Trench capacitor for high density dynamic RAM

A dynamic one-transistor read/write memory cell employs a trench capacitor to increase the magnitude of the stored charge. The trench is etched into the silicon surface at a diffused N+ capacitor region similar to the N+ bit line, then thick oxide is grown over the bit line and over the capacitor region, but not in the trench; a partial etch followed by regrowth of oxide is used prior to the final etch for most of the depth of the trench, to thereby reduce the effect of undercut. The upper plate of the capacitor is a polysilicon layer extending into the trench and also forming field plate isolation over the face of the silicon bar. A refractory metal word line forms the gate of the access transistor at a hole in the polysilicon field plate.

Skip to: Description  ·  Claims  ·  References Cited  · Patent History  ·  Patent History
Description

This invention relates to manufacture of semiconductor devices, and more particularly to a dynamic read/write memory cell of the MOS VLSI type.

Semiconductor dynamic RAM devices of the type shown in U.S. Pat. No. 4,081,701 issued to White, McAdams and Redwine (a 16K RAM), or U.S. Pat. No. 4,293,993 issued to McAlexander, White and Rao (a 64K RAM), have been manufactured by processes of the type described in U.S. Pats. Nos. 4,055,444 or 4,388,121, both issued to G. R. M. Rao; all of these patents are assigned to Texas Instruments. In order to reduce the size of a dynamic RAM cell to the level needed to produce very high density RAMs, such as the 1-Megabit DRAM, various methods of reducing the capacitor size have been proposed. The magnitude of the capacitor must be maintained at no less than a certain value so that sufficient charge is stored. One method of reducing capacitor area yet maintaining adequate charge storage is to reduce the oxide thickness as explained in U.S. Pat. No. 4,240,092 issued to Kuo, assigned to Texas Instruments; this approach reaches a limit in the area of about 100 to 200 .ANG. oxide thickness because of yield and reliability problems. Another way of increasing the capacitance per unit area is to etch a groove, or trench, in the capacitance region, thus increasing the area; an example of this method is shown in U.S. Pat. No. 4,225,945, also assigned to Texas Instruments.

It is the principle object of this invention to provide an improved process for making high density dynamic RAM cells, particularly with an increased capacitance area due to a trench etched into the storage capacitor region. Another object is to provide an improved method of making trench capacitor type dynamic RAM cells in which the step of etching the trench avoids the effect of undercut. A further object is to provide a simple and reliable process for forming trench capacitors.

SUMMARY OF THE INVENTION

In accordance with one embodiment of the invention, a dynamic one-transistor read/write memory cell employs a trench capacitor to increase the magnitude of the stored charge. The trench is etched into the silicon surface at a diffused N+ capacitor region similar to the N+ bit line, then thick oxide is grown over the bit line and over the capacitor region, but not in the trench; a partial etch followed by regrowth of oxide is used prior to the final etch for most of the depth of the trench, to thereby reduce the effect of undercut. The upper plate of the capacitor is a polysilicon layer extending into the trench and also forming field plate isolation over the face of the silicon bar. A refractory metal word line forms the gate of the access transistor at a hole in the polysilicon field plate.

BRIEF DESCRIPTION OF THE DRAWINGS

The novel features believed characteristic of the invention are set forth in the appended claims. The invention itself, however, as well as other features and advantages thereof, will be best understood by reference to the detailed description which follows, read in conjunction with the accompanying drawings, wherein:

FIG. 1 is a plan view, greatly enlarged, of a small part of a memory cell array in a semiconductor dynamic read/write memory, including a memory cell according to the invention;

FIG. 2 is an elevation view, in section, of the cell of FIG. 1, taken along the line 2--2 in FIG. 1;

FIG. 3 is an elevation view, in section, of the cell of FIG. 1, taken along the line 3--3 in FIG. 1;

FIG. 4 is an elevation view, in section, of the cell of FIG. 1, taken along the line 4--4 in FIG. 1;

FIG. 5 is an electrical schematic diagram of the memory cell of FIGS. 1-4; and

FIGS. 6-9 are elevation views in section of the cell of FIGS. 1, corresponding to FIG. 2, at successive stages in the manufacture thereof.

DETAILED DESCRIPTION OF THE SPECIFIC EMBODIMENT

Referring to FIGS. 1-5, a one-transistor dynamic memory cell is shown which is constructed according to the invention. This cell has an N-channel access transistor 10 and a storage capacitor 11 formed in a silicon substrate 12. The transistor 10 has a metal gate 13 which is part of an elongated strip 14 forming a row (or word) line for the memory array. The drawin 15 of the transistor is part of an elongated bit line 16, perpendicular to the word line 14. The portion of the substrate shown is a very small part of a silicon bar of perhaps 150.times.400 mils containing 2.sup.20 or 1,048,576 of these cells in an array of rows and columns, generally as shown in copending application Ser. No. 626,791, filed July 2, 1984, now U.S. Pat. No. 4,630,240 by Poteet & Chang, assigned to Texas Instruments.

The bit line 16 is buried beneath a thick thermal oxide layer 17, so the metal word line can pass directly over the bit line. Isolation laterally along the face is provided by a field plate 18, composed of polysilicon in this example, and electrically connected to the substrate voltage Vss. A hole 19 in the field plate 18 defines the area of the gate 13 of the transistor 10.

According to the invention, the capacitor 11 includes a trench 20, which is a hole etched into the silicon by an anistropic etch technique such as RIE. The trench 20 is about one micron wide and three microns deep. A thin silicon oxide layer 21 provides the capacitor dielectric, and thin silicon oxide 22 the transistor gate insulator. A thicker oxide coating 23 and a silicon nitride layer 24 provide the insulator beneath the field plate 18. The grounded field plate 18 also provides a flat surface for the metal line 14, as well as insulating the polysilicon 16 from the metal word line.

The trench 20 and the capacitor 11 are formed in a square area of field oxide 28 having a N+ region 29 beneath it, similar to the oxide 17 and bit line 16. This N+ region 29 functions as the source of the access transistor 10, and is spaced from the drain 15 by the channel length of this transistor.

A method of making the cell of FIGS. 1-5 will be described with respect to FIGS. 6-9. A silicon slice has a layer of thermal silicon oxide 23 of about 1000 .ANG. grown on the face, then a layer 24 of silicon nitride deposited over the oxide. The oxide-nitride sandwich is patterned by photolithographic steps, leaving an exposed area 30 for the bit line 16 and an area 31 where the capacitor will be formed. An ion implant is performed to creat the N+ regions 32 and 33 which will later form the N+ bit line 16 and N+ region 29.

Referring to FIG. 7 an etch mask 34 is deposited for the purpose of defining the trench. This etch mask is silicon oxide of a thickness of about 8000 .ANG., formed by low pressure chemical vapor deposition. Photoresist could also be used if the etch selectivity of silicon to photoresist is high enough. A hole 35 is formed in the layer 34 by photolithography to define the trench 20. Using an anistropic etch, such as RIE (reactive ion etch) the trench 20 is created in the capacitor region to a depth of about three microns. Actually, the bottom of the trench may be narrower than the top, rather than being squared off, so the trench may be more cone-shaped than perfectly rectangular, depending upon the etch process used.

According to the invention, this trench etch is a two-step process. As seen in the enlarged view of FIG. 7a, the first etch is shallow, and removes some of the silicon in the hole 35 but also undercuts the mask 34 by etching into the region 33 by a small amount at area 36 encircling the hole. A thermal oxidation is then performed in steam to grow oxide 36a in the area 36, seen in FIG. 7b. Oxide 37 also grows in the trench, but much thinner because of the doping level of the silicon. A dip-out etch removes this oxide in the shallow trench, and so the etch can proceed to the full depth of the trench, using the oxide 36a in the area 36 as an etch stop to prevent further undercutting. The extent to which this area 36 propogates through to the final structure as a ring 36' of FIGS. 1, 2 and 4 is very slight.

The trench mask 34 is stripped off, using a conventional oxide etch such as HF since the etch will stop on the nitride 24. Turning to FIG. 8, the oxide 17 and 28 is now grown over the N+ regions 32 and 33. The oxide grows many times faster on the N+ silicon than on the very lightly doped silicon in the trench 20, so the thickness of the oxide 17 and 28 is about 4000< while only about 200 .ANG. grows in the trench. This thin oxide is grown in the trench and stripped, then regrown as the oxide 21. A seen in FIG. 9, a layer of polysilicon is deposited by an isotropic process so it coats the sidewalls of the trench and the face of the slice to about the same thickness, to about 2500 .ANG.. Next, an oxide layer 26 is deposited over the entire face of the slice to planarize the face and fill up the trench 20; the oxide 26 will also isolate the word line from the face. This polysilicon/oxide stack is patterned using photoresist to leave the field plate 18 and capacitor plate 25; i.e., the hole 19 is cut for the transistor 10.

Referring back to FIGS. 1-4, the oxide in the gate area is stripped and regrown as the oxide 22, and at this point thermal oxide is grown over the exposed edge of the polysilicon around the periphery of the hole 19. Then the word line is formed by depositing a layer of molybdenum over the entire face of the slice and patterning it by photolithography to leave the gate 13 and word line 14. A protective coating is added on top, (not shown) and patterned to expose bonding pads, then the slice is tested, scribed and broken into individual bars, and the bars mounted in semiconductor packages.

While this invention has been described with reference to illustrative embodiments, this description is not intended to be construed in a limiting sense. Various modifications to the illustrative embodiments, as well as other embodiments of the invention, will be apparent to persons skilled in the art upon reference to this description. It is therefore contemplated that te appended claims will cover any such modifications or embodiments as fall within the true scope of the invention.

Claims

1. A dynamic memory cell formed in a face of a semiconductor body, said cell comprising:

an access transistor having a source-to-drain path at a channel area of said face, and a metal gate over said channel area separated therefrom by a thin gate oxide;
a bit line including an elongated N+ region of said face, the drain of said transistor being an edge of said N+ region;
a metal word line extending along said face perpendicular to said bit line, said metal gate being a part of said word line;
said N+ region of said bit line being insulated from said word line by thick thermal field oxide overlying said bit line;
a capacitor area at said face including a trench etched into said face and N+ region surrounding said trench, with a thick thermal field oxide overlying said N+ region;
a region of thermal field oxide encircling said trench inset into said N+ region surrounding said trench,
a field plate including a conductive layer covering said face overlying said capacitor area, said bit line and all areas except said channel area of said transistor, and extending down into said trench to provide the upper plate of the capacitor, insulated from the silicon in said trench by a thin oxide.

2. A memory cell according to claim 1 wherein said field plate is insulated from said face in areas except said capacitor area and said bit line by a layer of oxide and a layer of silicon nitride.

3. A memory cell according to claim 1 wherein said capacitor area is spaced laterally along said face from said drain region by said channel area, and said N+ region in said capacitor area forms the source of said transistor.

4. A memory cell according to claim 1 wherein said field oxide over said bit line is about the same thickness as the field oxide in said capacitor area.

5. A memory cell according to claim 1 wherein a coating of insulator over said field plate fills said trench to provide a level surface for said metal word line.

6. A memory cell according to claim 1 wherein the width of said trench is no more than about one micron and the depth of the trench is at least about twice the width.

7. A memory cell according to claim 1 wherein said body is P type silicon, said metal word line is molybdenum, and said conductive layer is polysilicon..Iadd.

8. A dynamic memory cell formed in a face of a semiconductor body, said cell comprising:

an access transistor having a source-to-drain path at a channel area of said face, and a gate over said channel area separated therefrom by a thin gate oxide;
a bit line including an elongated N+ region of said face, the drain of said transistor being an edge of said N+ region;
a word line extending along said face perpendicular to said bit line, said gate being a part of said word line;
said N+ region of said bit line being insulated from said word line by thick thermal field oxide overlying said bit line;
a capacitor area at said face including a trench etched into said face and N+ region surrounding said trench, with a thick thermal field oxide overlying said N+ region;
a region of thermal field oxide encircling said trench inset into said N+ region surrounding said trench, a field plate including a conductive layer covering said face overlying said capacitor area, said bit line and all areas except said channel area of said transistor, and extending down into said trench to provide the capacitor, insulated from the silicon in said trench by a thin oxide..Iaddend..Iadd.9. A memory cell according to claim 8 wherein said field plate is insulated from said face in areas except said capacitor area and said bit line by a layer of oxide and a layer of silicon nitride..Iaddend..Iadd.10. A memory cell according to claim 8 wherein said capacitor area is spaced laterally along said face from said drain region by said channel area, and said N+ region in said capacitor area forms the source of said transistor..Iaddend..Iadd.11. A memory cell according to claim 8 wherein said field oxide over said bit line is about the same thickness as the field oxide in said capacitor area..Iaddend..Iadd.12. A memory cell according to claim 8 wherein a coating of insulator over said field plate fills said trench to provide a level surface for said metal word line..Iaddend..Iadd.13. A memory cell according to claim 8 wherein the width of said trench is no more than about one micron and the depth of the trench is at least about twice the width..Iaddend..Iadd.14. A memory cell according to claim 8 wherein said body is P type silicon, said word line is molybdenum, and said conductive layer is polysilicon..Iaddend.
Referenced Cited
U.S. Patent Documents
3961355 June 1, 1976 Abbas et al.
4003036 January 11, 1977 Jenne
4017885 April 12, 1977 Kendall et al.
4105475 August 8, 1978 Jenne
4115795 September 19, 1978 Masuoka et al.
4116720 September 26, 1978 Vinson
4164751 August 14, 1979 Tasch
4199772 April 22, 1980 Natori et al.
4225945 September 30, 1980 Kuo
4262296 April 14, 1981 Shealy et al.
4319342 March 9, 1982 Scheuerlein
4327476 May 4, 1982 Iwai et al.
4353086 October 5, 1982 Jaccodine et al.
4364074 December 14, 1982 Garnache et al.
4369564 January 25, 1983 Hiltpold
4397075 August 9, 1983 Fatula et al.
4412237 October 25, 1983 Matsumura et al.
4432006 February 14, 1984 Takei
4434433 February 28, 1984 Nishizawa
4462040 July 24, 1984 Ho et al.
4472240 September 18, 1984 Kameyama
4476623 October 16, 1984 El-Kareh
4536785 August 20, 1985 Gibbons
4568958 February 4, 1986 Baliga
4630088 December 16, 1986 Ogura et al.
4636281 January 13, 1987 Buiguez et al.
4649625 March 17, 1987 Lu
4650544 March 17, 1987 Erb et al.
4651184 March 17, 1987 Malhi
4670768 June 2, 1987 Sunami et al.
4672410 June 9, 1987 Miura et al.
4673962 June 16, 1987 Chatterjee et al.
4683486 July 28, 1987 Chatterjee
4702795 October 27, 1987 Douglas
4704368 November 3, 1987 Goth et al.
4717942 January 5, 1988 Nakamura et al.
4751557 June 14, 1988 Sunami et al.
4751558 June 14, 1988 Kenney
Foreign Patent Documents
118878 September 1984 EPX
167764 January 1986 EPX
176254 April 1986 EPX
186875 July 1986 EPX
198590 October 1986 EPX
2706155 August 1978 DEX
3508996 October 1985 DEX
3525418 January 1986 DEX
55-133574 October 1980 JPX
56-51854 May 1981 JPX
59-141262 August 1984 JPX
60-12752 January 1985 JPX
60-213053 October 1985 JPX
60-261165 December 1985 JPX
61-36965 February 1986 JPX
61-73366 April 1986 JPX
2002958 February 1979 GBX
2168195 June 1986 GBX
Other references
  • G. Clarke et al., "Cap. for Single FET Memory Cell", IBM Tech. Discl. Bull., vol. 17, #9, Feb. 1975, pp. 2579, 2580. F. Barson, "Dynamic DMOS RAM Cell Design with Trench", IBM Tech. Discl. Bull., vol. 21, #7, Dec. 1978, pp. 2755-2756. T. Chang et al., "F.A.B, Ofv-MOS or U-MOS Ram Cells . . . ", IBM Tech. Discl. Bull., vol. 22, #7, Dec. 1979, pp. 2768-2771. J. Fatula et al., "N Skin Elim. in UMOS Device by Re-Ox.", IBM Tech. Discl. Bull., vol. 22, #8A, Jan. 1980, pp. 3204-3205. H. Lee et al., "Short-Channel FETs in V-Grooves", IBM Tech. Discl. Bull., vol. 22, #8B, Jan. 1980, pp. 3630-3634. T. Chang et al., "Vertical FET RAM with Deep Trench Iso.", IBM Tech. Discl. Bull., vol. 22, #8B, Jan. 1980, pp. 3683-3687. D. Kenney, "Reduced Bit Line Capacitance in VMOS Devices", IBM Tech. Discl. Bull., vol. 23, #9, Feb. 1981, pp. 4052-4053. D. Kenney, "V-Groove Dynamic Memory Cell", IBM Tech. Discl. Bull., vol. 23, #3, Aug. 1980, pp. 967-969. C. Jambotkar, "Compact One-Device DRAM Cell . . . ", IBM Tech. Discl. Bull., vol. 27, #2, Jul. 1984, pp. 1313-1320. S. Nakajima et al., "An Isolation-Merged Vert. Cap. Cell . . . ", Proc. IEDM, Dec. 1984, pp. 240-243.
Patent History
Patent number: RE33261
Type: Grant
Filed: Mar 2, 1989
Date of Patent: Jul 10, 1990
Assignee: Texas Instruments, Incorporated (Dallas, TX)
Inventors: David A. Baglee (Albuquerque, NM), Ronald Parker (Houston, TX)
Primary Examiner: Joseph E. Clawson, Jr.
Attorneys: Douglas A. Sorensen, Rodney M. Anderson, Melvin Sharp
Application Number: 7/319,783
Classifications
Current U.S. Class: 357/236; 357/41; 357/54; 357/55; Capacitors (365/149)
International Classification: H01L 2978;