Patents by Inventor Yin Chen

Yin Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11456383
    Abstract: A device includes a fin extending from a semiconductor substrate; a gate stack over the fin; a first spacer on a sidewall of the gate stack; a source/drain region in the fin adjacent the first spacer; an inter-layer dielectric layer (ILD) extending over the gate stack, the first spacer, and the source/drain region, the ILD having a first portion and a second portion, wherein the second portion of the ILD is closer to the gate stack than the first portion of the ILD; a contact plug extending through the ILD and contacting the source/drain region; a second spacer on a sidewall of the contact plug; and an air gap between the first spacer and the second spacer, wherein the first portion of the ILD extends across the air gap and physically contacts the second spacer, wherein the first portion of the ILD seals the air gap.
    Type: Grant
    Filed: May 21, 2020
    Date of Patent: September 27, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Su-Hao Liu, Kuo-Ju Chen, Kai-Hsuan Lee, I-Hsieh Wong, Cheng-Yu Yang, Liang-Yin Chen, Huicheng Chang, Yee-Chia Yeo, Syun-Ming Jang, Meng-Han Chou
  • Patent number: 11446807
    Abstract: A support mechanism includes a fixed body, a rotating unit, a moving unit and a driving unit. The rotating unit is rotationally mounted to the fixed body. The moving unit, disposed at the fixed body, includes a ball screw spline shaft, a ball screw nut and a ball spline nut. The ball screw nut and the ball spline nut are both rotatably disposed at the ball screw spline shaft moved together with the rotating unit. The driving unit, disposed at the fixed body, includes a first driving member and a second driving member to rotate the ball screw nut and the ball spline nut, respectively. With different rotation pairs of the ball screw nut and the ball spline nut to the ball screw spline shaft, the ball screw spline shaft is driven to move, and the ball screw spline shaft is further to move the rotating unit.
    Type: Grant
    Filed: September 24, 2019
    Date of Patent: September 20, 2022
    Assignee: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Bo-Jyun Jhang, Wei-Juh Lin, Wei-Tse Lin, Pei-Yin Chen, Chien-Chih Liao, Chun-Ting Chen
  • Patent number: 11450741
    Abstract: The present disclosure relates generally to doping for conductive features in a semiconductor device. In an example, a structure includes an active region of a transistor. The active region includes a source/drain region, and the source/drain region is defined at least in part by a first dopant having a first dopant concentration. The source/drain region further includes a second dopant with a concentration profile having a consistent concentration from a surface of the source/drain region into a depth of the source/drain region. The consistent concentration is greater than the first dopant concentration. The structure further includes a conductive feature contacting the source/drain region at the surface of the source/drain region.
    Type: Grant
    Filed: March 15, 2021
    Date of Patent: September 20, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Su-Hao Liu, Huicheng Chang, Chia-Cheng Chen, Liang-Yin Chen, Kuo-Ju Chen, Chun-Hung Wu, Chang-Miao Liu, Huai-Tei Yang, Lun-Kuang Tan, Wei-Ming You
  • Patent number: 11450565
    Abstract: The present disclosure describes a method for the planarization of ruthenium metal layers in conductive structures. The method includes forming a first conductive structure on a second conductive structure, where forming the first conductive structure includes forming openings in a dielectric layer disposed on the second conductive structure and depositing a ruthenium metal in the openings to overfill the openings. The formation of the first conductive structure includes doping the ruthenium metal and polishing the doped ruthenium metal to form the first conductive structure.
    Type: Grant
    Filed: August 19, 2020
    Date of Patent: September 20, 2022
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chia-Cheng Chen, Huicheng Chang, Fu-Ming Huang, Kei-Wei Chen, Liang-Yin Chen, Tang-Kuei Chang, Yee-Chia Yeo, Wei-Wei Liang, Ji Cui
  • Publication number: 20220293448
    Abstract: A method of correcting a misalignment of a wafer on a wafer holder and an apparatus for performing the same are disclosed. In an embodiment, a semiconductor alignment apparatus includes a wafer stage; a wafer holder over the wafer stage; a first position detector configured to detect an alignment of a wafer over the wafer holder in a first direction; a second position detector configured to detect an alignment of the wafer over the wafer holder in a second direction; and a rotational detector configured to detect a rotational alignment of the wafer over the wafer holder.
    Type: Application
    Filed: March 12, 2021
    Publication date: September 15, 2022
    Inventors: Chia-Cheng Chen, Chih-Kai Yang, Liang-Yin Chen, Huicheng Chang, Yee-Chia Yeo
  • Publication number: 20220293607
    Abstract: The present application provides a memory device with an air gap. The memory device includes an active region disposed in a substrate; a word line disposed in the substrate, wherein the word line is intersected with the active region; a contact structure disposed on the substrate, wherein the contact structure is located at a side of the word line, and electrically connected to the active region; a first conductive layer and a second conductive layer disposed over the substrate, wherein the contact structure is covered by the first and second conductive layers; a conductive pillar overlapped with and electrically connected to the contact structure; a landing pad covers and electrically connects to the conductive pillar, wherein a sidewall of the conductive pillar is laterally recessed from a sidewall of the landing pad; and a dielectric layer laterally surrounding the conductive pillar and the landing pad.
    Type: Application
    Filed: May 31, 2022
    Publication date: September 15, 2022
    Inventor: TE-YIN CHEN
  • Publication number: 20220281816
    Abstract: The invention is directed towards compounds (e.g., Formulae (I)-(IX)), their mechanism of action, processes to prepare the compounds, methods of activating quorum sensing signaling activity, and methods of treating diseases and disorders using the compounds described herein (e.g., Formulae (I)-(IX)).
    Type: Application
    Filed: July 24, 2020
    Publication date: September 8, 2022
    Applicants: University of Florida Research Foundation, Incorporation, Smithsonian Institution
    Inventors: Hendrik Luesch, Xiao Liang, Susan Matthew, Jason C. Kwan, Qi-Yin Chen, Valerie J. Paul
  • Publication number: 20220276563
    Abstract: Systems and methods for reducing prediction uncertainty in a prediction model associated with a patterning process are described. These may be used in calibrating a process model associated with the patterning process, for example. Reducing the uncertainty in the prediction model may include determining a prediction uncertainty parameter based on prediction data. The prediction data may be determined using the prediction model. The prediction model may have been calibrated with calibration data. The prediction uncertainty parameter may be associated with variation in the prediction data. Reducing the uncertainty in the prediction model may include selecting a subset of process data based on the prediction uncertainty parameter; and recalibrating the prediction model using the calibration data and the selected subset of the process data.
    Type: Application
    Filed: June 15, 2020
    Publication date: September 1, 2022
    Applicant: ASML NETHERLANDS B.V.
    Inventors: Lei WANG, Yi- Yin CHEN, Mu FENG, Qian ZHAO
  • Publication number: 20220273244
    Abstract: A physiological signal recognition apparatus and a physiological signal recognition method are provided. A root mean square algorithm is executed on a physiological signal to obtain a noise threshold, and the physiological signal is adjusted based on the noise threshold to obtain an adjusted signal. Then, a muscle strength starting point in the adjusted signal is detected.
    Type: Application
    Filed: April 6, 2021
    Publication date: September 1, 2022
    Applicant: Industrial Technology Research Institute
    Inventors: Heng-Yin Chen, Yun-Yi Huang, Shuen-Yu Yu
  • Publication number: 20220270928
    Abstract: A method includes providing a substrate having a channel region, forming a gate stack layer over the channel region, forming a patterned hard mask over the gate stack layer, etching a top portion of the gate stack layer through openings in the patterned hard mask with a first etchant, etching a middle portion and a bottom portion of the gate stack layer with a second etchant that includes a passivating gas. A gate stack is formed with a passivation layer deposited on sidewalls of the gate stack. The method also includes etching the gate stack with a third etchant, thereby removing a bottom portion of the passivation layer and recessing a bottom portion of the gate stack.
    Type: Application
    Filed: May 9, 2022
    Publication date: August 25, 2022
    Inventors: Chang-Yin Chen, Che-Cheng Chang, Chih-Han Lin
  • Publication number: 20220257973
    Abstract: The present invention provides a method for manufacturing a neural probe incorporated with an optical waveguide. The method for manufacturing a neural probe incorporated with an optical waveguide comprises the following steps. A mold-filling step, for providing a base with at least one groove formed therein. A disposing step, for disposing and overlaying a substrate having a plurality of electrode parts on the groove of the base. A combining step, for solidifying the photosensitive adhesive by a solidification process, the solidified photosensitive adhesive forming an optical waveguide and being combined with the substrate. A mold-releasing step, for removing the base from the optical waveguide and the substrate, the substrate and the optical waveguide forming a product.
    Type: Application
    Filed: May 4, 2022
    Publication date: August 18, 2022
    Inventors: Hsin-Yi Lai, You-Yin Chen
  • Publication number: 20220246441
    Abstract: A method of forming a semiconductor device includes forming a dummy gate over a substrate, forming dielectric materials over a top surface and sidewalls of the dummy gate, and replacing the dummy gate with a gate structure. The dummy gate has a first width located a first distance away from the substrate, a second width located a second distance away from the substrate, and a third width located a third distance away from the substrate. The second distance is less than the first distance. The second width is less than the first width. The third distance is less than the second distance. The third width is greater than the second width.
    Type: Application
    Filed: April 18, 2022
    Publication date: August 4, 2022
    Inventors: Chang-Yin Chen, Chai-Wei Chang, Bo-Feng Young, Chia-Yang Liao
  • Publication number: 20220230911
    Abstract: A method includes forming a first dielectric layer over a source/drain region, and forming a source/drain contact plug over and electrically connecting to the source/drain region. A top portion of the source/drain contact plug has a first lateral dimension. An implantation process is performed to implant a dopant into the first dielectric layer. The implantation process results in the source/drain contact plug to have a second lateral dimension smaller than the first lateral dimension. The method further includes forming a second dielectric layer over the etch stop layer, and forming a gate contact plug adjacent to the source/drain contact plug.
    Type: Application
    Filed: January 15, 2021
    Publication date: July 21, 2022
    Inventors: Kuo-Ju Chen, Su-Hao Liu, Liang-Yin Chen, Huicheng Chang, Yee-Chia Yeo, Meng-Han Chou
  • Patent number: 11393695
    Abstract: A method of exposing a wafer to a high-tilt angle ion beam and an apparatus for performing the same are disclosed. In an embodiment, a method includes forming a patterned mask layer over a wafer, the patterned mask layer including a patterned mask feature; exposing the wafer to an ion beam, a surface of the wafer being tilted at a tilt angle with respect to the ion beam; and moving the wafer along a scan line with respect to the ion beam, a scan angle being defined between the scan line and an axis perpendicular to an axis of the ion beam, a difference between the tilt angle and the scan angle being less than 50°.
    Type: Grant
    Filed: March 18, 2021
    Date of Patent: July 19, 2022
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chia-Cheng Chen, Wei-Ting Chien, Liang-Yin Chen, Huicheng Chang, Yee-Chia Yeo
  • Publication number: 20220216147
    Abstract: A semiconductor device and a method of forming the same are provided. The semiconductor device includes a substrate, a gate structure, a dielectric structure and a contact structure. The substrate has source/drain (S/D) regions. The gate structure is on the substrate and between the S/D regions. The dielectric structure covers the gate structure. The contact structure penetrates through the dielectric structure to connect to the S/D region. A lower portion of a sidewall of the contact structure is spaced apart from the dielectric structure by an air gap therebetween, while an upper portion of the sidewall of the contact structure is in contact with the dielectric structure.
    Type: Application
    Filed: March 23, 2022
    Publication date: July 7, 2022
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Pei-Yu Chou, Jr-Hung Li, Liang-Yin Chen, Su-Hao Liu, Tze-Liang Lee, Meng-Han Chou, Kuo-Ju Chen, Huicheng Chang, Tsai-Jung Ho, Tzu-Yang Ho
  • Publication number: 20220215207
    Abstract: A training method for video stabilization and an image processing device using the same are proposed. The method includes the following steps. An input video including low dynamic range (LDR) images is received. The LDR images are converted to high dynamic range (HDR) images by using a first neural network. A feature extraction process is performed to obtain features based on the LDR images and the HDR images. A second neural network for video stabilization is trained according to the LDR images and the HDR images based on a loss function by minimizing a loss value of the loss function to generate stabilized HDR images in a time-dependent manner, where the loss value of the loss function depends upon the features. An HDR classifier is constructed according to the LDR images and the HDR images. The stabilized HDR images are classified by using the HDR classifier to generate a reward value, where the loss value of the loss function further depends upon the reward value.
    Type: Application
    Filed: March 23, 2022
    Publication date: July 7, 2022
    Applicant: Novatek Microelectronics Corp.
    Inventors: Jen-Huan Hu, Wei-Ting Chen, Yu-Che Hsiao, Shih-Hsiang Lin, Po-Chin Hu, Yu-Tsung Hu, Pei-Yin Chen
  • Patent number: 11380782
    Abstract: The present disclosure describes a semiconductor structure and a method for forming the same. The semiconductor structure can include a substrate, a first fin structure with a first height and a first width formed over the substrate, a second fin structure with a second height and a second width formed over the substrate, and an insulating stack formed over lower portions of the first and second fin structures. The second height can be substantially equal to the first height and the second width can be greater than the first width. A top surface of the insulating stack can be below top surfaces of the first and second fin structures.
    Type: Grant
    Filed: August 18, 2020
    Date of Patent: July 5, 2022
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Su-Hao Liu, Huicheng Chang, Chien-Tai Chan, Liang-Yin Chen, Yee-Chia Yeo, Szu-Ying Chen
  • Patent number: 11380590
    Abstract: Embodiments of mechanisms for forming a semiconductor device are provided. The semiconductor device includes a substrate. The semiconductor device also includes a first fin and a second fin over the substrate. The semiconductor device further includes a first gate electrode and a second gate electrode traversing over the first fin and the second fin, respectively. In addition, the semiconductor device includes a gate dielectric layer between the first fin and the first gate electrode and between the second fin and the second gate electrode. Further, the semiconductor device includes a dummy gate electrode over the substrate, and the dummy gate electrode is between the first gate electrode and the second gate electrode. An upper portion of the dummy gate electrode is wider than a lower portion of the dummy gate electrode.
    Type: Grant
    Filed: June 1, 2020
    Date of Patent: July 5, 2022
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Che-Cheng Chang, Chang-Yin Chen, Jr-Jung Lin, Chih-Han Lin, Yung-Jung Chang
  • Publication number: 20220204804
    Abstract: The present disclosure provides an anti-fogging material and a manufacturing method thereof. The anti-fogging material includes a crosslinked polymer obtained by curing an anti-fogging composition, wherein the anti-fogging composition includes an ionic compound, a hard compound with two or more acrylate functional groups at the terminus thereof, and a surface active compound.
    Type: Application
    Filed: December 31, 2020
    Publication date: June 30, 2022
    Inventors: Li-Ching Wang, Yuan-Yin Chen
  • Publication number: 20220205142
    Abstract: A polymer includes a repeating unit M and a repeating unit D, the repeating unit M is —COC6H6CONHCH2CH2O—, the repeating unit D is —COC6H6COOCH2CH2O—, and a molar ratio of the repeating unit M to the repeating unit D is 1:6 to 1:999.
    Type: Application
    Filed: August 19, 2021
    Publication date: June 30, 2022
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Che-Tseng LIN, Zu-Chiang GU, Jen-Chun CHIU, Pei-Yin CHEN