Patents by Inventor Trung (Tim) Trinh

Trung (Tim) Trinh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7122906
    Abstract: A die-wafer package includes a singulated semiconductor die having a first plurality of bond pads on a first surface and a second plurality of bond pads on a second opposing surface thereof. Each of the first and second pluralities of bond pads includes an under-bump metallization (UBM) layer. The singulated semiconductor die is disposed on a semiconductor die site of a semiconductor wafer and a first plurality of conductive bumps electrically couples the first plurality of bond pads of the singulated semiconductor die with a first set of bond pads formed on the semiconductor die site. A second plurality of conductive bumps is disposed on a second set of bond pads of the semiconductor die site. A third plurality of conductive bumps is disposed on the singulated semiconductor die's second plurality of bond pads. The second and third pluralities of conductive bumps are configured for electrical interconnection with an external device.
    Type: Grant
    Filed: January 29, 2004
    Date of Patent: October 17, 2006
    Assignee: Micron Technology, Inc.
    Inventor: Trung T. Doan
  • Publication number: 20060228891
    Abstract: In certain implementations, methods and apparatus include an antenna assembly having at least two overlapping and movable surface microwave plasma antennas. The antennas have respective pluralities of microwave transmissive openings formed therethrough. At least some of the openings of the respective antennas overlap with at least some of the openings of another antenna, and form an effective plurality of microwave transmissive openings through the antenna assembly. Microwave energy is passed through the effective plurality of openings of the antenna assembly and to a flowing gas effective to form a surface microwave plasma onto a substrate received within the processing chamber. At least one of the antennas is moved relative to another of the antennas to change at least one of size and shape of the effective plurality of openings through the antenna assembly effective to modify microwave energy passed through the antenna assembly to the substrate.
    Type: Application
    Filed: June 7, 2006
    Publication date: October 12, 2006
    Inventors: Guy Blalock, Trung Doan
  • Publication number: 20060228173
    Abstract: A grease seal cup for a splined joint between a drive shaft and a driven shaft comprises a cylindrical portion adapted to form a seal with the outer surface of the drive shaft and a seal with a sealing member, such as a spanner nut, of the driven shaft. The grease seal cup, comprising a flexible polymer material, tightly squeezed during installation to form the seals. The pre-fabricated light weight grease seal cup can be used in existing splined joints without adversely affecting the weight balance.
    Type: Application
    Filed: April 12, 2005
    Publication date: October 12, 2006
    Applicant: Honeywell International Inc.
    Inventors: Christopher Dunmire, Trung Tran, Christopher Scott
  • Publication number: 20060228857
    Abstract: The invention includes a method of forming a rugged semiconductor-containing surface. A first semiconductor layer is formed over a substrate, and a second semiconductor layer is formed over the first semiconductor layer. Subsequently, a third semiconductor layer is formed over the second semiconductor layer, and semiconductor-containing seeds are formed over the third semiconductor layer. The seeds are annealed to form the rugged semiconductor-containing surface. The first, second and third semiconductor layers are part of a common stack, and can be together utilized within a storage node of a capacitor construction. The invention also includes semiconductor structures comprising rugged surfaces. The rugged surfaces can be, for example, rugged silicon.
    Type: Application
    Filed: June 7, 2006
    Publication date: October 12, 2006
    Inventors: Shenlin Chen, Trung Doan, Guy Blalock, Lyle Breiner, Er-Xuan Ping
  • Publication number: 20060223425
    Abstract: The invention includes a semiconductive processing method of electrochemical-mechanical removing at least some of a conductive material from over a surface of a semiconductor substrate. A cathode is provided at a first location of the wafer, and an anode is provided at a second location of the wafer. The conductive material is polished with the polishing pad polishing surface. The polishing occurs at a region of the conductive material and not at another region. The region where the polishing occurs is defined as a polishing operation location. The polishing operation location is displaced across the surface of the substrate from said second location of the substrate toward said first location of the substrate. The polishing operation location is not displaced from said first location toward said second location when the polishing operation location is between the first and second locations.
    Type: Application
    Filed: June 5, 2006
    Publication date: October 5, 2006
    Inventors: Trung Doan, Scott Meikle
  • Publication number: 20060219683
    Abstract: Several aspects of an in-line welding gun are disclosed. In one aspect, the welding gun has a variable profile insulating boot disposed over the torch barrel of the gun. The variable profile insulating boot may be comprised of a molded material having varying thickness to provide the desired insulating properties. In another aspect of the welding gun, a speed control mechanism for the motor driving the wire feed assembly is positioned in a recess in the housing such that it reduces the risk of being unintentionally adjusted during operation of the welding gun. In another aspect of the welding gun, the wire feed mechanism features a feeder roller and an idler roller that may be separated without opening the housing of the welding gun. To separate the rollers, the user may depress a portion on the exterior of the housing to press on a pivotable lever on which the idler roller is disposed.
    Type: Application
    Filed: April 4, 2005
    Publication date: October 5, 2006
    Inventors: Milo Kensrue, Trung Nguyen
  • Patent number: 7115529
    Abstract: A first precursor gas is flowed to the substrate within the chamber effective to form a first monolayer on the substrate. A second precursor gas different in composition from the first precursor gas is flowed to the first monolayer within the chamber under surface microwave plasma conditions within the chamber effective to react with the first monolayer and form a second monolayer on the substrate which is different in composition from the first monolayer. The second monolayer includes components of the first monolayer and the second precursor. In one implementation, the first and second precursor flowings are successively repeated effective to form a mass of material on the substrate of the second monolayer composition. Additional and other implementations are contemplated.
    Type: Grant
    Filed: July 28, 2003
    Date of Patent: October 3, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Trung Tri Doan, Guy T. Blalock, Gurtej S. Sandhu
  • Publication number: 20060213440
    Abstract: The present disclosure suggests several systems and methods for batch processing of microfeature workpieces, e.g., semiconductor wafers or the like. One exemplary implementation provides a method of depositing a reaction product on each of a batch of workpieces positioned in a process chamber in a spaced-apart relationship. A first gas may be delivered to an elongate first delivery conduit that includes a plurality of outlets spaced along a length of the conduit. A first gas flow may be directed by the outlets to flow into at least one of the process spaces between adjacent workpieces along a first vector that is transverse to the direction in which the workpieces are spaced. A second gas may be delivered to an elongate second delivery conduit that also has outlets spaced along its length. A second gas flow of the second gas may be directed by the outlets to flow into the process spaces along a second vector that is transverse to the first direction.
    Type: Application
    Filed: May 9, 2006
    Publication date: September 28, 2006
    Applicant: Micron Technology, Inc.
    Inventors: Lingyi Zheng, Trung Doan, Lyle Breiner, Er-Xuan Ping, Kevin Beaman, Ronald Weimer, David Kubista, Cem Basceri
  • Patent number: 7112544
    Abstract: The invention includes a method for treating a plurality of discrete semiconductor substrates. The discrete semiconductor substrates are placed within a reactor chamber. While the substrates are within the chamber, they are simultaneously exposed to one or more of H, F and Cl to remove native oxide. After removing the native oxide, the substrates are simultaneously exposed to a first reactive material to form a first mass across at least some exposed surfaces of the substrates. The first reactive material is removed from the reaction chamber, and subsequently the substrates are exposed to a second reactive material to convert the first mass to a second mass. The invention also includes apparatuses which can be utilized for simultaneous ALD treatment of a plurality of discrete semiconductor substrates.
    Type: Grant
    Filed: May 13, 2004
    Date of Patent: September 26, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Trung Tri Doan, Lyle D. Breiner, Er-Xuan Ping, Lingyi A. Zheng
  • Patent number: 7112121
    Abstract: A method and apparatus for removing conductive material from a microelectronic substrate. In one embodiment, the method can include engaging a microelectronic substrate with a polishing surface of a polishing pad, electrically coupling a conductive material of the microelectronic substrate to a source of electrical potential, and oxidizing at least a portion of the conductive material by passing an electrical current through the conductive material from the source of electrical potential. For example, the method can include positioning first and second electrodes apart from a face surface of the microelectronic substrate and disposing an electrolytic fluid between the face surface and the electrodes with the electrodes in fluid communication with the electrolytic fluid. The method can further include removing the portion of conductive material from the microelectronic substrate by moving at least one of the microelectronic and the polishing pad relative to the other.
    Type: Grant
    Filed: June 21, 2001
    Date of Patent: September 26, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Whonchee Lee, Scott G. Meikle, Scott E. Moore, Trung T. Doan
  • Publication number: 20060205187
    Abstract: The present disclosure suggests several systems and methods for batch processing of microfeature workpieces, e.g., semiconductor wafers or the like. One exemplary implementation provides a method of depositing a reaction product on each of a batch of workpieces positioned in a process chamber in a spaced-apart relationship. A first gas may be delivered to an elongate first delivery conduit that includes a plurality of outlets spaced along a length of the conduit. A first gas flow may be directed by the outlets to flow into at least one of the process spaces between adjacent workpieces along a first vector that is transverse to the direction in which the workpieces are spaced. A second gas may be delivered to an elongate second delivery conduit that also has outlets spaced along its length. A second gas flow of the second gas may be directed by the outlets to flow into the process spaces along a second vector that is transverse to the first direction.
    Type: Application
    Filed: May 9, 2006
    Publication date: September 14, 2006
    Applicant: Micron Technology, Inc.
    Inventors: Lingyi Zheng, Trung Doan, Lyle Breiner, Er-Xuan Ping, Kevin Beaman, Ronald Weimer, David Kubista, Cem Basceri
  • Publication number: 20060204649
    Abstract: The present disclosure provides methods and systems for controlling temperature. The method has particular utility in connection with controlling temperature in a deposition process, e.g., in depositing a heat-reflective material via CVD. One exemplary embodiment provides a method that involves monitoring a first temperature outside the deposition chamber and a second temperature inside the deposition chamber. An internal temperature in the deposition chamber can be increased in accordance with a ramp profile by (a) comparing a control temperature to a target temperature, and (b) selectively delivering heat to the deposition chamber in response to a result of the comparison. The target temperature may be determined in accordance with the ramp profile, but the control temperature in one implementation alternates between the first temperature and the second temperature.
    Type: Application
    Filed: May 4, 2006
    Publication date: September 14, 2006
    Applicant: Micron Technology, Inc.
    Inventors: Kevin Beaman, Trung Doan, Lyle Breiner, Ronald Weimer, Er-Xuan Ping, David Kubista, Cem Basceri, Lingyi Zheng
  • Publication number: 20060206652
    Abstract: An apparatus and method for capturing and restoring a machine state of a computer system. The apparatus includes a PC card having a non-volatile memory for storing machine state information corresponding to a machine state and a controller coupled to the non-volatile memory to control the transfer of the machine state information to and from the non-volatile memory. The apparatus further includes a transfer component for directing the controller to coordinate the storage and download of the machine state information in order to capture and restore a computer system to the stored machine state.
    Type: Application
    Filed: May 11, 2006
    Publication date: September 14, 2006
    Inventors: Trung Doan, Dean Klein
  • Publication number: 20060196538
    Abstract: Systems for depositing material onto workpieces in reaction chambers and methods for removing byproducts from reaction chambers are disclosed herein. In one embodiment, the system includes a gas phase reaction chamber, a first exhaust line coupled to the reaction chamber, first and second traps each in fluid communication with the first exhaust line, and a vacuum pump coupled to the first exhaust line to remove gases from the reaction chamber. The first and second traps are operable independently to individually and/or jointly collect byproducts from the reaction chamber. It is emphasized that this Abstract is provided to comply with the rules requiring an abstract. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
    Type: Application
    Filed: May 2, 2006
    Publication date: September 7, 2006
    Applicant: Micron Technology, Inc.
    Inventors: David Kubista, Trung Doan, Lyle Breiner, Ronald Weimer, Kevin Beaman, Er-Xuan Ping, Lingyi Zheng, Cem Basceri
  • Publication number: 20060198955
    Abstract: The present disclosure describes apparatus and methods for processing microfeature workpieces, e.g., by depositing material on a microelectronic semiconductor using atomic layer deposition. Some of these apparatus include microfeature workpiece holders that include gas distributors. One exemplary implementation provides a microfeature workpiece holder adapted to hold a plurality of microfeature workpieces. This workpiece holder includes a plurality of workpiece supports and a gas distributor. The workpiece supports are adapted to support a plurality of microfeature workpieces in a spaced-apart relationship to define a process space adjacent a surface of each microfeature workpiece. The gas distributor includes an inlet and a plurality of outlets, with each of the outlets positioned to direct a flow of process gas into one of the process spaces.
    Type: Application
    Filed: May 3, 2006
    Publication date: September 7, 2006
    Applicant: Micron Technology, Inc.
    Inventors: Lingyi Zheng, Trung Doan, Lyle Breiner, Er-Xuan Ping, Ronald Weimer, David Kubista, Kevin Beaman, Cem Basceri
  • Publication number: 20060197190
    Abstract: A chip-scale or wafer-level package having passivation layers on substantially all surfaces thereof to form a hermetically sealed package is provided. The package may be formed by disposing a first passivation layer on the passive or backside surface of a semiconductor wafer. The semiconductor wafer may be attached to a flexible membrane and diced, such as by a wafer saw, to separate the semiconductor devices. Once diced, the flexible membrane may be stretched so as to laterally displace the individual semiconductor devices away from one another and substantially expose the side edges thereof. Once the side edges of the semiconductor devices are exposed, a passivation layer may be formed on the side edges and active surfaces of the devices. A portion of the passivation layer over the active surface of each semiconductor device may be removed so as to expose conductive elements formed therebeneath.
    Type: Application
    Filed: April 21, 2006
    Publication date: September 7, 2006
    Inventor: Trung Doan
  • Publication number: 20060196622
    Abstract: A method for the determination of cellulosic-fibre properties, such as, but not limited to, residual lignin content of chemical pulp, with the aid of a spectroscopic technique obtained over a range covering the visible and the near-infrared regions of the electromagnetic spectrum, comprising the steps of obtaining a sample from the process line, minimally removing some excess water, exposing the fibres in the sample to a large beam light source, optionally moving the sample at a constant speed, and acquiring the spectral data over a pre-determined length of time, and correlating the spectrum to a previously determined calibration so as to determine the Kappa number.
    Type: Application
    Filed: March 1, 2006
    Publication date: September 7, 2006
    Inventors: Thanh Trung, Stephen Betts, Denys Leclerc
  • Patent number: 7101594
    Abstract: The invention includes a method of treating a predominantly inorganic dielectric material on a semiconductor wafer. A laser is utilized to generate activated oxygen species. Such activated oxygen species react with a component of the dielectric material to increase an oxygen content of the dielectric material. The invention also includes a method of forming a capacitor construction. A first capacitor electrode is formed to be supported by a semiconductor substrate. A dielectric material is formed over the first capacitor electrode. A precursor is provided at a location proximate the dielectric material, and a laser beam is focused at such location. The laser beam generates an activated oxygen species from the precursor. The activated oxygen species contacts the dielectric material. Subsequently, a second capacitor electrode is formed over the dielectric material.
    Type: Grant
    Filed: March 8, 2004
    Date of Patent: September 5, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Gurtej S. Sandhu, Trung Tri Doan
  • Patent number: 7097782
    Abstract: In certain implementations, methods and apparatus include an antenna assembly having at least two overlapping and movable surface microwave plasma antennas. The antennas have respective pluralities of microwave transmissive openings formed therethrough. At least some of the openings of the respective antennas overlap with at least some of the openings of another antenna, and form an effective plurality of microwave transmissive openings through the antenna assembly. Microwave energy is passed through the effective plurality of openings of the antenna assembly and to a flowing gas effective to form a surface microwave plasma onto a substrate received within the processing chamber. At least one of the antennas is moved relative to another of the antennas to change at least one of size and shape of the effective plurality of openings through the antenna assembly effective to modify microwave energy passed through the antenna assembly to the substrate.
    Type: Grant
    Filed: November 12, 2002
    Date of Patent: August 29, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Guy T. Blalock, Trung Tri Doan
  • Publication number: 20060185253
    Abstract: A gate is coupled to a gate mount adapted to be located in a passageway of a staircase. A hand-operated latch assembly is provided for opening and closing the gate.
    Type: Application
    Filed: May 16, 2005
    Publication date: August 24, 2006
    Inventors: Andrew Marsden, Richard Bastien, Robert Monahan, Trung Phung