SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREOF
A semiconductor device includes a substrate, a bottom semiconductor fin, at least one sidewall structure, a top semiconductor fin, and a gate structure. The bottom semiconductor fin is disposed on the substrate. The sidewall structure protrudes from the semiconductor fin. The top semiconductor fin is disposed on the bottom semiconductor fin. The top semiconductor fin includes a channel portion and at least one source/drain portion. The source/drain portion is disposed between the channel portion and the sidewall structure. The gate structure covers the channel portion of the top semiconductor fin.
Latest TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD. Patents:
As the semiconductor industry has progressed into nanometer technology process nodes in pursuit of higher device density, higher performance, and lower costs, challenges from both fabrication and design issues have resulted in the development of three-dimensional designs, such as a fin field effect transistor (Fin FET). Fin FET devices include semiconductor fins with high aspect ratios and in which channel and source/drain regions of semiconductor transistor devices are formed. A gate is formed over and along the sides of the fin structure (e.g., wrapping) utilizing the increased surface area of the channel and source/drain regions to produce faster, more reliable and better-controlled semiconductor transistor devices. In some devices, strained materials in source/drain (S/D) portions of the FinFET utilizing, for example, silicon germanium (SiGe), silicon phosphide (SiP) or silicon carbide (SiC), may be used to enhance carrier mobility. Further, channel on oxide structures have been proposed to improve carrier mobility and to maintain a straight fin profile.
Aspects of the present disclosure are best understood from the following detailed description when read with the accompanying figures. It is noted that, in accordance with the standard practice in the industry, various features are not drawn to scale. In fact, the dimensions of the various features may be arbitrarily increased or reduced for clarity of discussion.
The following disclosure provides many different embodiments, or examples, for implementing different features of the provided subject matter. Specific examples of components and arrangements are described below to simplify the present disclosure. These are, of course, merely examples and are not intended to be limiting. For example, the formation of a first feature over or on a second feature in the description that follows may include embodiments in which the first and second features are formed in direct contact, and may also include embodiments in which additional features may be formed between the first and second features, such that the first and second features may not be in direct contact. In addition, the present disclosure may repeat reference numerals and/or letters in the various examples. This repetition is for the purpose of simplicity and clarity and does not in itself dictate a relationship between the various embodiments and/or configurations discussed.
Further, spatially relative terms, such as “beneath,” “below,” “lower,” “above,” “upper” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. The spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. The apparatus may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein may likewise be interpreted accordingly.
The fins may be patterned by any suitable method. For example, the fins may be patterned using one or more photolithography processes, including double-patterning or multi-patterning processes. Generally, double-patterning or multi-patterning processes combine photolithography and self-aligned processes, allowing patterns to be created that have, for example, pitches smaller than what is otherwise obtainable using a single, direct photolithography process. For example, in some embodiments, a sacrificial layer is formed over a substrate and patterned using a photolithography process. Spacers are formed alongside the patterned sacrificial layer using a self-aligned process. The sacrificial layer is then removed, and the remaining spacers may then be used to pattern the fins.
Illustrative embodiments for forming a semiconductor device will be described below with reference to
Reference is made to
The mask layer 200 maintains the integrity of the patterns during etching of a recess 106 (see
In some embodiments, a protective layer 210 is formed over the top surface 102 of the substrate 100 and between the mask layer 200 and the substrate 100. The protective layer 210 protects the top surface 102 from direct contact with the mask layer 200. For example, for a portion of the substrate 100 next to the recess 106 (see
Reference is made to
Reference is made to
Reference is made to
In some embodiments, the tri-layer photoresist 120 may be used, including a photoresist (PR) layer 121 as the top or uppermost portion, a middle layer 122, and a bottom layer 124. The tri-layer photoresist 120 is disposed on the substrate 100 and the isolation material 110. The middle layer 122 of the tri-layer photoresist 120 which may include anti-reflective layers or backside anti-reflective layers to aid in the exposure and focus of the PR processing, and the bottom layer 124 which may be a hard mask material; for example, an oxide. To pattern the tri-layer photoresist 120, the PR layer 121 is patterned using a mask, exposure to radiation, such as light or an excimer laser, for example, a bake or cure operation to harden the resist, and use of a developer to remove either the exposed or unexposed portions of the resist, depending on whether a positive resist or a negative resist is used, to form the pattern from the mask in the PR layer 121. The PR layer 121 is patterned to form an opening 128 above the semiconductor fin 108. Specifically, the vertically projection of the opening 128 is locates on the semiconductor fin 108 and outside the semiconductor fin 109. The opening 128 has a width W2 along the direction D1. The semiconductor fin 108 has a width W1 along the direction D1, and the width W1 is larger than the width W2. This patterned PR layer 121 is then used to etch the underlying middle layer 122 and bottom layer 124 to form an etch mask for the target layer; here, the semiconductor fin 108 from the opening 128.
Reference is made to
Reference is made to
In other words, the etched semiconductor fin 108′ is formed by removing the portion thereof, thereby forming a bottom semiconductor fin 1080, and forming a first sidewall structure 1082a and a second sidewall structure 1082b disposed over the bottom semiconductor fin 1080. Specifically, the bottom semiconductor fin 1080 is disposed on the substrate 100, and extends along the direction D1 as the semiconductor fin 108. The first sidewall structure 1082a and the second sidewall structure 1082b protrude from the bottom semiconductor fin 1080 facing away the substrate 100, and define the trench 129 with the bottom semiconductor fin 1080 therebetween. That is, the trench 129 is formed by inner surfaces of the first sidewall structure 1082a and the second sidewall structure 1082b and a top surface the bottom semiconductor fin 1080. In addition, the first sidewall structure 1082a and a second sidewall structure 1082b are covered by the patterned bottom layer 124′. The opening 127 of the patterned bottom layer 124′ and the trench 129 of the semiconductor fin 108 have a width W4 and a width W5 along the direction D1 respectively. The width W4 and the width W5 is substantially the same and both smaller than the width W1 of the semiconductor fin 108.
In some embodiments, the trench 129 is formed by various methods, including a dry etch, a wet etch, or a combination of dry etch and wet etch. The dry etching process may implement fluorine-containing gas (e.g., CF4, SF6, CH2F2, CHF3, and/or C2F6), chlorine-containing gas (e.g., Cl2, CHCl3, CCl4, and/or BCl3), bromine-containing gas (e.g., HBr and/or CHBr3), oxygen-containing gas, iodine-containing gas, other suitable gases and/or plasmas, or combinations thereof. The etching process may include a multiple-step etching to gain etch selectivity, flexibility and desired etch profile.
Reference is made to
Specifically, the epitaxy material epitaxial grows at least from the first sidewall structure 1082a, the second sidewall structure 1082b, and the bottom semiconductor fin 1080. Then, a portion of the epitaxy material above a top surface of the isolation material 110 is removed to form the top semiconductor fin 130 in the trench 129 and over the bottom semiconductor fin 1080. Therefore, the top semiconductor fin 130 is formed between the first sidewall structure 1082a and the second sidewall structure 1082b and on the bottom semiconductor fin 1080. As such, opposite sidewalls of the top semiconductor fin 130 are in contact with the first sidewall structure 1082a and the second sidewall structure 1082b, and a bottom portion of the top semiconductor fin 130 is in contact with the bottom semiconductor fin 1080. On the other hand, the first sidewall structure 1082a and the second sidewall structure 1082b are located on two opposite ends of the top semiconductor fin 130, respectively disposed between and extends pass the top semiconductor fin 130 and the isolation material 110, and arranged in the direction D1.
In some embodiments, at least one of the first sidewall structure 1082a and the second sidewall structure 1082b is made of a material that is the same as the bottom semiconductor fin 1080, and the top semiconductor fin 130 is made of a material that is different from that of the bottom semiconductor fin 1080. In some embodiments, the top semiconductor fin 130 is made of the material whose lattice constant is greater than that of the at least one the first sidewall structure 1082a, the second sidewall structure 1082b, and the bottom semiconductor fin 1080. In some embodiments, the bottom semiconductor fin 1080, the first sidewall structure 1082a, and the second sidewall structure 1082b may include a material such as Si, and the top semiconductor fin 130 may include a material such as SiGe.
With such configuration, the first sidewall structure 1082a, the second sidewall structure 1082b, and the bottom semiconductor fin 1080 are positioned such that subsequent epitaxial growth processes that forming the top semiconductor fin 130 during device fabrication do not in contact with the isolation material 110 on ends of the bottom semiconductor fin 1080. Here, if the top semiconductor fin 130 is not formed on the first sidewall structure 1082a and the second sidewall structure 1082b, defects such as voids or dislocations may be formed at an interface of the isolation material 110 and the top semiconductor fin 130, because the isolation material 110 is less easily grown on the oxide surface. In contrast, since the top semiconductor fin 130 is in contact with the first sidewall structure 1082a and the second sidewall structure 1082b, the epitaxial growth of the top semiconductor fin 130 is enhanced.
Reference is made to
Specifically, as shown in
Reference is made to
The interlayer dielectric 140 is formed to cover the isolation structure 110′, the etched semiconductor fin 108′, and the semiconductor fin 109. The interlayer dielectric 140 may be formed by thermal oxidation, chemical vapor deposition, sputtering, or other methods known and used in the art for forming a gate dielectric. The interlayer dielectric 140 may include, for example, a high-k dielectric material such as metal oxides, metal nitrides, metal silicates, transition metal-oxides, transition metal-nitrides, transition metal-silicates, oxynitrides of metals, metal aluminates, zirconium silicate, zirconium aluminate, or combinations thereof. Some embodiments may include hafnium oxide (HfO2), hafnium silicon oxide (HfSiO), hafnium silicon oxynitride (HfSiON), hafnium tantalum oxide (HfTaO), hafnium titanium oxide (HMO), hafnium zirconium oxide (HfZrO), lanthanum oxide (LaO), zirconium oxide (ZrO), titanium oxide (TiO), tantalum oxide (Ta2O5), yttrium oxide (Y2O3), strontium titanium oxide (SrTiO3, STO), barium titanium oxide (BaTiO3, BTO), barium zirconium oxide (BaZrO), hafnium lanthanum oxide (HfLaO), lanthanum silicon oxide (LaSiO), aluminum silicon oxide (AlSiO), aluminum oxide (Al2O3), silicon nitride (Si3N4), oxynitrides (SiON), and combinations thereof. The interlayer dielectric 140 may have a multilayer structure such as one layer of silicon oxide (e.g., interfacial layer) and another layer of high-k material. The interlayer dielectric 140 may be formed using chemical vapor deposition (CVD), physical vapor deposition (PVD), atomic layer deposition (ALD), thermal oxide, ozone oxidation, other suitable processes, or combinations thereof.
The dummy layer 150 is formed on the interlayer dielectric 140. The dummy layer 150 may be deposited by chemical vapor deposition (CVD), by sputter deposition, or by other techniques known and used in the art for depositing conductive materials. The dummy layer 150 may include polycrystalline-silicon (poly-Si) or poly-crystalline silicon-germanium (poly-SiGe). Further, the dummy layer 150 may be doped poly-silicon with uniform or non-uniform doping.
Reference is made to
Reference is made to
After the patterning process, the masks 214 and 215 of
Reference is made to
Reference is made to
After the patterning process, the masks 216 and 217 of
It is noted that although in
Reference is made to
Furthermore, the top semiconductor fin 130 includes a channel portion (may also refer to as a channel region) 132 and source/drain portions (may also refer to as source/drain regions) 134 and 136 disposed therein. The channel portion 132 is disposed in the top semiconductor fin 130, below the gate structure 302 and the pair of gate spacers 162, and between the first sidewall structure 1082a and the second sidewall structure 1082b. On the other hand, the gate structure 302 covers the channel portion 132 of the top semiconductor fin. In addition, the source/drain portions 134 and 136 are disposed on opposite sides of the dummy gate electrode 152 and uncovered by the gate structure 302. The source/drain portions 134 is disposed between the channel portion 132 and the first sidewall structure 1082a, and the source/drain portions 136 is disposed between the channel portion 132 and the second sidewall structure 1082b.
With such configuration, the top semiconductor fin 130 is in contact with the first sidewall structure 1082a, the second sidewall structure 1082b, and the bottom semiconductor fin 1080, whereby enabling the channel portion 132 of the top semiconductor fin 130 to improve fully strain channel (FSC) due to the two opposite ends of the top semiconductor fin 130 strain with the first sidewall structure 1082a and the second sidewall structure 1082b of the etched semiconductor fin 108′ respectively, thus to improve performance of said two opposite ends. As such, a stress relaxation occurring at the two opposite ends of the top semiconductor fin 130 reduces epitaxial defects, such as, voids or dislocations, at an interface of the sidewall structure 1082a (1082b) and the top semiconductor fin 130. Further, the epitaxial defects of the two opposite ends of the top semiconductor fin 130 will be reduced. Hence, the epitaxial quality of the channel portion 132 of top semiconductor fin 130 will also be enhanced, such that the performance of the channel portion 132 will be improved.
Reference is made to
Removing portions of the top semiconductor fin 130 and the semiconductor fin 109 may include forming a photoresist layer or a capping layer (such as an oxide capping layer) over the structure of
Reference is made to
On the other hand, the first sidewall structure 1082a and the second sidewall structure 1082b are separated from the epitaxy structures 172. In other words, protruding portion 130a of the top semiconductor fin 130 is disposed between and in contact with the first sidewall structure 1082a and the epitaxy structures 172, and protruding portion 130b is disposed between and in contact with the second sidewall structure 1082b and the epitaxy structures 172. In some embodiments, a bottom portion of the first sidewall structure 1082a and the second sidewall structure 1082b is lower than a bottom surface of the epitaxy structures 172. In some other embodiments, however, a bottom surface of the epitaxy structures 172 and a bottom surface of the top semiconductor fin 130 are coplanar.
The epitaxy structures 172 and 174 may be formed using one or more epitaxy or epitaxial (epi) processes, such that Si features, SiGe features, and/or other suitable features can be formed in a crystalline state on the recesses 232 and 234 of the top semiconductor fin 130 and the semiconductor fin 109. In some embodiments, the lattice constant of the epitaxy structures 172 and 174 are different from the lattice constant of the top semiconductor fin 130 and the semiconductor fin 109, and the epitaxy structures 172 and 174 are strained or stressed to enable carrier mobility of the semiconductor device and enhance the device performance. The epitaxy processes include CVD deposition techniques (e.g., vapor-phase epitaxy (VPE) and/or ultra-high vacuum CVD (UHV-CVD)), molecular beam epitaxy, and/or other suitable processes. The epitaxy process may use gaseous and/or liquid precursors, which interact with the composition of the recesses 232 and 234 of the top semiconductor fin 130 and the semiconductor fin 109 (e.g., silicon). Thus, a strained channel can be achieved to increase carrier mobility and enhance device performance. The epitaxy structures 172 and 174 may be in-situ doped. The doping species include p-type dopants, such as boron or BF2; n-type dopants, such as phosphorus or arsenic; and/or other suitable dopants including combinations thereof. If the epitaxy structures 172 and 174 are not in-situ doped, a second implantation process (i.e., a junction implant process) is performed to dope the epitaxy structures 172 and 174. One or more annealing processes may be performed to activate the epitaxy structures 172 and 174. The annealing processes include rapid thermal annealing (RTA) and/or laser annealing processes.
Then, an interlayer dielectric (ILD) 170 is formed at outer sides of the gate spacers 162 and 164 and on the top semiconductor fin 130 and the semiconductor fin 109. The ILD 170 includes silicon oxide, oxynitride or other suitable materials. The ILD 170 includes a single layer or multiple layers. The ILD 170 is formed by a suitable technique, such as CVD or ALD. A chemical mechanical planarization (CMP) process may be applied to remove excessive ILD 170 and expose the top surface of the dummy gate electrodes 152 and 154 to a subsequent dummy gate removing process.
Reference is made to
Reference is made to
As shown in
Reference is made to
According to some embodiments, the top semiconductor fin is in contact with the first sidewall structure, the second sidewall structure, and the bottom semiconductor fin, whereby enabling the channel portion of the top semiconductor fin to improve fully strain channel (FSC) due to the two opposite ends of the top semiconductor fin strain with the first sidewall structure and the second sidewall structure of the etched semiconductor fin respectively, thus to improve performance of said two opposite ends. As such, a stress relaxation occurring at the two opposite ends of the top semiconductor fin reduces epitaxial defects, such as, voids or dislocations, at an interface of the sidewall structure and the top semiconductor fin. Further, the epitaxial defects of the two opposite ends of the top semiconductor fin will be reduced. Hence, the epitaxial quality of the channel portion of top semiconductor fin will also be enhanced, such that the performance of the channel portion will be improved.
According to some embodiments, a semiconductor device includes a substrate, a bottom semiconductor fin, at least one sidewall structure, a top semiconductor fin, and a gate structure. The bottom semiconductor fin is disposed on the substrate. The sidewall structure protrudes from the semiconductor fin. The top semiconductor fin is disposed on the bottom semiconductor fin. The top semiconductor fin includes a channel portion and at least one source/drain portion. The source/drain portion is disposed between the channel portion and the sidewall structure. The gate structure covers the channel portion of the top semiconductor fin.
According to some embodiments, a semiconductor device includes a substrate, a bottom semiconductor fin, atop semiconductor fin, a first sidewall structure and a second sidewall structure, and a gate structure. The bottom semiconductor fin is disposed on the substrate and extending along a direction. The top semiconductor fin is disposed on the bottom semiconductor fin. The first sidewall structure and a second sidewall structure are disposed on two opposite ends of the top semiconductor fin and arranged in the direction, in which the top semiconductor fin is made of a material that is different from that of the first sidewall structure and the second sidewall structure. The gate structure is disposed between the first sidewall structure and the second sidewall structure and straddles across the top semiconductor fin.
According to some embodiments, a method for manufacturing a semiconductor device includes forming fin structure on a substrate; forming an isolation material surrounding the fin structure; removing a portion of the fin structure to form a bottom semiconductor fin and sidewall structures over the bottom semiconductor fin, in which the sidewall structures are in contact with the isolation material, and the bottom semiconductor fin and the sidewall structures define a trench therebetween; forming a top semiconductor fin in the trench, between the sidewall structures, and over the semiconductor fin; and forming a gate structure on the top semiconductor fin.
The foregoing outlines features of several embodiments so that those skilled in the art may better understand the aspects of the present disclosure. Those skilled in the art should appreciate that they may readily use the present disclosure as a basis for designing or modifying other processes and structures for carrying out the same purposes and/or achieving the same advantages of the embodiments introduced herein. Those skilled in the art should also realize that such equivalent constructions do not depart from the spirit and scope of the present disclosure, and that they may make various changes, substitutions, and alterations herein without departing from the spirit and scope of the present disclosure.
Claims
1. A semiconductor device, comprising:
- a substrate;
- a bottom semiconductor fin disposed on the substrate;
- first and second sidewall structures protruding from the bottom semiconductor fin;
- a top semiconductor fin disposed on the bottom semiconductor fin, wherein the top semiconductor fin and the bottom semiconductor fin are made of different semiconductive materials, the top semiconductor fin is sandwiched between the first and second sidewall structures, and the top semiconductor fin comprises: a channel portion; and source and drain portions, wherein the source portion is between the channel portion and the first sidewall structure, and the drain portion is between the channel portion and the second sidewall structure; and
- a gate structure over the channel portion of the top semiconductor fin.
2. The semiconductor device of claim 1, wherein the top semiconductor fin is in contact with the first and second sidewall structures and the bottom semiconductor fin.
3. The semiconductor device of claim 1, wherein the first and second sidewall structures are located on opposite ends of the top semiconductor fin.
4. The semiconductor device of claim 1, further comprising first and second epitaxy structures respectively partially embedded in the source and drain portions of the top semiconductor fin, wherein the first epitaxy structure is between the first sidewall structure and the channel portion.
5. The semiconductor device of claim 4, wherein the first sidewall structure is separated from the first epitaxy structure.
6. The semiconductor device of claim 5, wherein a portion of the top semiconductor fin is disposed between and in contact with the first sidewall structure and the first epitaxy structure.
7. The semiconductor device of claim 4, wherein a bottom portion of the first sidewall structure is lower than a bottom surface of the first epitaxy structure.
8. The semiconductor device of claim 1, further comprising an interlayer dielectric (ILD) layer disposed over the substrate, wherein the first sidewall structure is located between the ILD layer and the top semiconductor fin.
9. The semiconductor device of claim 1, further comprising an isolation structure disposed around the bottom semiconductor fin, wherein a bottom surface of the top semiconductor fin is higher than a top surface of the isolation structure.
10. The semiconductor device of claim 1, wherein the first and second sidewall structures and the bottom semiconductor fin are made of the same semiconductive material.
11. The semiconductor device of claim 10, wherein a lattice constant of the top semiconductor fin is greater than that of the first and second sidewall structures and the bottom semiconductor fin.
12. A semiconductor device, comprising:
- a substrate;
- a bottom semiconductor fin disposed on the substrate;
- a top semiconductor fin disposed on the bottom semiconductor fin;
- a first sidewall structure and a second sidewall structure disposed on opposite ends of the top semiconductor fin, wherein the top semiconductor fin is made of a material that is different from that of the first sidewall structure and the second sidewall structure, and a top surface of the top semiconductor fin is substantially coplanar with top surfaces of the first and second sidewall structures; and
- a gate structure straddling across the top semiconductor fin.
13. The semiconductor device of claim 12, wherein the first sidewall structure and the second sidewall structure protrude from the bottom semiconductor fin.
14. The semiconductor device of claim 12, wherein the top semiconductor fin is in contact with the bottom semiconductor fin, the first sidewall structure and the second sidewall structure.
15. The semiconductor device of claim 12, wherein the top semiconductor fin comprises a channel region located between the first sidewall structure and the second sidewall structure and below the gate structure.
16. (canceled)
17. A method for manufacturing a semiconductor device comprising:
- forming a fin structure on a substrate;
- forming an isolation material surrounding the fin structure;
- removing a portion of the fin structure to form a bottom semiconductor fin and sidewall structures over the bottom semiconductor fin, wherein the sidewall structures are in contact with the isolation material, and the bottom semiconductor fin and the sidewall structures define a trench therebetween;
- forming a top semiconductor fin in the trench, wherein the top semiconductor fin is between the sidewall structures and over the bottom semiconductor fin, the fin structure is made of a semiconductive material, and the top semiconductor fin is made of an epitaxy material that is different from the semiconductive material; and
- forming a gate structure on the top semiconductor fin.
18. The method of claim 17, further comprising:
- forming a patterned mask layer over the isolation material and the fin structure, wherein the portion of the fin structure is removed through the patterned mask layer, and the sidewall structures are covered by the patterned mask layer.
19. The method of claim 17, wherein forming the top semiconductor fin in the trench comprises:
- epitaxially growing the epitaxy material at least in the trench and over the bottom semiconductor fin; and
- removing the epitaxy material above a top surface of the isolation material to form the top semiconductor fin in the trench and over the bottom semiconductor fin.
20. The method of claim 19, wherein epitaxially growing the epitaxy material at least in the trench comprises epitaxially growing the epitaxy material at least from the sidewall structures.
21. The method of claim 17, wherein forming the top semiconductor fin is performed such that the top semiconductor fin is in contact with the isolation material.
Type: Application
Filed: Oct 31, 2017
Publication Date: May 2, 2019
Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD. (Hsinchu)
Inventors: Chun-An LIN (Tainan City), Chun-Hsiung LIN (Hsinchu County), Chia-Ta YU (New Taipei City), Sai-Hooi YEONG (Hsinchu County), Ching-Fang HUANG (Taipei City), Wen-Hsing HSIEH (Hsinchu City)
Application Number: 15/799,385