least two adjacent ones of the plurality of fins.
    Type: Grant
    Filed: August 21, 2018
    Date of Patent: July 14, 2020
    Assignee: International Business Machines Corporation
    Inventors: Shogo Mochizuki, ChoongHyun Lee, Hemanth Jagannathan
  • Publication number: 20200219777
    Abstract: A method of forming a semiconductor structure includes forming a plurality of fins over a top surface of a substrate, and forming one or more vertical transport field-effect transistors from the plurality of fins, the plurality of fins providing channels for the one or more vertical transport field-effect transistors. The method also includes forming a gate stack for the one or more vertical transport field-effect transistors surrounding at least a portion of the plurality of fins, the gate stack including a gate dielectric formed over the plurality of fins, a work function metal layer formed over the gate dielectric, and a gate conductor formed over the work function metal layer. The gate stack comprises a box profile in an area between at least two adjacent ones of the plurality of fins.
    Type: Application
    Filed: March 20, 2020
    Publication date: July 9, 2020
    Inventors: Shogo Mochizuki, ChoongHyun Lee, Hemanth Jagannathan
  • Publication number: 20200219993
    Abstract: A method of forming a semiconductor structure includes forming a substrate, the substrate having a first portion with a first height and second recessed portions with a second height less than the first height. The method also includes forming embedded source/drain regions disposed over top surfaces of the second recessed portions of the substrate, and forming one or more fins from a portion of the substrate disposed between the embedded source/drain regions, the one or more fins providing channels for fin field-effect transistors (FinFETs). The method further includes forming a gate stack disposed over the one or more fins, and forming inner oxide spacers disposed between the gate stack and the source/drain regions.
    Type: Application
    Filed: January 27, 2020
    Publication date: July 9, 2020
    Inventors: Kangguo Cheng, Juntao Li, ChoongHyun Lee, Shogo Mochizuki
  • Patent number: 10707329
    Abstract: A method of forming a fin field effect transistor device is provided. The method includes forming a vertical fin on a substrate, and depositing a sidewall liner on exposed surfaces of the vertical fin. The method further includes removing a portion of the substrate below the sidewall liner to form a support pillar below the vertical fin. The method further includes laterally etching the support pillar to form a thinned support pillar, and forming a bottom source/drain layer on the substrate and the thinned support pillar, wherein the bottom source/drain layer has a non-uniform thickness.
    Type: Grant
    Filed: July 6, 2018
    Date of Patent: July 7, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Juntao Li, Kangguo Cheng, Choonghyun Lee, Shogo Mochizuki
  • Patent number: 10700062
    Abstract: A semiconductor structure includes a substrate, a plurality of fins disposed over a top surface of the substrate, and a gate stack surrounding a portion of sidewalls of the plurality of fins. The plurality of fins include two or more active device fins comprising a semiconducting material providing vertical transport channels for respective vertical transport field-effect transistors, and two or more edge fins surrounding the two or more active device fins, the two or more edge fins comprising a dielectric material. Thicknesses of one or more layers of the gate stack surrounding the portion of the sidewalls of the two or more edge fins are different than thicknesses of the one or more layers of the gate stack surrounding the portion of the sidewalls of the active device fins. The vertical transport field-effect transistors provided by the active device fins have uniform threshold voltage.
    Type: Grant
    Filed: October 12, 2018
    Date of Patent: June 30, 2020
    Assignee: International Business Machines Corporation
    Inventors: ChoongHyun Lee, Kangguo Cheng, Juntao Li, Shogo Mochizuki
  • Publication number: 20200203528
    Abstract: A method for manufacturing a semiconductor device includes forming a plurality of fins on a semiconductor substrate. In the method, at least two spacer layers are formed around a first fin of the plurality of fins, and a single spacer layer is formed around a second fin of the plurality of fins. The at least two spacer layers include a first spacer layer including a first material and a second spacer layer including a second material different from the first material. The single spacer layer includes the second material. The method also includes selectively removing part of the first spacer layer to expose part the first fin, and epitaxially growing a source/drain region around the exposed part of the first fin.
    Type: Application
    Filed: March 2, 2020
    Publication date: June 25, 2020
    Inventors: Juntao Li, Kangguo Cheng, ChoongHyun Lee, Shogo Mochizuki
  • Patent number: 10692868
    Abstract: A semiconductor material layer is deposited on a p-type source/drain region of a p-type transistor device and an n-type source/drain region of an n-type transistor device. The p-type device transistor device and the n-type transistor device are formed on a substrate of a semiconductor device. The semiconductor device includes a trench formed through an inter-level dielectric layer. The inter-level dielectric layer is formed over the n-type transistor device and the p-type transistor device. The trench exposes the p-type source/drain region of the p-type transistor device and the n-type source/drain region of the n-type transistor device. An element is implanted in the semiconductor material layer to form an amorphous layer on p-type source drain region and the n-type source/drain region. The amorphous layer is annealed to form a first metastable alloy layer upon the p-type source/drain region and a second metastable alloy layer upon the n-type source/drain region.
    Type: Grant
    Filed: December 20, 2018
    Date of Patent: June 23, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Oleg Gluschenkov, Shogo Mochizuki, Hiroaki Niimi, Tenko Yamashita, Chun-chen Yeh