Method for in-line testing of flip-chip semiconductor assemblies

- Micron Technology, Inc.

Flip-chip semiconductor assemblies, each including integrated circuit (IC) dice and an associated substrate, are electrically tested before encapsulation using an in-line or in situ test socket or probes at a die-attach station. Those assemblies using “wet” quick-cure epoxies for die attachment may be tested prior to the epoxy being cured by pressing the integrated circuit (IC) dice against interconnection points on the substrate for electrical connection, while those assemblies using “dry” epoxies may be cured prior to testing. In either case, any failures in the dice or in the interconnections between the dice and the substrates can be easily fixed, and the need for the use of known-good-die (KGD) rework procedures during repair is eliminated.

Skip to: Description  ·  Claims  ·  References Cited  · Patent History  ·  Patent History
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a divisional of application Ser. No. 10/721,110, filed Nov. 24, 2003, pending, which is a divisional of application Ser. No. 10/338,530, filed Jan. 8, 2003, now U.S. Pat. No. 6,954,081, issued Oct. 11, 2005, which is a divisional of application Ser. No. 09/819,472, filed Mar. 28, 2001, now U.S. Pat. No. 6,545,498, issued Apr. 8, 2003, which is a divisional of application Ser. No. 09/166,369, filed Oct. 5, 1998, now U.S. Pat. No. 6,329,832, issued Dec. 11, 2001.

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates in general to semiconductor manufacturing and, more specifically, to in-line testing of flip-chip semiconductor assemblies.

2. State of the Art

As shown in FIG. 1, in a conventional process 10 for manufacturing flip-chip semiconductor assemblies, singulated dice are flip-chip attached with a conductive epoxy or solder to a printed circuit board (PCB) or other substrate to form a flip-chip semiconductor assembly. Once the dice are attached by curing of the epoxy or reflow of the solder, the dice are then encapsulated, underfilled, or both, using a nonconductive epoxy or other encapsulation material. The electrical characteristics of the flip-chip semiconductor assembly are then tested and, if the assembly passes the test, it is selected for shipping to customers.

If the flip-chip semiconductor assembly does not pass the test, then it proceeds to a repair station, where it is repaired using one or more “known-good dice” (KGD) 12 (i.e., dice that have already passed all standard electrical tests and have been through burn-in). Specifically, those dice in the assembly that are believed to have caused the assembly to fail the test are electrically disconnected from the rest of the assembly, typically using laser fuses. One or more KGD are then attached to the PCB of the assembly to replace the disconnected dice. Once the KGD are attached, the assembly is retested and, if it passes, it too is selected for shipping to customers.

The conventional KGD repair process described above generally works well to repair flip-chip semiconductor assemblies, but the process necessary to produce KGD can be an expensive one. Also, the described KGD repair process does not test for, or repair, problems with the interconnections between the dice and the PCB in a flip-chip semiconductor assembly. Rather, it only repairs problems with non-functioning dice or defective solder bumps. Finally, the KGD in the described repair process end up going through burn-in twice: a first time so they can be categorized as a KGD, and a second time when the flip-chip semiconductor assembly to which they are attached goes through burn-in. This is obviously a waste of burn-in resources and also stresses the KGD far beyond that necessary to weed out infant mortalities.

Therefore, there is a need in the art for a method of testing flip-chip semiconductor assemblies that reduces or eliminates the need for the KGD repair process described above.

BRIEF SUMMARY OF THE INVENTION

In a method for electrically testing a flip-chip semiconductor assembly in accordance with this invention, the assembly is tested using, for example, an in-line or in situ test socket or probes after one or more integrated circuit (IC) dice and a substrate, such as a printed circuit board (PCB), are brought together to form the assembly and before the IC dice are encapsulated or otherwise sealed for permanent operation. As a result, any problems with the IC dice or their interconnection to the substrate can be fixed before sealing of the dice complicates repairs. The method thus avoids the problems associated with conventional known-good-die (KGD) repairs. Also, speed grading can be performed while the dice are tested.

The assembly may be manufactured using a “wet” conductive epoxy, such as a heat-snap-curable, moisture-curable, or radiation-curable epoxy, in which case bond pads on the IC dice can be brought into contact with conductive bumps on the substrate formed of the epoxy for the testing, which can then be followed by curing of the epoxy to form permanent die-to-substrate interconnects if the assembly passes the test. If the assembly does not pass the test, the lack of curing allows for easy repair. After curing, but before sealing of the IC dice, the assembly can be tested again to detect any interconnection problems between the IC dice and the substrate.

The assembly may also be manufactured using a “dry” conductive epoxy, such as a thermoplastic epoxy, for conductive die attachment, in which case, the IC dice and the substrate can be brought together and the epoxy cured to form permanent die-to-substrate interconnections, after which the testing may take place. Since the testing occurs before sealing of the IC dice, repair is still relatively easy.

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

FIG. 1 is a flow chart illustrating a conventional repair method for flip-chip semiconductor assemblies using known-good dice (KGD);

FIG. 2 is a flow chart illustrating a method for in-line testing of flip-chip semiconductor assemblies in accordance with this invention;

FIG. 3 is an isometric view of a flip-chip semiconductor assembly and in-line test socket or probes implementing the method of FIG. 2;

FIG. 4 is a flow chart illustrating a method for in situ testing of flip-chip semiconductor assemblies in accordance with this invention; and

FIG. 5 is an isometric view of a flip-chip semiconductor assembly and in situ test socket implementing the method of FIG. 4.

DETAILED DESCRIPTION OF THE INVENTION

As shown in FIGS. 2 and 3, in a process 20 for manufacturing flip-chip semiconductor assemblies in accordance with this invention, a printed circuit board (PCB) 22 is indexed into a die-attach station (not shown), where it is inserted into an in-line test socket 24 or contacted by probes 25. It will be understood by those having skill in the technical field of this invention that the invention is applicable not only to PCBs, but also to a wide variety of other substrates used in the manufacture of flip-chip semiconductor assemblies.

When conductive epoxy dots 26 or “pads” deposited on the PCB 22 at the die ends of die-to-board-edge conductive traces 30 are made from a “wet” epoxy (i.e., a quick-cure epoxy such as a heat-snap-curable, radiation-curable, or moisture-curable epoxy), then integrated circuit (IC) dice 28 are pressed (active surfaces down) against the conductive epoxy dots 26 during flip-chip attach so electrical connections are formed between the dice 28 and the in-line test socket 24 or probes 25 through the conductive epoxy dots 26 and conductive traces 30 on the PCB 22. Of course, it will be understood that the invention is also applicable to other flip-chip die-attach methods including, for example, solder-based methods. It will also be understood that the dice 28 may be of any type, including, for example, Dynamic Random Access Memory (DRAM) dice, Static RAM (SRAM) dice, Synchronous DRAM (SDRAM) dice, microprocessor dice, Application-Specific Integrated Circuit (ASIC) dice, and Digital Signal Processor (DSP) dice.

Once such electrical connections are formed, an electrical test is performed on the flip-chip semiconductor assembly 32 formed by the dice 28 and the PCB 22 using the in-line test socket 24 or probes 25. This test typically involves checking for open connections that should be closed, and vice versa, but it can also involve more, fewer, or different electrical tests as need dictates. For example, the testing may also include speed grading the dice 28 for subsequent speed sorting. Also, the testing typically occurs while the PCB 22 is singulated from its carrier (not shown).

If the assembly 32 fails the test, it is diverted to a rework station, where any dice 28 identified as being internally defective or as having a defective interconnection with the PCB 22 can easily be removed and reworked, either by repairing the failing dice 28 themselves or by repairing conductive bumps (not shown) on the bottom surfaces of the dice 28 used to connect the dice 28 to the conductive epoxy dots 26 on the PCB 22. Once repaired, the assembly 32 returns for retesting and, if it passes, it is advanced in the process 20 for quick curing along with all assemblies 32 that passed the test the first time through.

During quick cure, the “wet” conductive epoxy dots 26 of the assembly 32 are cured, typically using heat, radiation, or moisture. The assembly 32 is then electrically tested again to ensure that the quick curing has not disrupted the interconnections between the dice 28 and the conductive traces 30 through the conductive epoxy dots 26 and the bumps (not shown) on the bottom surfaces of the dice 28. If quick curing has disrupted these interconnections, then the assembly 32 proceeds to the rework station, where the connections between the bumps and the conductive epoxy dots 26 can be repaired. The repaired assembly 32 is then retested and, if it passes, it proceeds to encapsulation (or some other form of sealing) and, ultimately, is shipped to customers along with those assemblies 32 that passed this testing step the first time through. Of course, it should be understood that this invention may be implemented with only one test stage for “wet” epoxy assemblies, although two stages are preferable.

When the conductive epoxy dots 26 are made from a “dry” epoxy (e.g., a thermoplastic epoxy), then the PCB 22 is indexed and inserted into the in-line test socket 24 or connected to the probes 25 as described above, but the dice 28 are attached to the PCB 22 using heat before the assembly 32 proceeds to testing. Testing typically takes place while the PCB 22 is singulated from its carrier (not shown).

During testing, if the assembly 32 fails, then it proceeds to a rework station, where the bumps (not shown) on the bottom of the dice 28, the dice 28 themselves, or the interconnection between the bumps and the conductive epoxy dots 26 can be repaired. The repaired assembly 32 then proceeds to encapsulation (or some other form of sealing) and, eventually, is shipped to customers along with those assemblies 32 that passed the testing the first time through.

Thus, this invention provides a repair method for flip-chip semiconductor assemblies that is less expensive than the previously described known-good-die (KGD) based rework process, because it does not require the pretesting of dice that the KGD process requires. Also, the methods of this invention are applicable to testing for both internal die defects and die-to-PCB interconnection defects, and to repairing interconnections between dice and a PCB in a flip-chip semiconductor assembly, whereas the conventional KGD process is not. In addition, these inventive methods do not waste burn-in resources, in contrast to the conventional KGD process previously described. Finally, this invention allows for early and convenient speed grading of flip-chip semiconductor assemblies.

As shown in FIGS. 4 and 5, in a process 40 for manufacturing flip-chip semiconductor assemblies in accordance with this invention, a printed circuit board (PCB) 42 is indexed into a die-attach station (not shown), where it is inserted into an in situ test socket 44. It will be understood by those having skill in the technical field of this invention that the invention is applicable not only to PCBs but also to a wide variety of other substrates used in the manufacture of flip-chip semiconductor assemblies.

When conductive epoxy dots 46 or “pads” deposited on the PCB 42 at the die ends of die-to-board-edge conductive traces 50 are made from a “wet” epoxy (i.e., a quick-cure epoxy such as a heat-snap-curable, radiation-curable, or moisture-curable epoxy), then integrated circuit (IC) dice 48 are pressed (active surfaces down) against the conductive epoxy dots 46 during flip-chip attach so electrical connections are formed between the dice 48 and the in situ test socket 44 through the conductive epoxy dots 46 and conductive traces 50 on the PCB 42. Of course, it will be understood that the invention is also applicable to other flip-chip die-attach methods including, for example, solder-based methods. It will also be understood that the dice 48 may be of any type, including, for example, Dynamic Random Access Memory (DRAM) dice, Static RAM (SRAM) dice, Synchronous DRAM (SDRAM) dice, microprocessor dice, Application-Specific Integrated Circuit (ASIC) dice, and Digital Signal Processor (DSP) dice.

Once such electrical connections are formed, an electrical test is performed on the flip-chip semiconductor assembly 52 formed by the dice 48 and the PCB 42 using the in situ test socket 44. This test typically involves checking for open connections that should be closed, and vice versa, but it can also involve more, fewer, or different electrical tests as need dictates. If the assembly 52 fails the test, it is diverted to a rework station, where any dice 48 identified as being internally defective or as having a defective interconnection with the PCB 42 can easily be removed and reworked, either by repairing the failing dice 48 themselves or by repairing conductive bumps (not shown) on the bottom surfaces of the dice 48 used to connect the dice 48 to the conductive epoxy dots 46 on the PCB 42. Once repaired, the assembly 52 returns for retesting and, if it passes, it is advanced in the process 40 for quick curing along with all assemblies 52 that passed the test the first time through.

During quick cure, the “wet” conductive epoxy dots 46 of the assembly 52 are cured, typically using heat, radiation, or moisture. The assembly 52 is then electrically tested again to ensure that the quick curing has not disrupted the interconnections between the dice 48 and the conductive traces 50 through the conductive epoxy dots 46 and the bumps (not shown) on the bottom surfaces of the dice 48. If quick curing has disrupted these interconnections, then the assembly 52 proceeds to another rework station, where the connections between the bumps and the conductive epoxy dots 46 can be repaired. The repaired assembly 52 is then retested and, if it passes, it proceeds to encapsulation (or some other form of sealing) and, ultimately, is shipped to customers along with those assemblies 52 that passed this testing step the first time through. Of course, it should be understood that this invention may be implemented with only one test stage for “wet” epoxy assemblies, although the two stages shown in FIG. 4 are preferable.

When the conductive epoxy dots 46 are made from a “dry” epoxy (e.g., a thermoplastic epoxy), then the PCB 42 is indexed and inserted into the in situ test socket 44 as described above, but the dice 48 are attached to the PCB 42 using heat before the assembly 52 proceeds to testing. During testing, if the assembly 52 fails, then it proceeds to a rework station, where the bumps (not shown) on the bottom of the dice 48, the dice 48 themselves, or the interconnection between the bumps and the conductive epoxy dots 46 can be repaired. The repaired assembly 52 then proceeds to encapsulation (or some other form of sealing) and, eventually, is shipped to customers along with those assemblies 52 that passed the testing the first time through.

Thus, this invention provides a repair method for flip-chip semiconductor assemblies that is less expensive than the previously described known-good-die (KGD) based rework process, because it does not require the pretesting of dice that the KGD process requires. Also, the methods of this invention are applicable to testing for both internal die defects and die-to-PCB interconnection defects, and to repairing interconnections between dice and a PCB in a flip-chip semiconductor assembly, whereas the conventional KGD process is not. In addition, these inventive methods do not waste burn-in resources, in contrast to the conventional KGD process previously described.

Although this invention has been described with reference to particular embodiments, the invention is not limited to these described embodiments. Rather, the invention is limited only by the appended claims, which include within their scope all equivalent methods that operate according to the principles of the invention as described herein.

Claims

1. A method for in situ electrical testing of a flip-chip semiconductor assembly during its manufacture, the method comprising:

inserting a printed circuit board (PCB) into an in situ electrical test socket;
forming interconnection bumps on the surface of one or more IC dice and depositing conductive epoxy pads on the PCB before forming the flip-chip semiconductor assembly;
positioning the one or more integrated circuit (IC) dice on a surface of the PCB in conductive contact with the PCB to form the flip-chip semiconductor assembly while the PCB remains inserted into the in situ electrical test socket; and
electrically testing the flip-chip semiconductor assembly using the in situ electrical test socket.

2. The method of claim 1, wherein the conductive epoxy pads are dry conductive epoxy pads.

3. The method of claim 2, wherein the dry conductive epoxy pads comprise thermoplastic epoxy formed by heating the thermoplastic epoxy followed by cooling the flip-chip semiconductor assembly.

4. The method of claim 2, wherein positioning the one or more IC dice on the surface of the PCB comprises:

aligning bond pads on the one or more IC dice with the dry conductive epoxy pads on electrical pads on the PCB;
contacting the aligned bond pads on the one or more IC dice with the dry conductive epoxy pads on the PCB; and
heating the flip-chip semiconductor assembly to form electrical connections between the aligned bond pads on the one or more IC dice and the electrical pads on the PCB.

5. The method of claim 1, wherein the conductive epoxy pads are curable wet conductive epoxy pads.

6. The method of claim 5, wherein the curable wet conductive epoxy pads comprise heat-curable epoxy and further comprising subjecting the heat curable epoxy to heat to cure the heat-curable epoxy.

7. The method of claim 5, wherein the curable wet conductive epoxy pads comprise radiation-curable epoxy and further comprising subjecting the radiation-curable epoxy to radiation to cure the radiation-curable epoxy.

8. The method of claim 5, wherein the curable wet conductive epoxy pads comprise moisture-curable epoxy and further comprising subjecting the moisture-curable epoxy to moisture to cure the moisture-curable epoxy.

9. The method of claim 5, wherein attaching the one or more IC dice to the PCB comprises:

aligning bond pads on the one or more IC dice with the curable wet conductive epoxy pads on the electrical pads on the PCB; and
contacting the aligned bond pads on the one or more IC dice with the curable wet conductive epoxy pads on the electrical pads on the substrate to form electrical connections therebetween.

10. The method of claim 5, further comprising speed grading the one or more IC dice.

11. The method of claim 10, wherein the speed grading is performed after the electrical testing the flip-chip semiconductor assembly.

12. The method of claim 5, wherein repairing the flip-chip semiconductor assembly includes at least one of:

removing and replacing at least one of the one or more IC dice;
repairing one or more of the interconnection bumps on the one or more IC dice; and
repairing at least one of the conductive epoxy pads on the surface of the substrate.
Referenced Cited
U.S. Patent Documents
3978578 September 7, 1976 Murphy
4677528 June 30, 1987 Miniet
4811081 March 7, 1989 Lyden
5120665 June 9, 1992 Tsukagoshi et al.
5169056 December 8, 1992 Reele et al.
5258648 November 2, 1993 Lin
5261156 November 16, 1993 Mase et al.
5315241 May 24, 1994 Ewers
5424652 June 13, 1995 Hembree et al.
5440241 August 8, 1995 King et al.
5448165 September 5, 1995 Hodge et al.
5478007 December 26, 1995 Marrs
5483174 January 9, 1996 Hembree et al.
5528157 June 18, 1996 Newberry et al.
5532612 July 2, 1996 Liang
5611884 March 18, 1997 Bearinger et al.
5641996 June 24, 1997 Omoya et al.
5654204 August 5, 1997 Anderson
5667884 September 16, 1997 Bolger
5686353 November 11, 1997 Yagi et al.
5701233 December 23, 1997 Carson et al.
5760337 June 2, 1998 Iyer et al.
5764650 June 9, 1998 Debenham
5798652 August 25, 1998 Taraci
5907190 May 25, 1999 Ishikawa et al.
5915231 June 22, 1999 Beffa
5940679 August 17, 1999 Tomura et al.
5985682 November 16, 1999 Higgins, III
6103553 August 15, 2000 Park
6134118 October 17, 2000 Pedersen et al.
6297560 October 2, 2001 Capote et al.
6559666 May 6, 2003 Bernier et al.
6590285 July 8, 2003 Davis et al.
6720574 April 13, 2004 Arnold et al.
Patent History
Patent number: 7005878
Type: Grant
Filed: Jul 27, 2004
Date of Patent: Feb 28, 2006
Patent Publication Number: 20040263196
Assignee: Micron Technology, Inc. (Boise, ID)
Inventors: Chad A. Cobbley (Boise, ID), John VanNortwick (Kuna, ID), Bret K. Street (Meridian, ID), Tongbi Jiang (Boise, ID)
Primary Examiner: Vinh Nguyen
Assistant Examiner: Russell M. Kobert
Attorney: TraskBritt, PC
Application Number: 10/900,610
Classifications
Current U.S. Class: 324/765; Packaging (e.g., With Mounting, Encapsulating, Etc.) Or Treatment Of Packaged Semiconductor (438/15)
International Classification: G01R 31/26 (20060101);