Patents by Inventor Toshihisa Nozawa

Toshihisa Nozawa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8500089
    Abstract: A method of operating an on-off valve comprises closing one of two openings of a valve body with a seal member of a closure element within the valve body, the valve body being within an evacuation pipe connected between a process chamber and an evacuation apparatus; moving the closure element, using a linear driver, so that the seal member is moved away from the one of the two openings; and positioning the closure element into a retreat portion in an surface of the valve body, using the linear driver and a pivotal driver adapted to pivot the closure element between the one of the two openings and the retreat portion, so that the seal member is closed inside a protection seal member of the closure element to surround the seal member, thereby preventing the seal member from being directly exposed to the process gas.
    Type: Grant
    Filed: January 11, 2012
    Date of Patent: August 6, 2013
    Assignee: Tokyo Electron Limited
    Inventor: Toshihisa Nozawa
  • Patent number: 8497214
    Abstract: A semiconductor device manufacturing method, the method including: forming a semiconductor element on a semiconductor substrate; and by using microwaves as a plasma source, forming an insulation film on the semiconductor element by performing a CVD process using microwave plasma having an electron temperature of plasma lower than 1.5 eV and an electron density of plasma higher than 1×1011 cm?3 near a surface of the semiconductor substrate.
    Type: Grant
    Filed: August 7, 2008
    Date of Patent: July 30, 2013
    Assignees: Tokyo Electron Limited, National University Corporation Tohoku University
    Inventors: Hirokazu Ueda, Toshihisa Nozawa, Takaaki Matsuoka, Akinobu Teramoto, Tadahiro Ohmi
  • Publication number: 20130180660
    Abstract: [Problem] To carry out high accuracy optical monitoring of the surface of a substrate to be treated inside a treatment vessel using non-coherent monitor light having a wide wavelength range, without affecting the uniformity of the electromagnetic radiation from a planar slot antenna. [Solution] The optical monitor device 100 of the present microwave plasma etching device has: a monitor head 102 located in a position more radially inward than the edge of a semiconductor wafer W mounted on a susceptor 12, more radially outward than a coaxial pipe 66, and above a cover plate 72; an optical waveguide 104 for monitoring provided vertically below the monitor head 102, and longitudinally traversing the cooling plate 72, a dielectric plate 54, and a dielectric window 52; and a monitor main body optically connected to the monitor head 102 via an optical fiber 106.
    Type: Application
    Filed: August 24, 2011
    Publication date: July 18, 2013
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Toshihisa Nozawa, Takahiro Senda, Shinya Nishimoto, Munetaka Yamagami, Kazuki Moyama
  • Patent number: 8486792
    Abstract: A silicon compound gas, an oxidizing gas, and a rare gas are supplied into a chamber (2) of a plasma processing apparatus (1). A microwave is supplied into the chamber (2), and a silicon oxide film is formed on a target substrate with plasma generated by the microwave. A partial pressure ratio of the rare gas is 10% or more of a total gas pressure of the silicon compound gas, the oxidizing gas, and the rare gas, and an effective flow ratio of the silicon compound gas and the oxidizing gas (oxidizing gas/silicon compound gas) is not less than 3 but not more than 11.
    Type: Grant
    Filed: May 11, 2009
    Date of Patent: July 16, 2013
    Assignee: Tokyo Electron Limited
    Inventors: Hirokazu Ueda, Yoshinobu Tanaka, Yusuke Ohsawa, Toshihisa Nozawa, Takaaki Matsuoka
  • Patent number: 8480848
    Abstract: The present invention relates to a plasma processing apparatus including: a processing chamber whose ceiling portion is opened and the inside thereof can be evacuated to vacuum; a ceiling plate which is made of dielectric material and is airtightly mounted to an opening of the ceiling portion; a planar antenna member which is installed on a top surface of the ceiling plate, for introducing a microwave into the processing chamber; and a coaxial waveguide, which has a central conductor connected to the planar antenna member, for supplying the microwave, wherein a gas passage is formed to pass through the central conductor, the planar antenna member, and the ceiling plate, and an electric field attenuating recess for attenuating an electric field intensity of the center portion of the ceiling plate is installed on a top surface of a center area of the ceiling plate.
    Type: Grant
    Filed: November 15, 2006
    Date of Patent: July 9, 2013
    Assignee: Tokyo Electron Limited
    Inventors: Caizhong Tian, Tetsuya Nishizuka, Toshihisa Nozawa
  • Publication number: 20130157468
    Abstract: A fluorocarbon layer is formed on a silicon substrate that is a to-be-processed substrate (step A). A resist layer is formed on the thus-formed fluorocarbon layer (step B). Then, the resist layer is patterned into a predetermined shape by exposing the resist layer to light by means of a photoresist layer (step C). The fluorocarbon layer is etched using the resist layer, which has been patterned into a predetermined shape, as a mask (step D). Next, the resist layer served as a mask is removed (step E). After that, the silicon substrate is etched using the remained fluorocarbon layer as a mask (step F). Since the fluorocarbon layer by itself functions as an antireflective film and a harm mask, the reliability of processing can be improved, while reducing the cost.
    Type: Application
    Filed: July 29, 2011
    Publication date: June 20, 2013
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Takaaki Matsuoka, Toshihisa Nozawa, Toshiyasu Hori
  • Publication number: 20130130513
    Abstract: The interlayer insulating layer forming method for forming an interlayer insulating layer of a semiconductor device via a plasma CVD method includes: carrying a substrate into a depressurized processing container; supplying a plasma generating gas to a first space spaced apart from the substrate; exciting the plasma generating gas in the first space; and supplying a raw material gas including a boron compound that includes at least a hydrogen group or hydrocarbon group, to a second space between the first space and the substrate. Also, a semiconductor device is interconnected in a multilayer through an interlayer insulating layer having an amorphous structure including boron, carbon, and nitrogen, wherein, in the interlayer insulating layer, a hydrocarbon group or an alkyl amino group is mixed in the amorphous structure comprising hexagonal boron nitride and cubic boron nitride.
    Type: Application
    Filed: July 20, 2011
    Publication date: May 23, 2013
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Kotaro Miyatani, Takenao Nemoto, Takuya Kurotori, Yasuo Kobayashi, Toshihisa Nozawa
  • Patent number: 8387560
    Abstract: The present invention provides a plasma processing unit comprising: a processing vessel having an opening on a ceiling side thereof, and capable of creating a vacuum therein; a stage disposed in the processing vessel, for placing thereon an object to be processed; a top plate made of a dielectric, the top plate being hermetically fitted in the opening and allowing a microwave to pass therethrough; a planar antenna member disposed on the top plate, the planar antenna member being provided with a plurality of microwave radiating holes for radiating a microwave for plasma generation toward an inside of the processing vessel; a slow-wave member disposed on the planar antenna member, for shortening a wavelength of a microwave; and a microwave interference restraining part disposed on a lower surface of the top plate, the microwave interference restraining part separating the lower surface into a plurality of concentric zones and restraining a microwave interference between the zones.
    Type: Grant
    Filed: July 21, 2005
    Date of Patent: March 5, 2013
    Assignee: Tokyo Electron Limited
    Inventors: Caizhong Tian, Kiyotaka Ishibashi, Junichi Kitagawa, Toshihisa Nozawa
  • Patent number: 8383519
    Abstract: An etching method by which a fluorine-added carbon film formed on a substrate is etched by plasma includes a first step of etching the fluorine-added carbon film with plasma of an oxygen-containing processing gas, and a second step of etching the fluorine-added carbon film with plasma of a fluorine-containing processing gas.
    Type: Grant
    Filed: February 5, 2008
    Date of Patent: February 26, 2013
    Assignee: Tokyo Electron Limited
    Inventors: Toshihisa Nozawa, Kotaro Miyatani, Toshiyasu Hori, Shigekazu Hirose
  • Patent number: 8366869
    Abstract: A processing apparatus includes a process container having a placing table for placing a processing object, an exhaust system having vacuum pumps and a pressure control valve for exhausting atmosphere in the process container. A gas injection unit having a gas ejection hole is provided in the process container, as well as a gas supplying unit for supplying a process gas to the gas injection unit. The entire process apparatus is controlled by a controlling unit. The control unit controls the exhaust system and the gas supplying unit. When starting a predetermined process, the process gas at a flow rate greater than a prescribed flow rate is supplied for a short time while exhausting the atmosphere in the process container by the exhaust system, and then the process gas at a prescribed flow rate is supplied.
    Type: Grant
    Filed: April 6, 2007
    Date of Patent: February 5, 2013
    Assignee: Tokyo Electron Limited
    Inventors: Toshihisa Nozawa, Koji Kotani, Kouji Tanaka
  • Patent number: 8343308
    Abstract: A ceiling plate provided at a ceiling portion of a process chamber that may be evacuated to a vacuum is disclosed. The ceiling plate allows microwaves emitted from a slot of a planar antenna member provided along with the ceiling plate to pass through the ceiling plate into the process chamber, and includes plural concave portions provided along a circle on a surface of the ceiling plate, the surface facing toward an inside of the process chamber.
    Type: Grant
    Filed: August 20, 2008
    Date of Patent: January 1, 2013
    Assignee: Tokyo Electron Limited
    Inventors: Caizhong Tian, Tetsuya Nishizuka, Kiyotaka Ishibashi, Toshihisa Nozawa
  • Patent number: 8323521
    Abstract: The invention can provide apparatus and methods of processing a substrate using plasma generation by gravity-induced gas-diffusion separation techniques. By adding or using gases including inert and process gases with different gravities (i.e., ratio between the molecular weight of a gaseous constituent and a reference molecular weight), a two-zone or multiple-zone plasma can be formed, in which one kind of gas can be highly constrained near a plasma generation region and another kind of gas can be largely separated from the aforementioned gas due to differential gravity induced diffusion and is constrained more closer to a wafer process region than the aforementioned gas.
    Type: Grant
    Filed: August 10, 2010
    Date of Patent: December 4, 2012
    Assignee: Tokyo Electron Limited
    Inventors: Jianping Zhao, Lee Chen, Merritt Funk, Toshihisa Nozawa
  • Patent number: 8273210
    Abstract: In the plasma processing apparatus 1, microwaves supplied from a coaxial waveguide 30 are introduced into a processing container 2 via a wavelength-shortening plate 25, a process gas is plasmatized in the processing container 2, and a substrate W is processed using the plasma. In the plasma processing apparatus 1, a dielectric member 45 is disposed at a connecting area between the coaxial waveguide 30 and the wavelength-shortening plate 25. Inside an outer conductor 32 of the coaxial waveguide 30, the dielectric member 45 is disposed to surround a part of a circumference of an inner conductor 31 of the coaxial waveguide 30, and is disposed at any position around the circumference of the inner conductor 31.
    Type: Grant
    Filed: October 2, 2008
    Date of Patent: September 25, 2012
    Assignee: Tokyo Electron Limited
    Inventors: Caizhong Tian, Kiyotaka Ishibashi, Toshihisa Nozawa
  • Patent number: 8267040
    Abstract: In a plasma processing apparatus that processes a wafer in a process vessel by plasma generated by the supply of a microwave, a transmissive window has, in a center area of its lower surface, a hanging portion made of the same material as a material of the transmissive window. Between an outer peripheral surface of the hanging portion and a sidewall inner surface continuing from a support part, a gap is formed, the gap having a gap length of 0.5 to 10 mm, more preferably 0.5 to 5 mm. The generation of a strong electric field and plasma at a contact point is inhibited and an amount of sputtered particles, radicals, or the like reaching the wafer is also reduced.
    Type: Grant
    Filed: February 15, 2005
    Date of Patent: September 18, 2012
    Assignee: Tokyo Electron Limited
    Inventors: Kiyotaka Ishibashi, Junichi Kitagawa, Singo Furui, Cai Zhong Tian, Jun Yamashita, Nobuhiko Yamamoto, Tetsuya Nishizuka, Toshihisa Nozawa, Shinya Nishimoto, Tamaki Yuasa
  • Patent number: 8263174
    Abstract: Disclosed is a light emitting device manufacturing apparatus including a plurality of processing chambers for performing a substrate processing for forming, on a target substrate, a light emitting device having multiple layers including an organic layer, wherein each of the plurality of processing chambers is configured to perform a substrate process on the target substrate while maintaining the target substrate such that its device forming surface, on which the light emitting device is to be formed, is oriented toward a direction opposite to a direction of gravity.
    Type: Grant
    Filed: June 13, 2007
    Date of Patent: September 11, 2012
    Assignees: Tokyo Electron Limited, National University Corporation Tohoku University
    Inventors: Yasushi Yagi, Shingo Watanabe, Toshihisa Nozawa, Chuichi Kawamura, Kimihiko Yoshino, Tadahiro Ohmi
  • Publication number: 20120204983
    Abstract: A processing apparatus for performing a specified process on a target object at a predetermined process pressure, the apparatus having an evacuable processing chamber having a gas exhaust port formed in a bottom portion thereof, a mounting table provided within the processing chamber for holding the target object, a pressure control valve connected to the gas exhaust port, the pressure control valve including a slide-type valve body for changing an area of an opening region of a valve port, and a gas exhaust system connected to the pressure control valve. The pressure control valve is arranged such that a center axis of the mounting table lies within an opening region of the pressure control valve formed over a practical use region of a valve opening degree of the pressure control valve.
    Type: Application
    Filed: April 23, 2012
    Publication date: August 16, 2012
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Toshihisa Nozawa, Tamaki Yuasa
  • Publication number: 20120186521
    Abstract: A plasma processing apparatus 31 includes a processing chamber 32; a gas supply unit 33 for supplying a plasma processing gas into a processing chamber 32; a mounting table 34 configured to hold the target substrate W thereon; a plasma generating device 39 configured to generate plasma within the processing chamber 32; and a gas supply device 61. The gas supply device 61 includes a head unit 62 configured to move between a first position above the mounting table 34 and a second position different from the first position and to supply a gas, and the head unit 62 is configured to supply a film forming gas to a small-volume region formed between the mounting table 34 and the head unit 62 when the head unit 62 is positioned at the first position and to adsorb the film forming gas on the target substrate W.
    Type: Application
    Filed: September 14, 2010
    Publication date: July 26, 2012
    Applicant: Tokyo Electron Limited
    Inventors: Masahide Iwasaki, Toshihisa Nozawa
  • Publication number: 20120174986
    Abstract: A method of operating an on-off valve comprises closing one of two openings of a valve body with a seal member of a closure element within the valve body, the valve body being within an evacuation pipe connected between a process chamber and an evacuation apparatus; moving the closure element, using a linear driver, so that the seal member is moved away from the one of the two openings; and positioning the closure element into a retreat portion in an surface of the valve body, using the linear driver and a pivotal driver adapted to pivot the closure element between the one of the two openings and the retreat portion, so that the seal member is closed inside a protection seal member of the closure element to surround the seal member, thereby preventing the seal member from being directly exposed to the process gas.
    Type: Application
    Filed: January 11, 2012
    Publication date: July 12, 2012
    Applicant: Tokyo Electron Limited
    Inventor: Toshihisa NOZAWA
  • Publication number: 20120156884
    Abstract: Disclosed is a film forming method of an amorphous carbon film, including: disposing a substrate in a processing chamber; supplying a processing gas containing carbon, hydrogen and oxygen into the processing chamber; and decomposing the processing gas by heating the substrate in the processing chamber and depositing the amorphous carbon film on the substrate.
    Type: Application
    Filed: February 29, 2012
    Publication date: June 21, 2012
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Toshihisa Nozawa, Hiraku Ishikawa
  • Publication number: 20120111427
    Abstract: A plasma processing apparatus is provided with a first exhaust path which extends downward from an exhaust hole; a second exhaust path which is connected to a downstream end portion of the first exhaust path in the exhausting direction and extends in a direction perpendicular to a direction in which the first exhaust path extends, and whose cross-section, which orthogonally intersects with the exhausting direction, is horizontally long such that a widthwise length is greater than a vertical length in the cross-section; a third exhaust path which is connected to a downstream end portion of the second exhaust path in the exhausting direction and extends in a direction perpendicular to the direction in which the second exhaust path extends; a pump which is connected to a downstream end portion of the third exhaust path in the exhausting direction and depressurizes an inside of a processing container; a pressure control valve which is provided in the second exhaust path, and comprises a pressure control valve pla
    Type: Application
    Filed: August 27, 2009
    Publication date: May 10, 2012
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Toshihisa Nozawa, Shinji Komoto, Masahide Iwasaki