Patents by Inventor Wen Han

Wen Han has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7436064
    Abstract: Disclosed is a method for manufacturing an organic optoelectronic device. The method comprises providing a substrate, disposing a first electrode on the substrate, disposing a metal pad on the substrate, electrically separated from the first electrode, disposing a first material over the first electrode and at least partially over the metal pad, applying a beam, wherein the beam ablates the first material in an ablation window so that the ablation window includes at least a portion of an edge of the metal pad, and disposing a second electrode over the first material and over the ablation window so that the second electrode is in electrical contact with the at least a portion of an edge of the metal pad.
    Type: Grant
    Filed: April 26, 2006
    Date of Patent: October 14, 2008
    Assignee: Osram Opto Semiconductors GmbH
    Inventors: Wen Han Lau, Ian Stephen Millard
  • Publication number: 20080242031
    Abstract: A method for fabrication a p-type channel FET includes forming a gate on a substrate. Then, a PAI ion implantation process is performed. Further, a pocket implantation process is conducted to form a pocket region. Thereafter, a first co-implantation process is performed to define a source/drain extension region depth profile. Then, a p-type source/drain extension region is formed. Afterwards, a second co-implantation process is performed to define a source/drain region depth profile. Thereafter, an in-situ doped epitaxy growth process is performed to form a doped semiconductor compound for serving as a p-type source/drain region.
    Type: Application
    Filed: March 28, 2007
    Publication date: October 2, 2008
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Kun-Hsien Lee, Cheng-Tung Huang, Wen-Han Hung, Shyh-Fann Ting, Li-Shian Jeng, Meng-Yi Wu, Tzyy-Ming Cheng
  • Publication number: 20080237734
    Abstract: A complementary metal-oxide-semiconductor (CMOS) transistor comprising a substrate, a first conductive type MOS transistor, a second conductive type MOS transistor, a buffer layer, a first stress layer and a second stress layer is provided. The substrate has a device isolation structure therein that defines a first active area and a second active area. The first conductive type MOS transistor and the second conductive type MOS transistor are respectively disposed in the first active area and the second active area of the substrate. A first nitride spacer of the first conductive type MOS transistor has a thickness greater than that of a second nitride spacer of the second conductive type MOS transistor. The buffer layer is disposed on the first conductive type MOS transistor. The first stress layer is disposed on the buffer layer. The second stress layer is disposed on the second conductive type MOS transistor.
    Type: Application
    Filed: March 29, 2007
    Publication date: October 2, 2008
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Wen-Han Hung, Cheng-Tung Huang, Kun-Hsien Lee, Shyh-Fann Ting, Li-Shian Jeng, Meng-Yi Wu, Chung-Min Shih, Tzyy-Ming Cheng, Chia-Wen Liang
  • Publication number: 20080242017
    Abstract: A method of fabricating metal-oxide-semiconductor (MOS) transistor devices is disclosed. A semiconductor substrate is provided. A gate dielectric layer is formed. A gate electrode is stacked on the gate dielectric layer. The gate electrode has vertical sidewalls and a top surface. A liner is formed on the vertical sidewalls of the gate electrode. A silicon nitride spacer is formed on the liner. Using the gate electrode and the silicon nitride spacer as an implantation mask, a source/drain is implanted into the substrate. After the source/drain implant, the silicon nitride spacer is then stripped. A silicide layer is formed on the source/drain region. Subsequently, a silicon nitride cap layer is deposited. The silicon nitride cap layer has a specific stress status.
    Type: Application
    Filed: March 26, 2007
    Publication date: October 2, 2008
    Inventors: Kun-Hsien Lee, Cheng-Tung Huang, Shyh-Fann Ting, Li-Shian Jeng, Wen-Han Hung, Tzyy-Ming Cheng, Chia-Wen Liang
  • Publication number: 20080220574
    Abstract: A method of fabricating a complementary metal oxide semiconductor (CMOS) device is provided. A first conductive type MOS transistor including a source/drain region using a semiconductor compound as major material is formed in a first region of a substrate. A second conductive type MOS transistor is formed in a second region of the substrate. Next, a pre-amorphous implantation (PAI) process is performed to amorphize a gate conductive layer of the second conductive type MOS transistor. Thereafter, a stress-transfer-scheme (STS) is formed on the substrate in the second region to generate a stress in the gate conductive layer. Afterwards, a rapid thermal annealing (RTA) process is performed to activate the dopants in the source/drain region. Then, the STS is removed.
    Type: Application
    Filed: March 5, 2007
    Publication date: September 11, 2008
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Li-Shian Jeng, Cheng-Tung Huang, Shyh-Fann Ting, Wen-Han Hung, Kun-Hsien Lee, Meng-Yi Wu, Tzyy-Ming Cheng
  • Publication number: 20080206942
    Abstract: A method for fabricating strained-silicon transistors is disclosed. First, a semiconductor substrate is provided and a gate structure and a spacer surrounding the gate structure are disposed on the semiconductor substrate. A source/drain region is then formed in the semiconductor substrate around the spacer, and a first rapid thermal annealing process is performed to activate the dopants within the source/drain region. An etching process is performed to form a recess around the gate structure and a selective epitaxial growth process is performed to form an epitaxial layer in the recess. A second rapid thermal annealing process is performed to redefine the distribution of the dopants within the source/drain region and repair the damaged bonds of the dopants.
    Type: Application
    Filed: February 26, 2007
    Publication date: August 28, 2008
    Inventors: Shyh-Fann Ting, Cheng-Tung Huang, Li-Shian Jeng, Kun-Hsien Lee, Wen-Han Hung, Tzyy-Ming Cheng, Meng-Yi Wu, Tsai-Fu Hsiao, Shu-Yen Chan
  • Patent number: 7410875
    Abstract: A method for fabricating a semiconductor structure is described. A substrate is provided, having thereon a gate structure and a spacer on the sidewall of the gate structure and having therein an S/D extension region beside the gate structure. An opening is formed in the substrate beside the spacer, and then an S/D region is formed in or on the substrate at the bottom of the opening. A metal silicide layer is formed on the S/D region and the gate structure, and then a stress layer is formed over the substrate.
    Type: Grant
    Filed: April 6, 2006
    Date of Patent: August 12, 2008
    Assignee: United Microelectronics Corp.
    Inventors: Shyh-Fann Ting, Cheng-Tung Huang, Wen-Han Hung, Li-Shian Jeng, Tzyy-Ming Cheng
  • Publication number: 20080188091
    Abstract: A method for forming a semiconductor device is provided. The method comprises steps of providing a substrate having a first-conductive-type transistor and a second-conductive-type transistor formed thereon and then forming a stress layer over the substrate to conformally cover the first-conductive-type transistor and the second-conductive-type transistor. A cap layer is formed on the stress layer over the first-conductive-type transistor. A modification process is performed. The cap layer is removed.
    Type: Application
    Filed: March 6, 2008
    Publication date: August 7, 2008
    Inventors: SHAO-TA HSU, Teng-Chun Tsai, Neng-Kuo Chen, Hsiu-Lien Liao, Cheng-Han Wu, Wen-Han Hung
  • Publication number: 20080185655
    Abstract: A method for forming a semiconductor device is provided. The method comprises steps of providing a substrate having a first-conductive-type transistor and a second-conductive-type transistor formed thereon and then forming a stress layer over the substrate to conformally cover the first-conductive-type transistor and the second-conductive-type transistor. A cap layer is formed on the stress layer over the first-conductive-type transistor. A modification process is performed. The cap layer is removed.
    Type: Application
    Filed: February 2, 2007
    Publication date: August 7, 2008
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Shao-Ta Hsu, Teng-Chun Tsai, Neng-Kuo Chen, Hsiu-Lien Liao, Cheng-Han Wu, Wen-Han Hung
  • Publication number: 20080179684
    Abstract: The present invention relates to a method of fabricating strained silicon channel complementary metal oxide semiconductor (CMOS) transistor by using an etching process and a planarization process such as a chemical mechanical polishing (CMP) process, and a structure thereof. The present invention is able to resolve the problem of overlap region between the stressed layers. The present invention is also able to improve the process yield and reduce the fabrication cost.
    Type: Application
    Filed: January 29, 2007
    Publication date: July 31, 2008
    Inventors: Chia-Wen Liang, Wen-Han Hung, Cheng-Tung Huang, Kun-Hsien Lee, Shyh-Fann Ting, Li-Shian Jeng, Tzyy-Ming Cheng
  • Publication number: 20080170431
    Abstract: An embodiment of a method for driving a phase change memory, comprising counting an access number of a phase change memory, wherein the access number is the number of times that the phase change memory has been accessed; refreshing the phase change memory when the number of times is large than a predetermined number.
    Type: Application
    Filed: November 21, 2007
    Publication date: July 17, 2008
    Applicants: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE, POWERCHIP SEMICONDUCTOR CORP., NANYA TECHNOLOGY CORPORATION, PROMOS TECHNOLOGIES INC., WINBOND ELECTRONICS CORP
    Inventors: Shyh-Shyuan Sheu, Lieh-Chiu Lin, Pei-Chia Chiang, Wen-Han Wang
  • Publication number: 20080166840
    Abstract: The invention is directed to a method for manufacturing a semiconductor. The method comprises steps of providing a substrate having a gate structure formed thereon and forming a source/drain extension region in the substrate adjacent to the gate structure. A spacer is formed on the sidewall of the gate structure and a source/drain region is formed in the substrate adjacent to the spacer but away from the gate structure. A bevel carbon implantation process is performed to implant a plurality carbon atoms into the substrate and a metal silicide layer is formed on the gate structure and the source/drain region.
    Type: Application
    Filed: January 8, 2007
    Publication date: July 10, 2008
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: SHYH-FANN TING, CHENG-TUNG HUANG, LI-SHIAN JENG, KUN-HSIEN LEE, WEN-HAN HUNG, TZYY-MING CHENG
  • Publication number: 20080142902
    Abstract: A metal-oxide-semiconductor (MOS) transistor device is disclosed. The MOS transistor device comprises a semiconductor substrate; a gate structure on the semiconductor substrate; source/drain regions on the semiconductor substrate adjacent to the gate structure; an ultra-high tensile-stressed nitride film having a hydrogen concentration of less than 1E22 atoms/cm3 covering the gate structure and the source/drain regions; and an inter-layer dielectric (ILD) film over the ultra-high tensile-stressed nitride film.
    Type: Application
    Filed: January 14, 2008
    Publication date: June 19, 2008
    Inventors: Neng-Kuo Chen, Teng-Chun Tsai, Chien-Chung Huang, Tsai-Fu Chen, Wen-Han Hung
  • Publication number: 20080128831
    Abstract: A metal-oxide-semiconductor (MOS) transistor comprising a conductive type MOS transistor, a first etching stop layer, a stress layer and a second etching stop layer is provided. The conductive MOS transistor is disposed on a substrate. The first etching stop layer is covered conformably the conductive type MOS transistor. Furthermore, the stress layer is disposed on the first etching stop layer. The second etching stop layer is disposed on the stress layer.
    Type: Application
    Filed: October 31, 2007
    Publication date: June 5, 2008
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Pei-Yu Chou, Min-Chieh Yang, Wen-Han Hung
  • Publication number: 20080099801
    Abstract: A method of manufacturing a MOS transistor device. First, a semiconductor substrate having a gate structure is prepared. The gate structure has two sidewalls and a liner on the sidewalls. Subsequently, a stressed cap layer is formed on the semiconductor substrate, and covers the gate structure and the liner. Next, an activating process is performed. Furthermore, the stressed cap layer is etched to be a salicide block. Afterward, a salicide process is performed to form a silicide layer on the regions that are not covered by the stressed cap layer.
    Type: Application
    Filed: October 25, 2006
    Publication date: May 1, 2008
    Inventors: Kun-Hsien Lee, Cheng-Tung Huang, Wen-Han Hung, Shyh-Fann Ting, Li-Shian Jeng, Tzyy-Ming Cheng, Neng-Kuo Chen, Shao-Ta Hsu, Teng-Chun Tsai, Chien-Chung Huang
  • Publication number: 20080102588
    Abstract: A method for forming a MOS transistor includes providing a substrate having at least a gate structure formed thereon, performing a pre-amorphization (PAI) process to form amorphized regions in the substrate, sequentially performing a co-implantation process, a first ion implantation process, and a first rapid thermal annealing (RTA) process to form lightly doped drains (LDDs), forming spacers on sidewalls of the gate structure, and forming a source/drain.
    Type: Application
    Filed: October 25, 2006
    Publication date: May 1, 2008
    Inventors: Kun-Hsien Lee, Cheng-Tung Huang, Shyh-Fann Ting, Wen-Han Hung, Li-Shian Jeng, Tzyy-Ming Cheng
  • Publication number: 20080093627
    Abstract: A method of manufacturing a metal-oxide-semiconductor (MOS) transistor device is disclosed. A gate dielectric layer is formed on an active area of a substrate. A gate electrode is patterned on the gate dielectric layer. The gate electrode has vertical sidewalls and a top surface. A liner is formed on the vertical sidewalls of the gate electrode. A nitride spacer is formed on the liner. An ion implanted is performed to form a source/drain region. After salicide process, an STI region that isolates the active area is recessed, thereby forming a step height at interface between the active area and the STI region. The nitride spacer is removed. A nitride cap layer that borders the liner is deposited. The nitride cap layer has a specific stress status.
    Type: Application
    Filed: October 29, 2007
    Publication date: April 24, 2008
    Inventors: Shyh-Fann Ting, Cheng-Tung Huang, Wen-Han Hung, Tzyy-Ming Cheng, Tzer-Min Shen, Yi-Chung Sheng
  • Publication number: 20080096343
    Abstract: A method of forming a metal-oxide-semiconductor (MOS) device is provided. The method includes the following steps. First, a conductive type MOS transistor is formed on a substrate. Then, a first etching stop layer is formed over the substrate to cover conformably the conductive type MOS transistor. Thereafter, a stress layer is formed over the first etching stop layer. Then, a second etching stop layer is formed over the stress layer.
    Type: Application
    Filed: October 25, 2007
    Publication date: April 24, 2008
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Pei-Yu Chou, Min-Chieh Yang, Wen-Han Hung
  • Patent number: 7356362
    Abstract: A headset having a built-in audio source and cable management mechanism is disclosed herein. The headset is composed of two loop-style earpieces and a cable connecting the two earpieces. One earpiece has a built-in audio source such as a MP3 player, an AM/FM receiver, and the like. The cable is for delivering audio signal from the audio source built in one earpiece to the other. The other earpiece has a built-in cable winder so that the cable could be pulled and fixed to a desired length. When the headset is not in use, a slight pull and release of the cable would allow the cable winder to retract the cable back into the earpiece.
    Type: Grant
    Filed: June 9, 2005
    Date of Patent: April 8, 2008
    Inventors: Wen-Han Chang, Chin-Ming Lu
  • Patent number: 7342284
    Abstract: A method of manufacturing a metal-oxide-semiconductor (MOS) transistor device is disclosed. A gate dielectric layer is formed on an active area of a substrate. A gate electrode is patterned on the gate dielectric layer. The gate electrode has vertical sidewalls and a top surface. A liner is formed on the vertical sidewalls of the gate electrode. A nitride spacer is formed on the liner. An ion implanted is performed to form a source/drain region. After salicide process, an STI region that isolates the active area is recessed, thereby forming a step height at interface between the active area and the STI region. The nitride spacer is removed. A nitride cap layer that borders the liner is deposited. The nitride cap layer has a specific stress status.
    Type: Grant
    Filed: February 16, 2006
    Date of Patent: March 11, 2008
    Assignee: United Microelectronics Corp.
    Inventors: Shyh-Fann Ting, Cheng-Tung Huang, Wen-Han Hung, Tzyy-Ming Cheng, Tzer-Min Shen, Yi-Chung Sheng