Patents by Inventor Yin Chen

Yin Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11527636
    Abstract: A method for forming a semiconductor device structure is provided. The method includes forming a first fin structure over a substrate. The method includes forming a dielectric layer over the substrate and the first fin structure. The dielectric layer has a first trench exposing a first portion of the first fin structure. The method includes forming a first work function layer in the first trench. The method includes forming a first mask layer over the first work function layer in the first trench, wherein an upper portion of the first work function layer in the first trench is exposed by the first mask layer. The method includes removing the first work function layer exposed by the first mask layer. The method includes removing the first mask layer. The method includes forming a first gate electrode in the first trench.
    Type: Grant
    Filed: August 31, 2020
    Date of Patent: December 13, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Wen-Han Fang, Chang-Yin Chen, Ming-Chia Tai, Po-Chi Wu
  • Patent number: 11522084
    Abstract: A FinFET structure with a gate structure having two notch features therein and a method of forming the same is disclosed. The FinFET notch features ensure that sufficient spacing is provided between the gate structure and source/drain regions of the FinFET to avoid inadvertent shorting of the gate structure to the source/drain regions. Gate structures of different sizes (e.g., different gate widths) and of different pattern densities can be provided on a same substrate and avoid inadvertent of shorting the gate to the source/drain regions through application of the notched features.
    Type: Grant
    Filed: October 19, 2020
    Date of Patent: December 6, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chang-Yin Chen, Che-Cheng Chang, Chih-Han Lin, Horng-Huei Tseng
  • Publication number: 20220384606
    Abstract: A semiconductor device and a method of forming the same are provided. The method includes forming a sacrificial gate structure over an active region. A first spacer layer is formed along sidewalls and a top surface of the sacrificial gate structure. A first protection layer is formed over the first spacer layer. A second spacer layer is formed over the first protection layer. A third spacer layer is formed over the second spacer layer. The sacrificial gate structure is replaced with a replacement gate structure. The second spacer layer is removed to form an air gap between the first protection layer and the third spacer layer.
    Type: Application
    Filed: August 9, 2022
    Publication date: December 1, 2022
    Inventors: Wei-Ting Chien, Liang-Yin Chen, Yi-Hsiu Liu, Tsung-Lin Lee, Huicheng Chang
  • Patent number: 11515206
    Abstract: A semiconductor structure is provided. The semiconductor structure includes a gate structure over a fin structure. The semiconductor structure also includes a source/drain structure in the fin structure and adjacent to the gate structure. The semiconductor structure also includes a first contact plug over the source/drain structure. The semiconductor structure also includes a first via plug over the first contact plug. The semiconductor structure also includes a dielectric layer surrounding the first via plug. The first via plug includes a first group IV element and the dielectric layer includes the first group IV element and a second group IV element.
    Type: Grant
    Filed: August 31, 2020
    Date of Patent: November 29, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tung-Po Hsieh, Su-Hao Liu, Hong-Chih Liu, Jing-Huei Huang, Jie-Huang Huang, Lun-Kuang Tan, Huicheng Chang, Liang-Yin Chen, Kuo-Ju Chen
  • Publication number: 20220376089
    Abstract: In an embodiment, a device includes: a fin on a substrate, fin having a Si portion proximate the substrate and a SiGe portion distal the substrate; a gate stack over a channel region of the fin; a source/drain region adjacent the gate stack; a first doped region in the SiGe portion of the fin, the first doped region disposed between the channel region and the source/drain region, the first doped region having a uniform concentration of a dopant; and a second doped region in the SiGe portion of the fin, the second doped region disposed under the source/drain region, the second doped region having a graded concentration of the dopant decreasing in a direction extending from a top of the fin to a bottom of the fin.
    Type: Application
    Filed: July 28, 2022
    Publication date: November 24, 2022
    Inventors: Chia-Ling Chan, Liang-Yin Chen, Wei-Ting Chien
  • Patent number: 11508831
    Abstract: A semiconductor device and a method of forming the same are provided. The method includes forming a sacrificial gate structure over an active region. A first spacer layer is formed along sidewalls and a top surface of the sacrificial gate structure. A first protection layer is formed over the first spacer layer. A second spacer layer is formed over the first protection layer. A third spacer layer is formed over the second spacer layer. The sacrificial gate structure is replaced with a replacement gate structure. The second spacer layer is removed to form an air gap between the first protection layer and the third spacer layer.
    Type: Grant
    Filed: December 14, 2020
    Date of Patent: November 22, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Wei-Ting Chien, Liang-Yin Chen, Yi-Hsiu Liu, Tsung-Lin Lee, Huicheng Chang
  • Publication number: 20220367686
    Abstract: A semiconductor device and a method of forming the same are provided. The method includes forming a semiconductor fin extending from a substrate. A dummy gate stack is formed over the semiconductor fin. The dummy gate stack extends along sidewalls and a top surface of the semiconductor fin. The semiconductor fin is patterned to form a recess in the semiconductor fin. A semiconductor material is deposited in the recess. An implantation process is performed on the semiconductor material. The implantation process includes implanting first implants into the semiconductor material and implanting second implants into the semiconductor material. The first implants have a first implantation energy. The second implants have a second implantation energy different from the first implantation energy.
    Type: Application
    Filed: November 18, 2021
    Publication date: November 17, 2022
    Inventors: Yu-Chang Lin, Liang-Yin Chen, Chun-Feng Nieh, Huicheng Chang, Yee-Chia Yeo
  • Publication number: 20220366161
    Abstract: A device detecting system is provided. The device detecting system includes a bar code scanner, a plurality of device accommodating spaces, a screen, and a server. The server obtains bar code information via the bar code scanner and opens one of the device accommodating spaces based on the bar code information to accommodate an electronic device. The server performs a test procedure on the electronic device to generate a test result, and displays the test result and operation information corresponding to the test result on the screen.
    Type: Application
    Filed: May 5, 2022
    Publication date: November 17, 2022
    Inventors: Chien-Chih CHANG, Pei-Yin CHEN, Wei-Han LIN, Bo-Rong CHU, Yen-Ting LIU, Yu-Shen MAI, Kuan-Yu HSIAO, Chia-Hsien LIN, Pei-Yu LIAO, Chun-Yen LAI, Sheng-Yi CHEN
  • Publication number: 20220367254
    Abstract: Semiconductor devices and methods of manufacture are described herein. A method includes forming an opening through an interlayer dielectric (ILD) layer to expose a contact etch stop layer (CESL) disposed over a conductive feature in a metallization layer. The opening is formed using photo sensitive materials, lithographic techniques, and a dry etch process that stops on the CESL. Once the CESL is exposed, a CESL breakthrough process is performed to extend the opening through the CESL and expose the conductive feature. The CESL breakthrough process is a flexible process with a high selectivity of the CESL to ILD layer. Once the CESL breakthrough process has been performed, a conductive fill material may be deposited to fill or overfill the opening and is then planarized with the ILD layer to form a contact plug over the conductive feature in an intermediate step of forming a semiconductor device.
    Type: Application
    Filed: July 22, 2022
    Publication date: November 17, 2022
    Inventors: Yu-Shih Wang, Po-Nan Yeh, U-Ting Chiu, Chun-Neng Lin, Chia-Cheng Chen, Liang-Yin Chen, Ming-Hsi Yeh, Kuo-Bin Huang
  • Publication number: 20220367632
    Abstract: The present disclosure relates generally to doping for conductive features in a semiconductor device. In an example, a structure includes an active region of a transistor. The active region includes a source/drain region, and the source/drain region is defined at least in part by a first dopant having a first dopant concentration. The source/drain region further includes a second dopant with a concentration profile having a consistent concentration from a surface of the source/drain region into a depth of the source/drain region. The consistent concentration is greater than the first dopant concentration. The structure further includes a conductive feature contacting the source/drain region at the surface of the source/drain region.
    Type: Application
    Filed: July 25, 2022
    Publication date: November 17, 2022
    Inventors: Su-Hao Liu, Huicheng Chang, Chia-Cheng Chen, Liang-Yin Chen, Kuo-Ju Chen, Chun-Hung Wu, Chang-Miao Liu, Huai-Tei Yang, Lun-Kuang Tan, Wei-Ming You
  • Patent number: 11502000
    Abstract: A method includes forming a metallic feature, forming an etch stop layer over the metallic feature, implanting the metallic feature with a dopant, forming a dielectric layer over the etch stop layer, performing a first etching process to etch the dielectric layer and the etch stop layer to form a first opening, performing a second etching process to etch the metallic feature and to form a second opening in the metallic feature, wherein the second opening is joined with the first opening, and filling the first opening and the second opening with a metallic material to form a contact plug.
    Type: Grant
    Filed: August 24, 2020
    Date of Patent: November 15, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Meng-Han Chou, Su-Hao Liu, Kuo-Ju Chen, Liang-Yin Chen, Huicheng Chang, Yee-Chia Yeo
  • Publication number: 20220359277
    Abstract: The present disclosure describes a method for the planarization of ruthenium metal layers in conductive structures. The method includes forming a first conductive structure on a second conductive structure, where forming the first conductive structure includes forming openings in a dielectric layer disposed on the second conductive structure and depositing a ruthenium metal in the openings to overfill the openings. The formation of the first conductive structure includes doping the ruthenium metal and polishing the doped ruthenium metal to form the first conductive structure.
    Type: Application
    Filed: July 27, 2022
    Publication date: November 10, 2022
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chia-Cheng Chen, Huicheng Chang, Fu-Ming Huang, Kei-Wei Chen, Liang-Yin Chen, Tang-Kuei Chang, Yee-Chia Yeo, Wei-Wei Liang, Ji Cui
  • Publication number: 20220359286
    Abstract: A method includes forming a metallic feature, forming an etch stop layer over the metallic feature, implanting the metallic feature with a dopant, forming a dielectric layer over the etch stop layer, performing a first etching process to etch the dielectric layer and the etch stop layer to form a first opening, performing a second etching process to etch the metallic feature and to form a second opening in the metallic feature, wherein the second opening is joined with the first opening, and filling the first opening and the second opening with a metallic material to form a contact plug.
    Type: Application
    Filed: July 26, 2022
    Publication date: November 10, 2022
    Inventors: Meng-Han Chou, Su-Hao Liu, Kuo-Ju Chen, Liang-Yin Chen, Huicheng Chang, Yee-Chia Yeo
  • Publication number: 20220359755
    Abstract: A device includes a fin extending from a semiconductor substrate; a gate stack over the fin; a first spacer on a sidewall of the gate stack; a source/drain region in the fin adjacent the first spacer; an inter-layer dielectric layer (ILD) extending over the gate stack, the first spacer, and the source/drain region, the ILD having a first portion and a second portion, wherein the second portion of the ILD is closer to the gate stack than the first portion of the ILD; a contact plug extending through the ILD and contacting the source/drain region; a second spacer on a sidewall of the contact plug; and an air gap between the first spacer and the second spacer, wherein the first portion of the ILD extends across the air gap and physically contacts the second spacer, wherein the first portion of the ILD seals the air gap.
    Type: Application
    Filed: July 20, 2022
    Publication date: November 10, 2022
    Inventors: Su-Hao Liu, Kuo-Ju Chen, Kai-Hsuan Lee, I-Hsieh Wong, Cheng-Yu Yang, Liang-Yin Chen, Huicheng Chang, Yee-Chia Yeo, Syun-Ming Jiang, Meng-Han Chou
  • Patent number: 11495674
    Abstract: A method of forming source/drain features in a FinFET device includes providing a fin formed over a substrate and a gate structure formed over a fin, forming a recess in the fin adjacent to the gate structure, forming a first epitaxial layer in the recess, forming a second epitaxial layer over the first epitaxial layer, and forming a third epitaxial layer over the second epitaxial layer. The second epitaxial layer may be doped with a first element, while one or both of the first and the third epitaxial layer includes a second element different from the first element. One or both of the first and the third epitaxial layer may be formed by a plasma deposition process.
    Type: Grant
    Filed: December 23, 2019
    Date of Patent: November 8, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chia-Ling Chan, Derek Chen, Liang-Yin Chen, Chien-I Kuo
  • Patent number: 11494260
    Abstract: A memory with an error correction function includes a controller and a memory cell array. The controller optionally writes written data to a normal storage area and a backup area of the memory cell array, and when the controller reads first data corresponding to the written data from the normal storage area, if at least two errors are included in the first data, the controller reads the backup area to output second data corresponding to the written data from the backup area.
    Type: Grant
    Filed: December 18, 2018
    Date of Patent: November 8, 2022
    Assignee: Etron Technology, Inc.
    Inventors: Ho-Yin Chen, Ting-Feng Chang, Chun-Chia Chen
  • Patent number: 11488907
    Abstract: The present application discloses a semiconductor device and a method for fabricating the semiconductor device. The semiconductor device includes a substrate, a first conductive layer positioned above the substrate, a bottom conductive layer positioned above the first conductive layer and electrically coupled to the first conductive layer, a programmable insulating layer positioned on the bottom conductive layer, a top conductive layer positioned on the programmable insulating layer, and a redistribution structure positioned above the first conductive layer and electrically coupled to the first conductive layer. The bottom conductive layer, the programmable insulating layer, and the top conductive layer together configure a programmable unit.
    Type: Grant
    Filed: November 30, 2020
    Date of Patent: November 1, 2022
    Assignee: NANYA TECHNOLOGY CORPORATION
    Inventor: Te-Yin Chen
  • Patent number: 11488857
    Abstract: Semiconductor devices and methods of manufacture are described herein. A method includes forming an opening through an interlayer dielectric (ILD) layer to expose a contact etch stop layer (CESL) disposed over a conductive feature in a metallization layer. The opening is formed using photo sensitive materials, lithographic techniques, and a dry etch process that stops on the CESL. Once the CESL is exposed, a CESL breakthrough process is performed to extend the opening through the CESL and expose the conductive feature. The CESL breakthrough process is a flexible process with a high selectivity of the CESL to ILD layer. Once the CESL breakthrough process has been performed, a conductive fill material may be deposited to fill or overfill the opening and is then planarized with the ILD layer to form a contact plug over the conductive feature in an intermediate step of forming a semiconductor device.
    Type: Grant
    Filed: June 19, 2020
    Date of Patent: November 1, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yu-Shih Wang, Po-Nan Yeh, U-Ting Chiu, Chun-Neng Lin, Chia-Cheng Chen, Liang-Yin Chen, Ming-Hsi Yeh, Kuo-Bin Huang
  • Patent number: 11487129
    Abstract: An optical integration device includes a first circuit layer comprising a first surface adjacent a first diffractive layer, the first diffractive layer arranged on a side of the first circuit layer along a first direction, and a first connecting pad electrically connected with the first circuit layer through a first conductive member. The optical integration device includes a side surface extending along the first direction. The side surface defines a first concavity extending through the first diffractive layer along the first direction. The first connecting pad includes a first mounting member connected with the side surface, and a first convex member extending from the first mounting member and received in the first concavity. The first conductive member includes a first conductive part arranged between the side surface and the first mounting member, and a second conductive part arranged between the first surface and the first convex member.
    Type: Grant
    Filed: May 12, 2020
    Date of Patent: November 1, 2022
    Assignee: TRIPLE WIN TECHNOLOGY (SHENZHEN) CO. LTD.
    Inventors: Jia-Liang Wu, Yi-Yin Chen
  • Publication number: 20220344153
    Abstract: A method for forming a semiconductor device is provided. The method for forming a semiconductor device is provided. The method includes coating a photoresist film over a target layer; performing a lithography process to pattern the photoresist film into a photoresist layer; performing a directional ion bombardment process to the photoresist layer, such that a carbon atomic concentration in the photoresist layer is increased; and etching the target layer using the photoresist layer as an etch mask.
    Type: Application
    Filed: August 9, 2021
    Publication date: October 27, 2022
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yu-Tien SHEN, Chih-Kai YANG, Hsiang-Ming CHANG, Chun-Yen CHANG, Ya-Hui CHANG, Wei-Ting CHIEN, Chia-Cheng CHEN, Liang-Yin CHEN