Patents by Inventor Wei Yu

Wei Yu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240114703
    Abstract: A package structure and a formation method are provided. The method includes providing a semiconductor substrate and bonding a first chip structure on the semiconductor substrate through metal-to-metal bonding and dielectric-to-dielectric bonding. The method also includes bonding a second chip structure over the semiconductor substrate through solder-containing bonding structures. The method further includes forming a protective layer surrounding the second chip structure. A portion of the protective layer is between the semiconductor substrate and a bottom of the second chip structure.
    Type: Application
    Filed: February 2, 2023
    Publication date: April 4, 2024
    Inventors: Tsung-Fu TSAI, Szu-Wei LU, Shih-Peng TAI, Chen-Hua YU
  • Publication number: 20240113201
    Abstract: Methods and structures for modulating an inner spacer profile include providing a fin having an epitaxial layer stack including a plurality of semiconductor channel layers interposed by a plurality of dummy layers. In some embodiments, the method further includes removing the plurality of dummy layers to form a first gap between adjacent semiconductor channel layers of the plurality of semiconductor channel layers. Thereafter, in some examples, the method includes conformally depositing a dielectric layer to substantially fill the first gap between the adjacent semiconductor channel layers. In some cases, the method further includes etching exposed lateral surfaces of the dielectric layer to form an etched-back dielectric layer that defines substantially V-shaped recesses. In some embodiments, the method further includes forming a substantially V-shaped inner spacer within the substantially V-shaped recesses.
    Type: Application
    Filed: January 25, 2023
    Publication date: April 4, 2024
    Inventors: Chih-Ching WANG, Wei-Yang LEE, Bo-Yu LAI, Chung-I YANG, Sung-En LIN
  • Publication number: 20240109769
    Abstract: A chip package includes a semiconductor substrate and a metal layer. The semiconductor substrate has an opening and a sidewall surrounding the opening, in which an upper portion of the sidewall is a concave surface. The semiconductor substrate is made of a material including silicon. The metal layer is located on the semiconductor substrate. The metal layer has plural through holes above the opening to define a MEMS (Microelectromechanical system) structure, in which the metal layer is made of a material including aluminum.
    Type: Application
    Filed: December 13, 2023
    Publication date: April 4, 2024
    Inventors: Wei-Luen SUEN, Jiun-Yen LAI, Hsing-Lung SHEN, Tsang-Yu LIU
  • Publication number: 20240113143
    Abstract: Various embodiments of the present disclosure are directed towards an imaging device including a first image sensor element and a second image sensor element respectively comprising a pixel unit disposed within a semiconductor substrate. The first image sensor element is adjacent to the second image sensor element. A first micro-lens overlies the first image sensor element and is laterally shifted from a center of the pixel unit of the first image sensor element by a first lens shift amount. A second micro-lens overlies the second image sensor element and is laterally shifted from a center of the pixel unit of the second image sensor element by a second lens shift amount different from the first lens shift amount.
    Type: Application
    Filed: January 6, 2023
    Publication date: April 4, 2024
    Inventors: Cheng Yu Huang, Wen-Hau Wu, Chun-Hao Chuang, Keng-Yu Chou, Wei-Chieh Chiang, Chih-Kung Chang
  • Publication number: 20240111337
    Abstract: An electronic device including a body and a receptacle connector is provided. The body has a side wall surface, a receptacle slot located at the side wall surface, a waterproof protrusion protruding from the side wall surface, and two gutters located at the side wall surface, where the waterproof protrusion is located above the receptacle slot, and the two gutters are respectively located at two opposite sides of the receptacle slot. The receptacle connector is disposed in the receptacle slot.
    Type: Application
    Filed: May 8, 2023
    Publication date: April 4, 2024
    Applicant: Acer Incorporated
    Inventors: Wei-Chih Wang, Chen-Min Hsiu, Chien-Yu Lee, Szu-Wei Yang, Fang-Ying Huang
  • Patent number: 11947088
    Abstract: An imaging optical lens assembly includes nine lens elements which are, in order from an object side to an image side along an optical path: a first lens element, a second lens element, a third lens element, a fourth lens element, a fifth lens element, a sixth lens element, a seventh lens element, an eighth lens element and a ninth lens element. The first lens element has positive refractive power. The eighth lens element with positive refractive power has an image-side surface being convex in a paraxial region thereof. The ninth lens element has an image-side surface being concave in a paraxial region thereof, and the image-side surface of the ninth lens element has at least one convex critical point in an off-axis region thereof.
    Type: Grant
    Filed: January 24, 2023
    Date of Patent: April 2, 2024
    Assignee: LARGAN PRECISION CO., LTD.
    Inventor: Wei-Yu Chen
  • Patent number: 11948971
    Abstract: A method includes forming isolations extending into a semiconductor substrate, recessing the isolation regions, wherein a semiconductor region between the isolation regions forms a semiconductor fin, forming a first dielectric layer on the isolation regions and the semiconductor fin, forming a second dielectric layer over the first dielectric layer, planarizing the second dielectric layer and the first dielectric layer, and recessing the first dielectric layer. A portion of the second dielectric layer protrudes higher than remaining portions of the first dielectric layer to form a protruding dielectric fin. A portion of the semiconductor fin protrudes higher than the remaining portions of the first dielectric layer to form a protruding semiconductor fin. A portion of the protruding semiconductor fin is recessed to form a recess, from which an epitaxy semiconductor region is grown. The epitaxy semiconductor region expands laterally to contact a sidewall of the protruding dielectric fin.
    Type: Grant
    Filed: August 10, 2021
    Date of Patent: April 2, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jeng-Wei Yu, Tsz-Mei Kwok, Tsung-Hsi Yang, Li-Wei Chou, Ming-Hua Yu
  • Patent number: 11948987
    Abstract: A semiconductor device according to the present disclosure includes a source feature and a drain feature, a plurality of semiconductor nanostructures extending between the source feature and the drain feature, a gate structure wrapping around each of the plurality of semiconductor nanostructures, a bottom dielectric layer over the gate structure and the drain feature, a backside power rail disposed over the bottom dielectric layer, and a backside source contact disposed between the source feature and the backside power rail. The backside source contact extends through the bottom dielectric layer.
    Type: Grant
    Filed: September 9, 2020
    Date of Patent: April 2, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Lung-Kun Chu, Mao-Lin Huang, Chung-Wei Hsu, Jia-Ni Yu, Kuo-Cheng Chiang, Kuan-Lun Cheng, Chih-Hao Wang
  • Patent number: 11947923
    Abstract: Implementations relate to managing multimedia content that is obtained by large language model(s) (LLM(s)) and/or generated by other generative model(s). Processor(s) of a system can: receive natural language (NL) based input that requests multimedia content, generate a response that is responsive to the NL based input, and cause the response to be rendered. In some implementations, and in generating the response, the processor(s) can process, using a LLM, LLM input to generate LLM output, and determine, based on the LLM output, at least multimedia content to be included in the response. Further, the processor(s) can evaluate the multimedia content to determine whether it should be included in the response. In response to determining that the multimedia content should not be included in the response, the processor(s) can cause the response, including alternative multimedia content or other textual content, to be rendered.
    Type: Grant
    Filed: November 27, 2023
    Date of Patent: April 2, 2024
    Assignee: GOOGLE LLC
    Inventors: Sanil Jain, Wei Yu, Ágoston Weisz, Michael Andrew Goodman, Diana Avram, Amin Ghafouri, Golnaz Ghiasi, Igor Petrovski, Khyatti Gupta, Oscar Akerlund, Evgeny Sluzhaev, Rakesh Shivanna, Thang Luong, Komal Singh, Yifeng Lu, Vikas Peswani
  • Patent number: 11948930
    Abstract: A method includes forming a set of through-vias in a substrate, the set of through-vias partially penetrating a thickness of the substrate. First connectors are formed over the set of through-vias on a first side of the substrate. The first side of the substrate is attached to a carrier. The substrate is thinned from the second side to expose the set of through-vias. Second connectors are formed over the set of through-vias on the second side of the substrate. A device die is bonded to the second connectors. The substrate is singulated into multiple packages.
    Type: Grant
    Filed: November 13, 2020
    Date of Patent: April 2, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chin-Chuan Chang, Szu-Wei Lu, Chen-Hua Yu
  • Patent number: 11948949
    Abstract: In some embodiments, the present disclosure relates to a device having a semiconductor substrate including a frontside and a backside. On the frontside of the semiconductor substrate are a first source/drain region and a second source/drain region. A gate electrode is arranged on the frontside of the semiconductor substrate and includes a horizontal portion, a first vertical portion, and a second vertical portion. The horizontal portion is arranged over the frontside of the semiconductor substrate and between the first and second source/drain regions. The first vertical portion extends from the frontside towards the backside of the semiconductor substrate and contacts the horizontal portion of the gate electrode structure. The second vertical portion extends from the frontside towards the backside of the semiconductor substrate, contacts the horizontal portion of the gate electrode structure, and is separated from the first vertical portion by a channel region of the substrate.
    Type: Grant
    Filed: July 15, 2022
    Date of Patent: April 2, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Yuan Chen, Ching-Chun Wang, Hsiao-Hui Tseng, Jen-Cheng Liu, Jhy-Jyi Sze, Shyh-Fann Ting, Wei Chuang Wu, Yen-Ting Chiang, Chia Ching Liao, Yen-Yu Chen
  • Publication number: 20240107682
    Abstract: An embodiment composite material for semiconductor package mount applications may include a first component including a tin-silver-copper alloy and a second component including a tin-bismuth alloy or a tin-indium alloy. The composite material may form a reflowed bonding material having a room temperature tensile strength in a range from 80 MPa to 100 MPa when subjected to a reflow process. The reflowed bonding material may include a weight fraction of bismuth that is in a range from approximately 4% to approximately 15%. The reflowed bonding material may an alloy that is solid solution strengthened by a presence of bismuth or indium that is dissolved within the reflowed bonding material or a solid solution phase that includes a minor component of bismuth dissolved within a major component of tin. In some embodiments, the reflowed bonding material may include intermetallic compounds formed as precipitates such as Ag3Sn and/or Cu6Sn5.
    Type: Application
    Filed: April 21, 2023
    Publication date: March 28, 2024
    Inventors: Chao-Wei Chiu, Chih-Chiang Tsao, Jen-Jui Yu, Hsuan-Ting Kuo, Hsiu-Jen Lin, Ching-Hua Hsieh
  • Publication number: 20240103236
    Abstract: A method includes forming an optical engine, which includes a photonic die. The photonic die further includes a grating coupler. The method further includes forming a fiber unit including a fiber platform having a groove, and an optical fiber attached to the fiber platform. The optical fiber extends into the groove. The fiber platform further includes a reflector. The fiber unit is attached to the optical engine, and the reflector is configured to deflect a light beam, so that the light beam emitted by a first one of the optical fiber and the grating coupler is received by a second one of the optical fiber and the grating coupler.
    Type: Application
    Filed: January 3, 2023
    Publication date: March 28, 2024
    Inventors: Chih-Wei Tseng, Jui Lin Chao, Hsing-Kuo Hsia, Chen-Hua Yu
  • Publication number: 20240105642
    Abstract: A method of manufacturing a package structure at least includes the following steps. An encapsulant laterally is formed to encapsulate the die and the plurality of through vias. A plurality of first connectors are formed to electrically connect to first surfaces of the plurality of through vias. A warpage control material is formed over the die, wherein the warpage control material is disposed to cover an entire surface of the die. A protection material is formed over the encapsulant and around the plurality of first connectors and the warpage control material. A coefficient of thermal expansion of the protection material is less than a coefficient of thermal expansion of the encapsulant.
    Type: Application
    Filed: November 29, 2023
    Publication date: March 28, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hao-Jan Pei, Ching-Hua Hsieh, Hsiu-Jen Lin, Wei-Yu Chen, Chia-Shen Cheng, Chih-Chiang Tsao, Jen-Jui Yu, Cheng-Shiuan Wong
  • Publication number: 20240102950
    Abstract: A method for determining parameters of nanostructures, wherein the method includes steps as follows: Firstly, an X-ray reflection intensity measurement curve of a nanostructure to be tested is obtained by radiating the nanostructure to be tested with X-ray. The X-ray reflection intensity measurement curve is compared with an X-ray reflection intensity standard curve to obtain a comparison result. Subsequently, at least one parameter existing in the nanostructure to be tested is determined according to the comparison result.
    Type: Application
    Filed: September 28, 2023
    Publication date: March 28, 2024
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Chun-Ting LIU, Po-Ching HE, Wei-En FU, Chun-Yu LIU
  • Publication number: 20240104030
    Abstract: A data bus coupled to a plurality of memory devices is determined to be in a read mode. Responsive to determining that the data bus is in the read mode, a particular read operation identified in a particular memory queue of memory queues that include identifiers of one or more write operations and identifiers of one or more read operations is determined. The particular memory queue includes a highest number of read operations for a memory device of the memory devices. The particular read operation is transmitted from the particular memory queue over the data bus.
    Type: Application
    Filed: December 6, 2023
    Publication date: March 28, 2024
    Inventors: Wei Wang, Jiangli Zhu, Ying Yu Tai, Samir Mittal
  • Publication number: 20240104393
    Abstract: Systems and methods for personalized federated learning. The method may include receiving at a central server local models from a plurality of clients, and aggregating a heterogeneous data distribution extracted from the local models. The method can further include processing the data distribution as a linear mixture of joint distributions to provide a global learning model, and transmitting the global learning model to the clients. The global learning model is used to update the local model.
    Type: Application
    Filed: September 13, 2023
    Publication date: March 28, 2024
    Inventors: Wei Cheng, Wenchao Yu, Haifeng Chen, Yue Wu
  • Publication number: 20240107070
    Abstract: Methods, apparatuses, and non-transitory computer-readable storage mediums are provided for video decoding. In one method, a decoder receives a Sequence Parameter Set (SPS) rice extension flag that indicates whether an extension of rice parameter derivation for binarization of abs_remainder and dec_abs_level is enabled. In a second method, the decoder may receive a Sequence Parameter Set (SPS) rice adaption enabled flag that indicates whether rice parameter derivation for binarization of abs_remainder and dec_abs_level is used.
    Type: Application
    Filed: November 25, 2023
    Publication date: March 28, 2024
    Applicant: BEIJING DAJIA INTERNET INFORMATION TECHNOLOGY CO., LTD.
    Inventors: Hong-Jheng JHU, Xiaoyu XIU, Yi-Wen CHEN, Wei CHEN, Che-Wei KUO, Ning YAN, Xianglin WANG, Bing YU
  • Publication number: 20240103097
    Abstract: The present disclosure provides a direct current (DC) transformer error detection apparatus for a pulsating harmonic signal, including a DC and pulsating harmonic current output module and an external detected input module, where the DC and pulsating harmonic current output module outputs a DC and a DC superimposed pulsating harmonic current to an internal sampling circuit and a self-calibrated standard resistor array; and the internal sampling circuit converts the input DC and the input DC superimposed pulsating harmonic current into a voltage signal, and sends the voltage signal to an analog-to-digital (AD) sampling and measurement component through a front-end conditioning circuit and a detected input channel. The DC transformer error detection apparatus can complete self-calibration for measurement of the DC and the pulsating harmonic signal on a test site.
    Type: Application
    Filed: August 17, 2022
    Publication date: March 28, 2024
    Inventors: Xin Zheng, Wenjing Yu, Tao Peng, Yi Fang, Ming Lei, Hong Shi, Ben Ma, Li Ding, Wei Wei, Linghua Li, He Yu, Tian Xia, Yingchun Wang, Sike Wang, Dongri Xie, Xin Wang, Bo Pang, Xianjin Rong
  • Patent number: 11940597
    Abstract: An image capturing optical lens system includes four lens elements, which are, in order from an object side to an image side along an optical path, a first lens element, a second lens element, a third lens element and a fourth lens element. The first lens element has an object-side surface being convex in a paraxial region thereof. The third lens element with positive refractive power has an object-side surface being convex in a paraxial region thereof and an image-side surface being concave in a paraxial region thereof. The fourth lens element has negative refractive power.
    Type: Grant
    Filed: July 15, 2021
    Date of Patent: March 26, 2024
    Assignee: LARGAN PRECISION CO., LTD.
    Inventors: Kuan-Ting Yeh, Wei-Yu Chen