Patents by Inventor Yu Min Lin

Yu Min Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10490478
    Abstract: A chip packaging includes a substrate, a first chip, a molding material, a first circuit, and a second circuit. The substrate includes a bottom surface, a first top surface disposed above the bottom surface with a first height, and a second top surface disposed above the bottom surface with a second height. The first height is smaller than the second height. The first chip is disposed on the first top surface. The molding material is disposed on the substrate and covers the first chip. The first and second circuits are disposed on the molding material, and are respectively and electrically connected to the first chip and the second top surface of the substrate. The substrate is made of copper material with huge area and has the properties of high current withstand capacity and high thermal efficiency. The second top surface protects the first chip from damage.
    Type: Grant
    Filed: July 12, 2017
    Date of Patent: November 26, 2019
    Assignee: Industrial Technology Research Institute
    Inventors: Yu-Min Lin, Kuo-Shu Kao, Jing-Yao Chang, Tao-Chih Chang
  • Publication number: 20190252345
    Abstract: A package structure and a method for connecting components are provided, in which the package includes a first substrate including a first wiring and at least one first contact connecting to the first wiring; a second substrate including a second wiring and at least one second contact connecting to the second wiring, the at least one first contact and the at least one second contact partially physically contacting with each other or partially chemically interface reactive contacting with each other; and at least one third contact surrounding the at least one first contact and the at least one second contact. The first substrate and the second substrate are electrically connected with each other at least through the at least one first contact and the at least one second contact.
    Type: Application
    Filed: February 1, 2019
    Publication date: August 15, 2019
    Applicant: Industrial Technology Research Institute
    Inventors: Yu-Min Lin, Tao-Chih Chang, Wei-Chung Lo
  • Publication number: 20190237373
    Abstract: A chip package module includes an encapsulation layer, a chip, a substrate and a plurality of blind-hole electrodes. The encapsulation layer includes a first surface and a second surface opposite to the first surface. The chip includes a third surface and a fourth surface opposite to the third surface. A metal bump is fabricated on the third surface of the chip. The chip is embedded into the encapsulation layer from the first surface of the encapsulation layer. The metal bump is exposed from the first surface of the encapsulation layer. The substrate includes a metal layer, wherein the metal layer of the substrate is bonded to the chip through the metal bump. The plurality of blind-hole electrodes pass through the second surface of the encapsulation layer and are electrically connected to the metal layer of the substrate.
    Type: Application
    Filed: April 17, 2018
    Publication date: August 1, 2019
    Inventors: Shin-Yi HUANG, Yu-Min LIN, Tao-Chih CHANG
  • Publication number: 20190206916
    Abstract: A chip scale package structure is provided. The chip scale package structure includes an image sensor chip and a chip. The image sensor chip includes a first redistribution layer including a conductive wire and a conductive pad formed on the conductive wire, wherein the conductive pad is exposed from the surface of the first redistribution layer. The chip includes a second redistribution layer including a conductive wire and a conductive pad formed on the conductive wire, wherein the conductive pad is exposed from the surface of the second redistribution layer. The area of the chip is smaller than that of the image sensor chip. The second redistribution layer of the chip bonds to the first redistribution layer of the image sensor chip.
    Type: Application
    Filed: November 19, 2018
    Publication date: July 4, 2019
    Inventors: Yu-Min LIN, Tao-Chih CHANG
  • Patent number: 10312406
    Abstract: Provided is a method of forming gigantic quantum dots including following steps. A first precursor by mixing zinc acetate (Zn(ac)2), cadmium oxide (CdO), a surfactant, and a solvent together and then performing a first heat treatment is provided. The first precursor includes Zn-complex having the surfactant and Cd-complex having the surfactant. A second precursor containing elements S and Se and trioctylphosphine (TOP) is added into the first precursor to form a reaction mixture. A second heat treatment is performed on the reaction mixture and then cooling the reaction mixture to form the gigantic quantum dots in the reaction mixture.
    Type: Grant
    Filed: February 2, 2018
    Date of Patent: June 4, 2019
    Assignee: Unique Materials Co., Ltd.
    Inventors: Pi-Tai Chou, Shang-Wei Chou, Yu-Min Lin, Chin-Cheng Chiang, Chia-Chun Hsieh
  • Patent number: 10288255
    Abstract: A lens array is disposed on a substrate and includes a plurality of converging lenses. The converging lenses are configured to project light beams and are arranged along a first direction. Two of the light beams respectively converged by adjacent two of the converging lenses at least partially overlap with each other by geometry of the adjacent two converging lenses, a distance between the adjacent two converging lenses, or a combination thereof.
    Type: Grant
    Filed: November 22, 2017
    Date of Patent: May 14, 2019
    Assignee: LEXTAR ELECTRONICS CORPORATION
    Inventors: Tsung-Huan Tsai, Yu-Min Lin
  • Patent number: 10281101
    Abstract: A vehicle lamp includes a condenser lens with a focal plane and an optical axis, a heat-dissipation base disposed at a side of the condenser lens such that the focal plane is disposed between the condenser lens and the heat-dissipation base, a first light source disposed on the heat-dissipation base with a first light-emitting surface facing the focal plane, a reflector disposed on the heat-dissipation base and having a plurality of ellipsoidal surfaces with at least one of the two focal points of each of the ellipsoidal surfaces located on the focal plane, and a second light source disposed on the heat-dissipation base with a substrate and second light-emitting surfaces disposed on the substrate facing the reflector.
    Type: Grant
    Filed: December 28, 2015
    Date of Patent: May 7, 2019
    Assignee: LEXTAR ELECTRONICS CORPORATION
    Inventors: Shih-Kai Lin, Yu-Min Lin
  • Patent number: 10146001
    Abstract: A lighting system including a LED light source, a convex lens, and a light guide post disposed between the LED light source and the convex lens. The light guide post includes a light emitting portion and a light collecting portion connected to the light emitting portion. The light emitting portion has a light guide post-light emitting surface facing the convex lens. The light collecting portion has an internal reflective surface including at least an elliptical surface having a first focal point and a second focal point. The second focal point is located between the first focal point and the convex lens, and the second focal point is located inside the light guide post.
    Type: Grant
    Filed: April 27, 2017
    Date of Patent: December 4, 2018
    Assignee: LEXTAR ELECTRONICS CORPORATION
    Inventors: Yu-Min Lin, Tsung-Huan Tsai, Mong-Ea Lin
  • Publication number: 20180342645
    Abstract: Provided is a method of forming gigantic quantum dots including following steps. A first precursor by mixing zinc acetate (Zn(ac)2), cadmium oxide (CdO), a surfactant, and a solvent together and then performing a first heat treatment is provided. The first precursor includes Zn-complex having the surfactant and Cd-complex having the surfactant. A second precursor containing elements S and Se and trioctylphosphine (TOP) is added into the first precursor to form a reaction mixture. A second heat treatment is performed on the reaction mixture and then cooling the reaction mixture to form the gigantic quantum dots in the reaction mixture.
    Type: Application
    Filed: February 2, 2018
    Publication date: November 29, 2018
    Applicant: Unique Materials Co., Ltd.
    Inventors: Pi-Tai Chou, Shang-Wei Chou, Yu-Min Lin, Chin-Cheng Chiang, Chia-Chun Hsieh
  • Patent number: 10119766
    Abstract: A heat dissipation device includes a housing and a heat pipe. The heat pipe has an open end, which is inserted into an opening on a top side of the housing, such that a heat pipe chamber of the heat pipe is communicated with a housing chamber of the housing and an extended portion extended from the open end of the heat pipe is pressed against a bottom side of the housing, as well as a heat pipe wick structure of the heat pipe is connected to a housing wick structure of the housing, so as to increase heat transfer effect.
    Type: Grant
    Filed: December 1, 2015
    Date of Patent: November 6, 2018
    Assignee: Asia Vital Components Co., Ltd.
    Inventors: Yu-Min Lin, Wen-Ji Lan
  • Patent number: 10096743
    Abstract: Provided are Gigantic quantum dots and a method of forming gigantic quantum dots. Each of the gigantic quantum dots includes a core constituted of CdSe, a shell constituted of ZnS, and an alloy configured between the core and the shell. The core is wrapped by the shell. The alloy constituted of Cd, Se, Zn and S, wherein a content of the Cd and Se gradually decreases from the core to the shell and a content of the Zn and S gradually increases from the core to the shell. A particle size of each of the gigantic quantum dots is equal to or more than 10 nm.
    Type: Grant
    Filed: May 26, 2017
    Date of Patent: October 9, 2018
    Assignee: Unique Materials Co., Ltd.
    Inventors: Pi-Tai Chou, Shang-Wei Chou, Yu-Min Lin, Chin-Cheng Chiang, Chia-Chun Hsieh
  • Patent number: 10049083
    Abstract: A measurement matrix generating system based on scrambling and a method thereof are disclosed. A plurality of independent identically distributed (i.i.d) elements is pre-stored in a circulant matrix register array, selections are made among the elements so as to perform an algebraic operation on the selected elements, and a measurement matrix with high availability is generated according to results of the operations, so as to achieve the technical effect of improving the availability of the measurement matrix in compressive sensing.
    Type: Grant
    Filed: December 9, 2016
    Date of Patent: August 14, 2018
    Assignees: MediaTek Inc., National Taiwan University
    Inventors: Yu-Min Lin, Jing Geng, Jie-Fang Zhang, An-Yeu Wu
  • Patent number: 10012357
    Abstract: An LED headlight includes a lens, a heat sink, at least one LED module and a shelter. The lens includes a focal length and a focal plane, wherein the focal plane extends from a focal point of the lens and is perpendicular to an optical axis of the lens. The heat sink is arranged along the optical axis of the lens, and a distance between the heat sink and the lens is greater than a distance between the focal point and the lens. The at least one LED module is arranged along the optical axis of the lens and in contact with the heat sink, a distance between the LED module and the lens is greater than the distance between the focal point and the lens. The shelter is arranged along the focal plane and configured to block light emitted from the LED module.
    Type: Grant
    Filed: December 20, 2015
    Date of Patent: July 3, 2018
    Assignee: LEXTAR ELECTRONICS CORPORATION
    Inventors: Shih-Kai Lin, Yu-Min Lin
  • Publication number: 20180169431
    Abstract: In a flexible LED pad for use in phototherapy treatment of humans or animals, the PCBs in the pad are securely linked together with electrical connectors and ribbon cables to prevent the connections from being broken as the flexible pad is bent or otherwise deformed during the treatment. In one embodiment, low-profile socket connectors are mounted to the PCBs and mate with plug connectors at the ends of the ribbon cables. For similar reasons, the LED pad may be connected to an LED control unit by means of an electrical connector (e.g. a USB socket) mounted to a PCB in the LED pad. The PCBs, on which the LEDs are mounted, are fitted into a downset in the flexible pad to prevent the LEDs from becoming misaligned with openings in the flexible pad.
    Type: Application
    Filed: February 11, 2018
    Publication date: June 21, 2018
    Applicant: Applied BioPhotonics Ltd
    Inventors: Richard K. Williams, Keng Hung Lin, Yu-Min Lin, Daniel Schell, Joseph Leahy
  • Publication number: 20180149336
    Abstract: A lens array is disposed on a substrate and includes a plurality of converging lenses. The converging lenses are configured to project light beams and are arranged along a first direction. Two of the light beams respectively converged by adjacent two of the converging lenses at least partially overlap with each other by geometry of the adjacent two converging lenses, a distance between the adjacent two converging lenses, or a combination thereof.
    Type: Application
    Filed: November 22, 2017
    Publication date: May 31, 2018
    Inventors: Tsung-Huan TSAI, Yu-Min LIN
  • Publication number: 20180130887
    Abstract: An electrode structure of a transistor, and a pixel structure and a display apparatus comprising the electrode structure of the transistor are disclosed. The electrode structure of the transistor comprises a first electrode and a second electrode. The first electrode has at least two first portions and at least one second portion. The first portions are substantially parallel with each other and each has a first width. The second portion has a second width, and connects the substantially parallel first portions to define a space with an opening. The first width is substantially greater than the second width.
    Type: Application
    Filed: January 4, 2018
    Publication date: May 10, 2018
    Inventors: Yu-Min Lin, Kuo-Lung Fang, Feng-Yuan Gan
  • Patent number: 9966413
    Abstract: A light-emitting diode (LED) module and a lamp using the same are provided. The LED module includes a substrate and several light-emitting packages. Each light-emitting package includes an optical wavelength conversion layer and a light-emitting diode having a first light-output surface, a bonding surface, and several second light-output surfaces. The bonding surface is opposite the first light-output surface and connected to the substrate. The second light-output surfaces are between the first light-output surface and the bonding surface. The optical wavelength conversion layer covers the first and second light-output surfaces. The distance between the bonding surface and the top surface of the optical wavelength conversion layer represents a light source thickness. The distance between two adjacent light-emitting packages represents a spacing of light sources. Specifically, the ratio of the spacing of light sources to the light source thickness is between 1 and 6.3.
    Type: Grant
    Filed: April 1, 2016
    Date of Patent: May 8, 2018
    Assignee: Lextar Electronics Corporation
    Inventors: Fang-Chang Hsueh, Yu-Min Lin, Chih-Hao Lin, Tzong-Liang Tsai
  • Patent number: 9964272
    Abstract: A vehicle lamp includes a heat-dissipation base, a light source mounted on the heat-dissipation base, a lightguide having a light incident surface for receiving light from the light source, a light outgoing surface for projecting a portion of light received from the light source, opposite upper and bottom surfaces disposed between the light incident and light outgoing surfaces, and a light-guiding structure formed on the upper surface. The lightguide is configured to guide a portion of a light beam entering the light incident surface to the light outgoing surface, with the light-guiding structure configured to guide another portion of the light beam entering the light incident surface to be outputted through the bottom surface. A condensing lens is further provided to receive light from the light outgoing surface and the bottom surface.
    Type: Grant
    Filed: October 13, 2015
    Date of Patent: May 8, 2018
    Assignee: Lextar Electronics Corporation
    Inventors: Yu-Min Lin, Shih-Kai Lin, Mong-Ea Lin
  • Patent number: 9964274
    Abstract: An LED vehicle headlight includes a lens, a reflector, a first light source, and a second light source. The lens has a focal plane. The reflector is located at a side of the lens, and the reflector is equipped with a first focal point and a second focal point, wherein the second focal point is located on the focal plane. The first light source has a first light-emitting surface confronting the lens. The second light source has a second light-emitting surface confronting the reflector. The first focal point is located on the second light-emitting surface, and the reflector is configured to reflect and focus light beams emitted from the second light-emitting surface onto the second focal point.
    Type: Grant
    Filed: November 30, 2015
    Date of Patent: May 8, 2018
    Assignee: LEXTAR ELECTRONICS CORPORATION
    Inventors: Yu-Min Lin, Shih-Kai Lin
  • Publication number: 20180105556
    Abstract: The present invention provides a cell penetrating peptide dimer by oxidative modification, in which each monomer is connected with each other by the disulfide linkage. The drugability of the peptide dimer has been improved through enhancing stability, reducing proteolysis, retaining permeability and increasing heparan sulfate binding specificity. The modified peptide products can be used to deliver drug molecules as a suitable drug carrier for targeted therapy.
    Type: Application
    Filed: April 6, 2017
    Publication date: April 19, 2018
    Applicant: JOWIN BIOPHARMA
    Inventors: YU-MIN LIN, WEI-CHEN CHEN, WIN-CHIN CHIANG, TING LIAN CHANG, CHUN-HUNG KUO