MAGNETORESISTIVE DEVICE AND NONVOLATILE MAGNETIC MEMORY EQUIPPED WITH THE SAME
A fast and very low-power-consuming nonvolatile memory. A nonvolatile magnetic memory includes a high-output tunnel magnetoresistive device, in which spin-transfer torque is used for writing. A tunnel magnetoresistive device has a structure such that a ferromagnetic film of a body-centered cubic structure containing Co, Fe, and B, a MgO insulator film of a rock-salt structure oriented in (100), and a ferromagnetic film are stacked.
The present application claims priority from Japanese application JP 2005-219526 filed on Jul. 28, 2005 and JP 2006-181979 filed on Jun. 30, 2006, the contents of which are hereby incorporated by reference into this application.
This application is a Continuation Application of application Ser. No. 11/493,892, filed Jul. 27, 2006, the contents of which are incorporated herein by reference in their entirety.
BACKGROUND OF THE INVENTION1. Field of the Invention
The present invention relates to a high-output tunnel magnetoresistive device and a low-power-consumption nonvolatile magnetic memory equipped with the same.
2. Background Art
Conventional tunnel magnetoresistive devices employ a tunnel film stack that includes an insulator film comprised of an oxide of Al (T. Miyazaki and N. Tezuka, J. Magn. Magn. Mater. 139, L231 (1995)). Because Al oxides are amorphous, they have been unable to provide sufficient electric output signals for industrial applications. Recently, it has been reported that a magnetoresistance ratio several times greater than that of the aforementioned tunnel magnetoresistive device employing an Al oxide in the insulator was obtained in a tunnel magnetoresistive device employing magnesium oxide in the insulator film (S. Yuasa. et al., Nature Material 3, 868(2004)). Conventional nonvolatile magnetic memories are comprised of memory cells having MOSFETs on which tunnel magnetoresistive devices are formed. The MOSFETs are used for switching, and the direction of magnetization of the tunnel magnetoresistive device is rotated by means of a spatial magnetic field induced by a current upon energization of a bit line and a word line so as to write information. Readout of information is conducted based on an output voltage of the tunnel magnetoresistive device. In addition to the above magnetization rotation based on the current-induced spatial magnetic field, there is also a so-called spin-transfer torque magnetization switching, which is also known as current induced magnetization switching. In this system, a current is caused to flow directly through a magnetoresistive device so as to rotate magnetization, as disclosed in U.S. Pat. No. 5,695,864 or JP Patent Publication (Kokai) No. 2002-305337 A.
- Non-patent Document 1: J. Magn. Magn. Mater. 139, L231 (1995)
- Non-patent Document 2: Nature Material 3, 868 (2004)
- Patent Document 1: U.S. Pat. No. 5,695,864
- Patent Document 2: JP Patent Publication (Kokai) No. 2002-305337 A
For the realization of a low-power-consumption nonvolatile magnetic memory, it is vital to develop technologies capable of achieving higher output of the tunnel magnetoresistive device and capable of writing the tunnel magnetoresistive device based on spin-transfer torque magnetization switching.
It is therefore an object of the invention to provide a tunnel magnetoresistive device and nonvolatile magnetic memory by which the aforementioned needs can be satisfied.
In order to achieve the above object, in accordance with the invention, a compound ferromagnetic film having a body center cubic of Co or Fe including B is used in a ferromagnetic film of a tunnel magnetoresistive device. Further, a magnesium oxide is used in an insulator film.
The invention provides a tunnel magnetoresistive device comprising an insulator film, and first and second ferromagnetic films between which the insulator film is disposed, wherein the first ferromagnetic film comprises a film of a body-centered cubic structure containing Co, Fe, and B, and wherein the insulator film comprises a MgO film of a rock-salt structure oriented in (100). The second ferromagnetic film may comprise a film of a body-centered cubic structure containing Co, Fe, and B. Preferably, the first ferromagnetic film has a Co-to-Fe composition ratio (atm %) of 50:50 to 70:30. In the tunnel magnetoresistive device in which MgO is used in the insulator film, the body-centered cubic structure can stably exist, as shown in
The invention also provides a magnetic memory comprising a tunnel magnetoresistive device, and a switching element for controlling the ON/OFF of a current that flows through the tunnel magnetoresistive device, wherein the tunnel magnetoresistive device comprises an insulator film, first and second ferromagnetic films between which the insulator film is disposed, wherein the first ferromagnetic film comprises a film of a body-centered cubic structure containing Co, Fe, and B, wherein the insulator film comprises a MgO film of a rock-salt structure oriented in (100).
The invention further provides a magnetic random access memory comprising a plurality of magnetic memory cells and a means for selecting a desired magnetic memory cell, wherein the magnetic memory cells include a tunnel magnetoresistive device in which a first ferromagnetic film of a body-centered cubic structure containing Co, Fe, and B, a MgO insulator film of a rock-salt structure oriented in (100), and a second ferromagnetic film are stacked.
In accordance with the invention, a high-output tunnel magnetoresistive device can be obtained. By equipping a magnetic memory with the tunnel magnetoresistive device, a fast and very low-power-consuming nonvolatile memory can be provided.
In the following, embodiments of the invention will be described with reference to the drawings.
Example 1While the orientation control film 300 was formed from NiFe (5 nm), other material may be used that are capable of improving the orientation of the aforementioned antiferromagnetic film 301 and achieving stable anti-ferromagnetic coupling, such as a double-layer film of Ta (5 nm)/NiFe (5 nm), for example. While the antiferromagnetic film 301 employed MnIr (8 nm), the film thickness may be selected from a range of 5 to 15 nm. Further, stable anti-ferromagnetic coupling may also be realized with an antiferromagnetic film comprised of a Mn compound, such as MnPt or MnFe. For the ferromagnetic film 302, CoFe (2 nm) was used. For the non-ferromagnetic film 303, Ru (0.8 nm) was used. And for the ferromagnetic film 304, CoFeB (3 nm) having a body center cubic was used. The composition ratio of the CoFe in the ferromagnetic film 302 was selected such that the Co composition w as mainly between 50 to 90 atm %. In this composition range, a stable anti-ferromagnetic coupling with the aforementioned antiferromagnetic film can be realized. The materials for the ferromagnetic film 302, non-ferromagnetic film 303, and ferromagnetic film 304 were selected such that the magnetization of the ferromagnetic film 302 and that of the ferromagnetic film 304 form an anti-ferromagnetic coupling. Their film thicknesses were selected such that the magnitude of magnetization of the ferromagnetic film 302 and that of the ferromagnetic film 304 were equal. The insulator film 305, which employed a magnesium oxide crystalline film having a rock-salt structure, is a film oriented in the (100) direction. The film thickness of the insulator film was in the range of 0.8 nm to 3 nm. For the ferromagnetic film 306, CoFeB (3 nm) having a body center cubic was employed. Preferably, the composition of Co and Fe in CoFeB of the ferromagnetic film 304 and the ferromagnetic film 306 is in the range of 50:50 to 70:30. In this composition range, as shown in
Table 1 shows examples of the composition of CoFeB and that of CoFe that can be used in the ferromagnetic films 304 and 306. In order to obtain a large TMR ratio in the tunnel magnetoresistive device 1, it is desirable to use CoFeB in the ferromagnetic films 304 and 306 and to have the Co composition range from 50 to 90 atm %. It is also possible, however, to have the composition ratio of Co relative to Fe in the range between 0 to 50 atm %. Although in the case of such Co composition the magnitude of the TMR ratio decreases as compared with the case where the Co composition is between 50 to 90 atm %, the dependency on the voltage applied to the tunnel magnetoresistive device tends to be improved. While the TMR ratio normally tends to decrease as the applied voltage increases, the ratio of such decrease can be reduced in half at a maximum when the Co composition is between 0 to 50 atm %.
The CoFeB of the above ferromagnetic film 304 and the ferromagnetic film 306 may be amorphous, or it may be crystallized in a heat process at an appropriate temperature. Regarding the composition ratio of CoFeB, the Co composition was used between 40 to 60 atm % and the B composition between 10 to 30 atm % such that a body center cubic was obtained. Apart form CoFeB, the ferromagnetic film 306 may be comprised of a single layer film of CoFe, a single layer film of NiFe, or a double layer film of CoFe/NiFe or CoFeB/NiFe. In the present example, while the Co composition in CoFe was set to be 50 atm % at which the body center cubic was stable, the composition may range between 50 to 90%. When the Co composition is large, the face-centered cubic lattice is stable and, while the tunnel magnetoresistance ratio decreases, good magnetic characteristics with a small coercivity for a magnetic free layer can be realized, and the threshold current density during spin-transfer torque magnetization switching can be varied depending on the magnitude of each magnetic moment. The protection film 307 was formed as a double-layer film of Ta (5 nm)/Ru (5 nm).
Using photolithography and ion milling for material processing, a tunnel magnetoresistive device having an area of 0.8 μm×1.6 μm was manufactured. The tunnel magnetoresistance ratio of the thus manufactured tunnel magnetoresistive device can be increased by a heat processing. When CoFeB was used for the ferromagnetic film 306, a tunnel magnetoresistance ratio of 250% was achieved by performing approximately one hour of heat processing at 375° C. or higher. In a range of thickness of the insulator film 305 between 0.8 nm and 3.0 nm, a tunnel magnetoresistance ratio of 100% or more was observed. It is possible to obtain a good magnetoresistance ratio of 150% or more even if the temperature of the heat processing is increased up to 400° C. In particular, it was confirmed that CoFeB is crystallized by a heat processing, and that when the crystallized CoFeB had a crystalline structure of the body center cubic, the tunnel magnetoresistance ratio was maximized. While the aforementioned (100) oriented film of magnesium oxide can be formed on an amorphous ferromagnetic film by sputtering, if it is formed on a polycrystalline ferromagnetic film by sputtering, it is difficult to obtain a good (100) oriented film, with the tunnel magnetoresistance ratio remaining at a maximum of 50%. This shows that, when a tunnel magnetoresistance ratio of 200% or more is observed in a tunnel magnetoresistive device 1 including a ferromagnetic film 304 and a ferromagnetic film 306 that are comprised of crystalline CoFeB, and including an insulator film 305 comprised of a crystalline magnesium oxide with the (100) orientation, the ferromagnetic film 304 and the ferromagnetic film 306 upon film formation are definitely of noncrystalline CoFeB, and that such device has been manufactured through a heat process.
The tunnel magnetoresistive device 1 has a structure in which the ferromagnetic film 304 is CoFeB, the insulator film 305 is MgO, and the ferromagnetic film 306 is CoFeB, and in which the antiferromagnetic film 301 is not used. The tunnel magnetoresistive device 1 may employ a stacked structure in which a TMR ratio is obtained by taking advantage of the difference in the magnetic anisotropy or the magnitude of the coercivity between the ferromagnetic films 304 and 306. For example, when a stacked structure of Ta/CoFeB/MgO/CoFeB/Ta is used, the TMR ratio of 450% is obtained at the heat processing temperature of 450° C., as shown in
The above-described method whereby a tunnel magnetoresistive device 1 is produced by causing the ferromagnetic film 304 and the ferromagnetic film 306, which are amorphous upon film formation, to be crystallized by a heat process differs from conventional methods. It is noted, however, that in a tunnel magnetoresistive device 1 in which a CoFe single layer film, a NiFe single layer film, or a CoFe/NiFe film is used in the ferromagnetic film 306, such ferromagnetic film 306 is crystalline from the time of film formation, and only the ferromagnetic film 304 is crystallized by the heat process. The maximum tunnel magnetoresistance ratio of tunnel magnetoresistive devices 1 in which the ferromagnetic film 306 was comprised of a CoFe single layer film, a NiFe single layer film, or a CoFe/NiFe film was 200%, 40%, and 150%, respectively.
Example 2In the tunnel magnetoresistive device 2 of the present example, because the ferromagnetic film 306 is formed adjacent to the oriented insulator film 300 and has an excellent flatness, the soft magnetic property of the ferromagnetic film 306 can be improved over that of the structure according to Example 1. For example, the coercivity of CoFeB after crystallization is reduced by half as compared with that of Example 1. The insulator film 305 is also formed as a flat film. However, because the antiferromagnetic film 301 is formed toward the top of the tunnel magnetoresistive device 2 in the direction in which the films are stacked, the orientation of the antiferromagnetic film 301 deteriorates as compared with that of Example 1. As a result, the anti-ferromagnetic coupling weakens and its heat-process resistance property deteriorates as compared with that of Example 1, and the tunnel magnetoresistance ratio tends to decrease by a heat process at 400° C. The method of manufacture of the tunnel magnetoresistive device 2 and the materials used for the various films thereof were the same as those of Example 1. The magnetoresistance ratio of the tunnel magnetoresistive device 2 was 200%, which was substantially the same as that of Example 1.
Example 3In the present example, Ru (6 nm) was used in the non-ferromagnetic film 308, CoFe (2 nm) was used in the ferromagnetic film 309, and MnIr (8 nm) was used in the antiferromagnetic film 310. The composition ratio of CoFe of the ferromagnetic film 309 was selected such that the Co composition ranged between 50 to 90%, at which a stable anti-ferromagnetic coupling can be realized between the ferromagnetic film 309 and the antiferromagnetic film 310. For the non-ferromagnetic film 308, a material or film thickness other than Ru (6 nm) may be selected such that the magnetic bond between the ferromagnetic film 306 and the ferromagnetic film 309 disappears. The method for manufacturing the tunnel magnetoresistive device 3, and the materials used for the orientation control film 300, antiferromagnetic film 301, ferromagnetic film 302, non-ferromagnetic film 303, ferromagnetic film 304, insulator film 305, ferromagnetic film 306, and protection film 307 were the same as those used for Example 1. In particular, when CoFeB is used for the ferromagnetic film 306 and the ferromagnetic layer film 304, the resultant crystal structure is a body center cubic, and the insulator film 305 is MgO having a rock-salt structure highly oriented in (100).
The magnetoresistance ratio obtained in the present example was 150%, which was a little smaller than that of Example 1. However, the efficiency of spin torque that acts on the ferromagnetic film 306 can be increased due to the spin-dependent reflection that takes place at the interface between the non-ferromagnetic film 308 and the ferromagnetic film 309. As a result, the threshold current density for spin-torque magnetization switching can be reduced by approximately two-thirds as compared with Example 1.
Example 4In the present example, Ru (6 nm) was used for the non-ferromagnetic film 308, CoFe (2 nm) was used for the ferromagnetic film 309, and MnIr (8 nm) was used for the antiferromagnetic film 310. The composition ratio of CoFe of the ferromagnetic film 309 was selected such that the Co composition ranged between 50 to 90%, at which a stable anti-ferromagnetic coupling can be realized between the ferromagnetic film 309 and the antiferromagnetic film 310. For the non-ferromagnetic film 308, a material or film thickness other than Ru (6 nm) may be selected such that the magnetic bond between the ferromagnetic film 306 and the ferromagnetic film 309 disappears. The method for manufacture of the tunnel magnetoresistive device 4 and the materials used for the orientation control film 300, antiferromagnetic film 301, ferromagnetic film 302, non-ferromagnetic film 303, ferromagnetic film 304, insulator film 305, ferromagnetic film 306, and protection film 307 were the same as those for Example 2. In particular, when CoFeB is used in the ferromagnetic film 306 and the ferromagnetic layer film 304, the resultant crystal structure is a body center cubic, and the insulator film 305 is MgO having a rock-salt structure highly oriented in (100).
The magnetoresistance ratio obtained in the present example was 140%, which was a little smaller than that of Example 2. However, the efficiency of spin torque that acts on the ferromagnetic film 306 can be increased due to the spin-dependent reflection that takes place at the interface between the non-ferromagnetic film 308 and the ferromagnetic film 309. As a result, the threshold current density during spin-torque magnetization switching can be reduced by approximately two-thirds as compared with Example 2.
Example 5In the present embodiment, Ru (8 nm) was used in the non-ferromagnetic film 308. For the non-ferromagnetic film 308, a material or a film thickness other than Ru (8 nm) may be selected such that the anti-ferromagnetic coupling between the ferromagnetic film 306 and ferromagnetic film 309 disappears. The method of manufacture of the tunnel magnetoresistive device 5 and the materials for the orientation control film 300, antiferromagnetic film 301, ferromagnetic film 302, non-ferromagnetic film 303, ferromagnetic film 304, insulator film 305, ferromagnetic film 306, ferromagnetic film 309, and protection film 307 were the same as those of Example 3. In particular, when CoFeB is used for the ferromagnetic film 306 and the ferromagnetic layer film 304, the resultant crystal structure is a body center cubic, and the insulator film 305 is MgO having a rock-salt structure highly oriented in (100). The obtained magnetoresistance ratio was approximately 150%, which is substantially the same as that of Example 3.
In the present configuration, as in Example 3, the efficiency of the spin-transfer torque that acts on the ferromagnetic film 306 increases over Example 1, so that magnetization rotation utilizing the spin-transfer torque can be realized with a small current. Further, as compared with Example 3, the diffusion of Mn due to the heat process can be suppressed because of the lack of the antiferromagnetic film 310, so that the heat resistance of the magnetoresistance ratio can be improved.
Example 6In the present example, Ru (8 nm) was used for the non-ferromagnetic film 308. For the non-ferromagnetic film 308, however, a material or film thickness other than Ru (8 nm) may be selected such that the anti-ferromagnetic coupling between the ferromagnetic film 306 and the ferromagnetic film 309 can disappear. The method of manufacture of the tunnel magnetoresistive device 6 and the materials used for the orientation control film 300, antiferromagnetic film 301, ferromagnetic film 302, non-ferromagnetic film 303, ferromagnetic film 304, insulator film 305, ferromagnetic film 306, ferromagnetic film 309, and protection film 307 were the same as those for Example 4. In particular, when CoFeB is used for the ferromagnetic film 306 and the ferromagnetic layer film 304, the resultant crystal structure is a body center cubic, and the insulator film 305 is MgO having a rock-salt structure highly oriented in (100). The maximum magnetoresistance ratio obtained was approximately 140%, which was similar to that of Example 4.
In the present configuration, the efficiency of the spin-transfer torque that acts on the ferromagnetic film 306 increases over Example 4, so that magnetization rotation utilizing the spin-transfer torque can be realized with a smaller current. Further, as compared with Example 4, the diffusion of Mn due to the heat process can be suppressed by the lack of the antiferromagnetic film 310, so that the heat resistance of the magnetoresistance ratio can be increased.
Example 7C-MOS 11 is comprised of two n-type semiconductors 12 and 13 and one p-type semiconductor 14. To the n-type semiconductor 12, an electrode 21 is electrically connected that serves as a drain, which is connected to ground via electrodes 41 and 47. To the n-type semiconductor 13 an electrode 22 is electrically connected that severs as a source. Numeral 23 designates a gate electrode, by the ON/OFF switching of which the current between the source electrode 22 and the drain electrode 21 is ON/OFF controlled. On the source electrode 22, electrodes 45, 44, 43, 42, and 46 are stacked. Via the electrode 46, an orientation control film 300 of the tunnel magnetoresistive device 10 is connected.
A bit line 212 is connected to the protection film 307 of the tunnel magnetoresistive device 10. In the magnetic memory cell of the present example, the magnetization direction of the ferromagnetic film 306 of the tunnel magnetoresistive device 10 is rotated by the so-called spin-transfer torque due to the current that flows through the tunnel magnetoresistive device 10, whereby magnetic information is recorded. Alternatively, instead of using the spin-transfer torque, a current can be caused to flow through an electrode 47 that serves as both a bit line 212 and a word line, so that the magnetization direction of the ferromagnetic film 306 of the tunnel magnetoresistive device 10 is rotated by means of the magnetic field produced around the electrode, thereby recording magnetic information. When writing is performed using the spin-transfer torque, the power required for writing can be reduced to about one hundredths of the power required when a current magnetic filed is used.
Claims
1. A tunnel magnetoresistive device comprising an insulator film, and first and second ferromagnetic films between which the insulator film is disposed,
- wherein the first ferromagnetic film comprises a film of a body-centered cubic structure containing Co, Fe, and B, and wherein the insulator film comprises a MgO film of a rock-salt structure oriented in (100).
2. The tunnel magnetoresistive device according to claim 1, wherein the second ferromagnetic film comprises a film of a body-centered cubic structure containing Co, Fe, and B.
3. The tunnel magnetoresistive device according to claim 1, wherein the first ferromagnetic film has a Co-to-Fe composition ratio (atm %) of 50:50 to 70:30.
4. The tunnel magnetoresistive device according to claim 1, comprising an orientation control film on which an antiferromagnetic film, a third ferromagnetic film, and a non-ferromagnetic film are sequentially stacked, wherein the first ferromagnetic film, the insulator film, and the second ferromagnetic film are sequentially stacked on the non-ferromagnetic film,
- wherein the magnetization direction of the third ferromagnetic film is fixed by the antiferromagnetic film, and wherein the third ferromagnetic film and the first ferromagnetic film are antiferromagnetically coupled via the non-ferromagnetic film.
5. The tunnel magnetoresistive device according to claim 4, wherein, on the second ferromagnetic film, a second non-ferromagnetic film, a fourth ferromagnetic film, and a second antiferromagnetic film are sequentially stacked in mentioned order, wherein the magnetization direction of the fourth ferromagnetic film is fixed by the second antiferromagnetic film.
6. The tunnel magnetoresistive device according to claim 4, wherein, on the second ferromagnetic film, a second non-ferromagnetic film and a fourth ferromagnetic film are sequentially stacked in mentioned order.
7. The tunnel magnetoresistive device according to claim 1, comprising an orientation control film on which the first ferromagnetic film, the insulator film, and the second ferromagnetic film are sequentially stacked,
- wherein, on the second ferromagnetic film, a non-ferromagnetic film, a third ferromagnetic film, and an antiferromagnetic film are sequentially stacked,
- wherein the magnetization direction of the third ferromagnetic film is fixed by the antiferromagnetic film, and wherein the third ferromagnetic film and the first ferromagnetic film are antiferromagnetically coupled via the non-ferromagnetic film.
8. The tunnel magnetoresistive device according to claim 7, wherein, between the orientation control film and the first ferromagnetic film, a second antiferromagnetic film, a fourth ferromagnetic film, and a second non-ferromagnetic film are sequentially stacked in mentioned order, wherein the magnetization direction of the fourth ferromagnetic film is fixed by the second antiferromagnetic film.
9. The tunnel magnetoresistive device according to claim 7, wherein, between the orientation control film and the first ferromagnetic film, a fourth ferromagnetic film and a second non-ferromagnetic film are sequentially stacked in mentioned order.
10. A magnetic memory comprising a tunnel magnetoresistive device, and a switching element for controlling the ON/OFF of a current that flows through the tunnel magnetoresistive device,
- wherein the tunnel magnetoresistive device comprises an insulator film, and first and second ferromagnetic films between which the insulator film is disposed, wherein the first ferromagnetic film comprises a film of a body-centered cubic structure containing Co, Fe, and B, wherein the insulator film comprises a MgO film of a rock-salt structure oriented in (100).
11. The magnetic memory according to claim 10, wherein the second ferromagnetic film comprises a film of a body-centered cubic structure containing Co, Fe, and B.
12. The magnetic memory according to claim 10, wherein the first ferromagnetic film has a Co-to-Fe composition ratio (atm %) of 50:50 to 70:30.
13. The magnetic memory according to claim 10, wherein magnetic information is recorded using spin-transfer torque.
14. A magnetic random access memory comprising a plurality of magnetic memory cells and a means for selecting a desired magnetic memory cell, wherein the magnetic memory cells include a tunnel magnetoresistive device in which a first ferromagnetic film of a body-centered cubic structure containing Co, Fe, and B, a MgO insulator film of a rock-salt structure oriented in (100), and a second ferromagnetic film are stacked.
15. The magnetic random access memory according to claim 14, wherein the second ferromagnetic film comprises a film of a body-centered cubic structure containing Co, Fe, and B.
16. The magnetic random access memory according to claim 14, wherein the first ferromagnetic film has a Co-to-Fe composition ratio (atm %) of 50:50 to 70:30.
17. The magnetic random access memory according to claim 14, wherein magnetic information is recorded using spin-transfer torque.
18. The tunnel magnetoresistive device according to claim 1, wherein the composition ratio of Co is 0 to 50%.
19. The magnetic memory according to claim 10, wherein the composition ratio of Co is 0 to 50%.
20. The magnetic random access memory according to claim 14, wherein the composition ratio of Co is 0 to 50%.
Type: Application
Filed: Dec 15, 2008
Publication Date: Apr 16, 2009
Inventors: Jun HAYAKAWA (Kokubunji), Hideo Ohno (Sendai), Shoji Ikeda (Sendai)
Application Number: 12/335,271
International Classification: H01L 29/82 (20060101); G11C 11/22 (20060101); G11C 11/16 (20060101);