Patents by Inventor Simon Edwards

Simon Edwards has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10672726
    Abstract: Integrated circuits (ICs) that avoid or mitigate creation of changes in accumulated charge in a silicon-on-insulator (SOI) substrate, particularly an SOI substrate having a trap rich layer. In one embodiment, a FET is configured such that, in a standby mode, the FET is turned OFF while maintaining essentially the same VDS as during an active mode. In another embodiment, a FET is configured such that, in a standby mode, current flow through the FET is interrupted while maintaining essentially the same VGS as during the active mode. In another embodiment, a FET is configured such that, in a standby mode, the FET is switched into a very low current state (a “trickle current” state) that keeps both VGS and VDS close to their respective active mode operational voltages. Optionally, S-contacts may be formed in an IC substrate to create protected areas that encompass FETs that are sensitive to accumulated charge effects.
    Type: Grant
    Filed: May 19, 2017
    Date of Patent: June 2, 2020
    Assignee: pSemi Corporation
    Inventors: Robert Mark Englekirk, Keith Bargroff, Christopher C. Murphy, Tero Tapio Ranta, Simon Edward Willard
  • Publication number: 20200153425
    Abstract: A positive-logic FET switch stack that does not require a negative bias voltage, exhibits high isolation and low insertion/mismatch loss, and may withstand high RF voltages. Embodiments include a FET stack comprising series-coupled positive-logic FETs (i.e., FETs not requiring a negative voltage supply to turn OFF), series-coupled on at least one end by an “end-cap” FET of a type that turns OFF when its VGS is zero volts. The one or more end-cap FETs provide a selectable capacitive DC blocking function or a resistive signal path. Embodiments include a stack of FETs of only the zero VGS type, or a mix of positive-logic and zero VGS type FETs with end-cap FETs of the zero VGS type. Some embodiments withstand high RF voltages by including combinations of series or parallel coupled resistor ladders for the FET gate resistors, drain-source resistors, body charge control resistors, and one or more AC coupling modules.
    Type: Application
    Filed: November 13, 2019
    Publication date: May 14, 2020
    Inventors: Tero Tapio Ranta, Simon Edward Willard
  • Patent number: 10629621
    Abstract: Systems, methods, and apparatus for an improved body tie construction are described. The improved body tie construction is configured to have a lower resistance body tie exists when the transistor is “off” (Vg approximately 0 volts). When the transistor is “on” (Vg>Vt), the resistance to the body tie is much higher, reducing the loss of performance associated with presence of body tie. Space efficient Body tie constructions adapted for cascode configurations are also described.
    Type: Grant
    Filed: January 3, 2019
    Date of Patent: April 21, 2020
    Assignee: pSemi Corporation
    Inventor: Simon Edward Willard
  • Patent number: 10630280
    Abstract: A positive-logic FET switch stack that does not require a negative bias voltage, exhibits high isolation and low insertion/mismatch loss, and may withstand high RF voltages. Embodiments include a FET stack comprising series-coupled positive-logic FETs (i.e., FETs not requiring a negative voltage supply to turn OFF), series-coupled on at least one end by an “end-cap” FET of a type that turns OFF when its VGS is zero volts. The one or more end-cap FETs provide a selectable capacitive DC blocking function or a resistive signal path. Embodiments include a stack of FETs of only the zero VGS type, or a mix of positive-logic and zero VGS type FETs with end-cap FETs of the zero VGS type. Some embodiments withstand high RF voltages by including combinations of series or parallel coupled resistor ladders for the FET gate resistors, drain-source resistors, body charge control resistors, and one or more AC coupling modules.
    Type: Grant
    Filed: January 29, 2019
    Date of Patent: April 21, 2020
    Assignee: pSemi Corporation
    Inventors: Simon Edward Willard, Tero Tapio Ranta
  • Publication number: 20200091148
    Abstract: Systems, methods, and apparatus for an improved protection from charge injection into layers of a device using resistive structures are described. Such resistive structures, named s-contacts, can be made using simpler fabrication methods and less fabrication steps. In a case of metal-oxide-semiconductor (MOS) field effect transistors (FETs), s-contacts can be made with direct connection, or resistive connection, to all regions of the transistors, including the source region, the drain region and the gate.
    Type: Application
    Filed: September 24, 2019
    Publication date: March 19, 2020
    Inventors: Befruz Tasbas, Simon Edward Willard, Alain Duvallet, Sinan Goktepeli
  • Publication number: 20200051973
    Abstract: Overcoming parasitic capacitances in RF integrated circuits is a challenging problem. The disclosed methods and devices provide solution to such challenge. Devices based on tunable capacitive elements that can be implemented with switch RF stacks are also disclosed.
    Type: Application
    Filed: August 9, 2018
    Publication date: February 13, 2020
    Inventors: Eric S. Shapiro, Simon Edward Willard, Tero Tapio Ranta
  • Publication number: 20200043946
    Abstract: Structures and fabrication methods for transistors having low parasitic capacitance, the transistors including an insulating low dielectric constant first or second handle wafer. In one embodiment, a Single Layer Transfer technique is used to position an insulating LDC handle wafer proximate the metal interconnect layers of an SOI transistor/metal layer stack in lieu of the silicon substrate of conventional designs. In another embodiment, a Double Layer Transfer technique is used to replace the silicon substrate of prior art structures with an insulating LDC substrate. In some embodiments, the insulating LDC handle wafer includes at least one air cavity, which reduces the effective dielectric constant of material surrounding an RF FET. An insulating LDC handle wafer reduces insertion loss and non-linearity, increases isolation, provides for more ideal voltage division of stacked transistors, enables a higher Q factor due to lower coupling losses, and otherwise mitigates various parasitic effects.
    Type: Application
    Filed: January 9, 2019
    Publication date: February 6, 2020
    Inventors: Abhijeet Paul, Simon Edward Willard, Alain Duvallet, Ronald Eugene Reedy
  • Patent number: 10546747
    Abstract: Modified silicon-on-insulator (SOI) substrates having a trap rich layer, and methods for making such modifications. The modified regions eliminate or manage accumulated charge that would otherwise arise because of the interaction of the underlying trap rich layer and active layer devices undergoing transient changes of state, thereby eliminating or mitigating the effects of such accumulated charge on non-RF integrated circuitry fabricated on such substrates. Embodiments retain the beneficial characteristics of SOI substrates with a trap rich layer for RF circuitry requiring high linearity, such as RF switches, while avoiding the problems of a trap rich layer for circuitry that is sensitive to accumulated charge effects caused by the presence of the trap rich layer, such as non-RF analog circuitry and amplifiers (including power amplifiers and low noise amplifiers).
    Type: Grant
    Filed: October 22, 2018
    Date of Patent: January 28, 2020
    Assignee: pSemi Corporation
    Inventors: Robert Mark Englekirk, Keith Bargroff, Christopher C. Murphy, Tero Tapio Ranta, Simon Edward Willard
  • Patent number: 10526363
    Abstract: The present invention is directed to Compounds of Formula (I) and salts thereof, wherein R1, R2, R3 and R4 are defined above herein. The present invention is also directed to uses of the compounds of Formula (I) to add phosphoramidate groups onto organic alcohols.
    Type: Grant
    Filed: August 14, 2015
    Date of Patent: January 7, 2020
    Assignees: Merck Sharp & Dohme Corp., Merck Sharp & Dohme Ltd.
    Inventors: John Simon Edwards, Peter Richard Mullens, Edward Cleator, Bryon L. Simmons, Courtney K. Maguire, Jeremy Peter Scott, Nobuyoshi Yasuda, Yong-Li Zhong, Lisa F. Frey, Peter G. Dormer, Andrew Brunskill, Artis Klapars, Pu Qian, Yi Zhang, Baoqiang Wan, Eric Ashley
  • Publication number: 20190379330
    Abstract: A transistor stack can include a combination of floating and body tied devices. Improved performance of the RF amplifier can be obtained by using a single body tied device as the input transistor of the stack, or as the output transistor of the stack, while other transistors of the stack are floating transistors. Transient response of the RF amplifier can be improved by using all body tied devices in the stack.
    Type: Application
    Filed: June 26, 2019
    Publication date: December 12, 2019
    Inventors: Simon Edward Willard, Chris Olson, Tero Tapio Ranta
  • Patent number: 10505530
    Abstract: A positive-logic FET switch stack that does not require a negative bias voltage, exhibits high isolation and low insertion/mismatch loss, and may withstand high RF voltages. Embodiments include a FET stack comprising series-coupled positive-logic FETs (i.e., FETs not requiring a negative voltage supply to turn OFF), series-coupled on at least one end by an “end-cap” FET of a type that turns OFF when its VGS is zero volts. The one or more end-cap FETs provide a selectable capacitive DC blocking function or a resistive signal path. Embodiments include a stack of FETs of only the zero VGS type, or a mix of positive-logic and zero VGS type FETs with end-cap FETs of the zero VGS type. Some embodiments withstand high RF voltages by including combinations of series or parallel coupled resistor ladders for the FET gate resistors, drain-source resistors, body charge control resistors, and one or more AC coupling modules.
    Type: Grant
    Filed: March 28, 2018
    Date of Patent: December 10, 2019
    Assignee: pSemi Corporation
    Inventors: Tero Tapio Ranta, Simon Edward Willard
  • Patent number: 10475720
    Abstract: An integrated circuit architecture that provides a path having relatively low thermal resistance between one or more electronic devices and one or more thermal structures formed on an insulator layer on a substrate. Independent parallel thermal conduction paths are provided through the insulator layer, such as a buried oxide (“BOX”) layer, to allow heat to flow from the substrate layer to a collector column having a portion in common with a thermal structure disposed upon the BOX layer. In some cases, the substrate is a silicon substrate layer supporting the thermal structure and the collector column and a heat source, such as an electronic device (e.g., power amplifier, transistor, diode, resistor, etc.).
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: November 12, 2019
    Assignee: pSemi Corporation
    Inventors: Tero Tapio Ranta, Simon Edward Willard
  • Patent number: 10438950
    Abstract: Systems, methods, and apparatus for an improved protection from charge injection into layers of a device using resistive structures are described. Such resistive structures, named s-contacts, can be made using simpler fabrication methods and less fabrication steps. In a case of metal-oxide-semiconductor (MOS) field effect transistors (FETs), s-contacts can be made with direct connection, or resistive connection, to all regions of the transistors, including the source region, the drain region and the gate.
    Type: Grant
    Filed: April 14, 2017
    Date of Patent: October 8, 2019
    Assignee: pSemi Corporation
    Inventors: Befruz Tasbas, Simon Edward Willard, Alain Duvallet, Sinan Goktepeli
  • Publication number: 20190305769
    Abstract: A positive-logic FET switch stack that does not require a negative bias voltage, exhibits high isolation and low insertion/mismatch loss, and may withstand high RF voltages. Embodiments include a FET stack comprising series-coupled positive-logic FETs (i.e., FETs not requiring a negative voltage supply to turn OFF), series-coupled on at least one end by an “end-cap” FET of a type that turns OFF when its VGS is zero volts. The one or more end-cap FETs provide a selectable capacitive DC blocking function or a resistive signal path. Embodiments include a stack of FETs of only the zero VGS type, or a mix of positive-logic and zero VGS type FETs with end-cap FETs of the zero VGS type. Some embodiments withstand high RF voltages by including combinations of series or parallel coupled resistor ladders for the FET gate resistors, drain-source resistors, body charge control resistors, and one or more AC coupling modules.
    Type: Application
    Filed: January 29, 2019
    Publication date: October 3, 2019
    Inventors: Simon Edward Willard, Tero Tapio Ranta
  • Publication number: 20190305768
    Abstract: A positive-logic FET switch stack that does not require a negative bias voltage, exhibits high isolation and low insertion/mismatch loss, and may withstand high RF voltages. Embodiments include a FET stack comprising series-coupled positive-logic FETs (i.e., FETs not requiring a negative voltage supply to turn OFF), series-coupled on at least one end by an “end-cap” FET of a type that turns OFF when its VGS is zero volts. The one or more end-cap FETs provide a selectable capacitive DC blocking function or a resistive signal path. Embodiments include a stack of FETs of only the zero VGS type, or a mix of positive-logic and zero VGS type FETs with end-cap FETs of the zero VGS type. Some embodiments withstand high RF voltages by including combinations of series or parallel coupled resistor ladders for the FET gate resistors, drain-source resistors, body charge control resistors, and one or more AC coupling modules.
    Type: Application
    Filed: March 28, 2018
    Publication date: October 3, 2019
    Inventors: Simon Edward Willard, Tero Tapio Ranta, Matt Allison, Shashi Ketan Samal
  • Publication number: 20190305767
    Abstract: A positive-logic FET switch stack that does not require a negative bias voltage, exhibits high isolation and low insertion/mismatch loss, and may withstand high RF voltages. Embodiments include a FET stack comprising series-coupled positive-logic FETs (i.e., FETs not requiring a negative voltage supply to turn OFF), series-coupled on at least one end by an “end-cap” FET of a type that turns OFF when its VGS is zero volts. The one or more end-cap FETs provide a selectable capacitive DC blocking function or a resistive signal path. Embodiments include a stack of FETs of only the zero VGS type, or a mix of positive-logic and zero VGS type FETs with end-cap FETs of the zero VGS type. Some embodiments withstand high RF voltages by including combinations of series or parallel coupled resistor ladders for the FET gate resistors, drain-source resistors, body charge control resistors, and one or more AC coupling modules.
    Type: Application
    Filed: March 28, 2018
    Publication date: October 3, 2019
    Inventors: Tero Tapio Ranta, Simon Edward Willard
  • Publication number: 20190288006
    Abstract: Semiconductor-on-insulator field effect transistor (FET) integrated circuit (IC) structures and fabrication processes that mitigate or eliminate the problems caused by the secondary parasitic back-channel FET of conventional semiconductor-on-insulator FET IC structures. Embodiments enable full control of the secondary parasitic back-channel FET of semiconductor-on-insulator IC primary FETs. Embodiments include taking partially fabricated ICs made using a process which allows access to the back side of the FET, such as “single layer transfer” process, and then fabricating a conductive aligned supplemental (CAS) gate structure relative to the insulating layer juxtaposed to a primary FET such that a control voltage applied to the CAS gate can regulate the electrical characteristics of the regions of the primary FET adjacent the insulating layer. The IC structures present as a four or five terminal device: source S, drain D, primary gate G, CAS gate, and, optionally, a body contact.
    Type: Application
    Filed: March 8, 2019
    Publication date: September 19, 2019
    Inventors: Abhijeet Paul, Simon Edward Willard, Hiroshi Yamada, Alain Duvallet
  • Publication number: 20190288113
    Abstract: A high-voltage switching device that can be fabricated in a standard low-voltage process, such as CMOS, and more specifically SOI CMOS. Embodiments include integrated circuits that combine, in a unitary structure, a FET device and an integrated, co-fabricated modulated resistance region (MRR) controlled by one or more Voltage-Drop Modulation Gates (VDMGs). The VDMGs are generally biased independently of the gate of the FET device, and in such a way as to protect each VDMG from excessive and potentially destructive voltages. In a first embodiment, an integrated circuit high voltage switching device includes a transistor structure including a source, a gate, and an internal drain; an MRR connected to the internal drain of the transistor structure; at least one VDMG that controls the resistance of the MRR; and a drain electrically connected to the MRR. Each VDMG at least partially depletes the MRR upon application of a bias voltage.
    Type: Application
    Filed: June 4, 2019
    Publication date: September 19, 2019
    Inventors: Abhijeet Paul, Simon Edward Willard, Alain Duvallet
  • Patent number: D860560
    Type: Grant
    Filed: February 7, 2018
    Date of Patent: September 17, 2019
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Youngseok Lee, Simon Edward Ireland
  • Patent number: D869791
    Type: Grant
    Filed: July 3, 2017
    Date of Patent: December 10, 2019
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Gihoon Ko, Yeonyoung Nam, Simon Edward Ireland, Jihyeoung Lee