High speed bypass cable assembly

- Molex, LLC

A cable bypass assembly is disclosed for use in providing a high speed transmission line for connecting a board mounted connector of an electronic device to a chip on the device board. The bypass cable assembly has a structure that permits it, where it is terminated to the board mounted connector and the chip member, or closely proximate thereto to replicate closely the geometry of the cable. The connector terminals are arranged in alignment with the cable signal conductors and shield extensions are provided so that shielding can be provided up to and over the termination between the cable signal conductors and the board connector terminal tails. Likewise, a similar termination structure is provided at the opposite end of the cable where a pair of terminals are supported by a second connector body and enclosed in a shield collar. The shield collar has an extension that engages the second end of the cable.

Skip to: Description  ·  Claims  ·  References Cited  · Patent History  ·  Patent History
Description

This is a reissue application of U.S. Pat. No. 9,011,177, Issued Apr. 21, 2015.

REFERENCE To RELATED APPLICATIONS

The Present Disclosure is a continuation-in-part of International Application No. PCT/US2010/022738, filed Feb. 1, 2010, entitled “High Speed Interconnect Cable Assembly,” filed 01 Feb. 2010 with the U.S. Patent And Trademark Office (USPTO) as Receiving Office for the Patent Cooperation Treaty. The '738 Application claims priority of prior-filed U.S. Provisional Application No. 61/145,685, entitled “High Speed Interconnect Cable Assembly,” filed 30 Jan. 2009 also with the USPTO. The contents of each of the above Applications are fully incorporated in their entireties herein.

BACKGROUND OF THE PRESENT DISCLOSURE

The Present Disclosure relates generally to cable interconnection systems, and more particularly, to bypass cable interconnection systems for transmitting high speed signals at low losses.

Conventional cable interconnection systems are found in electronic devices such as routers and servers and the like, and are used to form a signal transmission line that extends between a primary chip member mounted on a printed circuit board of the device, such as an ASIC, and a connector mounted to the circuit board. The transmission line typically takes the form of a plurality of conductive traces that are etched, or otherwise formed on or as part of the printed circuit board. These traces extend between the chip member and a connector that provides a connection between one or more external plug connectors and the chip member. Circuit boards are usually formed from a material known as FR-4, which is inexpensive. However, FR-4 is known to promote losses in high speed signal transmission lines, and these losses make it undesirable to utilize FR-4 material for high speed applications (10 GHz and above). Custom materials for circuit boards are available that reduce such losses but the price of these materials severely increase the cost of the circuit board and, consequently, the electronic devices in which they are used. Additionally, when traces are used to form the signal transmission line, the overall length of the transmission line typically may well exceed 10 inches in length. These long lengths require that the signals traveling through the transmission line be amplified and repeated, thereby increasing the cost of the circuit board, and complicating the design inasmuch as additional board space is needed to accommodate these amplifiers and repeaters. In addition, the routing of the traces of such a transmission line in the FR-4 may require multiple turns and the transitions which occur at terminations affect the integrity of the signals transmitted thereby. It becomes difficult to route transmission line traces in a manner so as to achieve consistent impedance and a low signal loss therethrough.

The Present Disclosure is therefore directed to a high speed, bypass cable assembly that defines a transmission line for transmitting high speed signals, 10 GHz and greater that removes the transmission line from on the circuit board and which has low loss characteristics.

SUMMARY OF THE PRESENT DISCLOSURE

Accordingly, there is provided an improved high speed bypass cable assembly that defines a signal transmission line useful for high speed applications at 10 GHz or above and with low loss characteristics.

In accordance with an embodiment as described in the disclosure, an electrical connector assembly is disclosed. The electrical connector assembly comprises a printed circuit board, a chip member, a termination member, a first connector member, a bypass cable member and a second connector member. The chip member and the termination member are mounted on the printed circuit board, with the termination member mounted toward the end of the printed circuit board. The first connector member is in electrical communication with the chip member at a first end, and the bypass cable member electrically connects the first connector member, where it is coupled at a second end thereof, and the termination member, at a first end. The second connector member, disposed at a second end of the termination member, is in electrical communication with the termination member. Generally, the electrical connector is capable of the transmission of high speed signals. As the chip member is located a long length from the board connector, the bypass cable provides a transmission line therebetween that has a consistent geometry and structure that resists signal loss and maintains the system impedance at a consistent level without discontinuities.

In accordance with a second embodiment of the disclosure, the cable bypass assembly provides a transmission line that is separate from the circuit board, and may include one or more associated signal wire pairs, such as is found in “twin-ax” cable. The wires of the bypass cable are configured at their opposite ends in two fashions. At a first end of the bypass cable, the wires are configured for a direct termination to a board mounted connector, and are arranged in a manner such that the conductors of the signal wires extend in alignment with terminal termination ends, or feet, of the board mounted connector. The shielding of the signal wires are rolled back upon the insulative coating of the wires and exterior shield extensions are preferably provided to ensure that the signal wire conductor leads are effectively shielded through the connection. In this manner of connection, the terminal tails need not be attached to the circuit board, either as surface mount or through hole tails, thereby significantly reducing losses and the impedance discontinuity that occurs in the tail to board mounting transition.

At the second end of the bypass cable the signal wires are terminated in a fashion so that they can either be connected directly to the chip member or to the board in close proximity to the chip member. In this regard, and as disclosed in this second embodiment, the signal wire conductors are terminated to associated tail portions that are aligned with the conductors, similar to the termination which occurs at the first end. These tails are maintained in a desired spacing and are further completely shielded by a surrounding conductive enclosure to provide full EMI shielding and reduction of cross talk. The termination of the ends of the bypass cable assembly are done in a manner such that to the extent possible, the geometry of the conductors in the bypass cable is maintained through the termination of the cable to the board connector and/or the chip.

These and other objects, features and advantages of the Present Disclosure will be clearly understood through a consideration of the following detailed description.

BRIEF DESCRIPTION OF THE FIGURES

The organization and manner of the structure and operation of the Present Disclosure, together with further objects and advantages thereof, may best be understood by reference to the following Detailed Description, taken in connection with the accompanying Figures, wherein like reference numerals identify like elements, and in which:

FIG. 1 illustrates a perspective view of one embodiment of a high speed interconnect cable assembly, developed in accordance with the Present Disclosure;

FIG. 2 illustrates a perspective view of another embodiment of a high speed interconnect cable assembly, developed in accordance with the Present Disclosure;

FIG. 3 illustrates a perspective view of another embodiment of a high speed interconnect cable assembly, developed in accordance with the Present Disclosure;

FIG. 4 illustrates a perspective and inset view of the via transfer connector of the interconnect cable assembly of FIG. 3;

FIG. 5 illustrates a perspective and inset view of the first connector member of the interconnect cable assembly of FIG. 3;

FIG. 6 is a perspective view of a second embodiment of a cable bypass assembly constructed in accordance with the Present Disclosure;

FIG. 7 is a top plan view of the cable bypass assembly of FIG. 6;

FIG. 8 is an exploded view of the assembly of FIG. 6, illustrating in greater detail the board connector to which the cable bypass assembly is terminated;

FIG. 9 is a perspective view of the board mounted connector of FIG. 8, with the first ends of the bypass assembly attached thereto;

FIG. 10 is a partially exploded view of FIG. 9;

FIG. 11 is a top plan view of FIG. 9, with the EMI shield removed for clarity;

FIG. 11A is a side elevational view of FIG. 11;

FIG. 12 is perspective view of four pairs of signal wires terminated to the board connector terminal assembly and with one set of the shielding extensions removed for clarity;

FIG. 12A is the same view as FIG. 12, but taken from the rear thereof;

FIG. 12B is a end view of two pairs of signal wires with an associated shielding extension in place, illustrating the relative alignments of the signal conductors with each other and to the shielding of the cables;

FIG. 13 is a perspective view of one manner of terminating the ends of the cables of the cable bypass assembly which is opposite that of the termination to the board mounted connector;

FIG. 13A is the same view as FIG. 13, but with one of the exterior shielding components removed for clarity;

FIG. 13B is the same view as FIG. 13A but with the lower shielding component removed and the terminal support in place on the terminals attached to the second end of the cable;

FIG. 13C is the same view as FIG. 13B but with the terminal support removed for clarity;

FIG. 13D is the same view as FIG. 13C, but taken from the other end thereof;

FIG. 13E is a sectional view of FIG. 13;

FIG. 14 is an embodiment of a termination structure for direct connection to a chip member;

FIG. 14A is an exploded view of FIG. 14;

FIG. 14B is an enlarged detail view of FIG. 14A.

FIG. 15 is a partially exploded view of an extent of flexible circuitry which may be used as a signal transmission line in cable bypass assemblies of the disclosure; and,

FIG. 16 is a graph comparing the losses between 12-inch lengths of signal transmission lines incorporated on a circuit board made from FR-4 material and a cable bypass assembly constructed in accordance with the principles of the disclosure.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

While the Present Disclosure may be susceptible to embodiment in different forms, there is shown in the Figures, and will be described herein in detail, specific embodiments, with the understanding that the disclosure is to be considered an exemplification of the principles of the Present Disclosure, and is not intended to limit the Present Disclosure to that as illustrated.

In the embodiments illustrated in the Figures, representations of directions such as up, down, left, right, front and rear, used for explaining the structure and movement of the various elements of the Present Application, are not absolute, but relative. These representations are appropriate when the elements are in the position shown in the Figures. If the description of the position of the elements changes, however, these representations are to be changed accordingly.

While the Present Disclosure may be susceptible to embodiment in different forms, there is shown in the Figures, and will be described herein in detail, specific embodiments, with the understanding that the disclosure is to be considered an exemplification of the principles of the Present Disclosure, and is not intended to limit the Present Disclosure to that as illustrated.

FIGS. 1-5 provide various perspective views of some basic components of a high speed interconnect cable assembly, developed in accordance with the teachings and tenets of the Present Disclosure.

Referring more specifically to FIG. 1, high speed interconnect cable assembly 10 generally comprises chip member 12 mounted on printed circuit board member 14, first connector member 16 interfacing between chip member 12 and bypass cable member 18, and termination member 20 interfacing between bypass cable member 18 and second connector member 22 disposed at the edge of printed circuit board member 14.

Preferably, chip member 12 may comprise a PHY Chip, or any other surface-mounted, physical layer device, known in the art, from which a high speed signal is generated, such as an ASIC and transmitted to a cable assembly. Chip member 12 is mounted to any currently-known printed circuit board, using preferably any of the various currently-known mounting means. Preferably, an FR-4 type printed circuit board is used, in an effort to take advantage of its low cost and wide usage. For purposes of the Present Disclosure, the generated high speed signal may be any type of signal, but typically a data signal, generally having a frequency of 5 GHz and above, and most preferably and is a data signal having a frequency of 10 GHz or more.

Bypass cable member 18 is connected to chip member 12 by means of first connector member 16. First connector member 16 is capable of transmitting a signal greater than 10 GHz between chip member 12 and bypass cable member 18. The interface between first connector member 16 and chip member 18 may be by any known means, including, for example, a plug-receptacle connection, a friction-based connection or the like. It is preferred that the interface be removable. First connector member 16 is preferably capable of receiving the high speed signal generated by the chip member and transmitting it to the bypass cable member without need for a repeater or an amplifier, and without having to use the conductive properties of printed circuit board 14.

Bypass cable member 18 comprises a flexible circuit member, such as a cable, extending from first connector member 16 to termination member 20. Preferably, bypass cable member 18 is capable of receiving and carrying signals above 10 GHz. Preferably, bypass cable member 18 includes one or more wire pairs that transmit differential signals at high speeds. Each such wire pair may have a ground, or drain, wire associated with it. Further, the pairs may be enclosed within bypass cable member 18 and within an associated cable shield. Like first connector member 16, bypass cable member 18 is preferably capable of receiving the high speed signal generated by first connector member 18 and transmitting it to termination member 20 without need for a repeater or an amplifier, and without having to use the conductive properties of printed circuit board 14.

Termination member 20 is electrically connected to bypass cable member 18, and receives the signal from bypass cable member 18. Like all other elements in interconnection assembly 10, termination member 20 is capable of receiving signals greater than 10 GHz. Preferably, termination member 20 is located at or near the edge of printed circuit board 14. Termination member 20 may be mounted to the edge of printed circuit board 14. Alternatively, termination member 20 may be “freestanding,” and not connected to any aspect of assembly 10. Termination member 20 may receive bypass cable member 18 though any methods and means as currently described in the art.

Second connector member 22 preferably provides one end of a male-female relationship with termination member 20 (with termination member 20 providing the second end). It is not imperative that second connector member 22 (or termination member 20) be specifically relegated to the male or female end, as the teachings of the Present Disclosure will nevertheless be realized.

Second connector member 22 is preferably not disposed on any other aspect of interconnection assembly 10 of the Present Disclosure, i.e., second connector member 22 is not mounted on printed circuit board 14. Second connector member 22 receives the signal from termination member 20, and transmits the signal to its next or final destination.

The discussion above focused on a single interconnection assembly. Nevertheless, a plurality of interconnection assemblies may be used on a single printed circuit board, each generally comprising the above-referenced elements. A plurality of assemblies is generally illustrated in FIG. 1. Further, in a second embodiment, which is illustrated in FIG. 2, lamination member 24 may encompass all or part of multiple bypass cable members 18 for ease in assembly, as well as to maintain order on printed circuit board 14 and reduce the cost of assembly 10. Preferably, lamination member 24 may comprise a rigid, formable polymer material that can be molded over both first connector member 16 and bypass cable member 18.

Further, in another embodiment, a plurality of interconnection assemblies, used on a single printed circuit board, may be channeled to a single termination member 26 for transmission of signals beyond the printed circuit board. As illustrated in FIG. 3, bypass cable members 18 extend from chip members 12, via first connector member 16, towards first via transfer connectors 28. Each via transfer connector 28 allows the signal being carried in bypass cable members 18 to pass through holes (or vias) in the printed circuit board where they connect with termination member 26.

FIG. 4 illustrates a perspective close up of the connection of via transfer connectors 28 to termination member (not shown in FIG. 4). As illustrated, each via transfer connector 28 houses the termination of bypass cable members 18. Individual wires 30 extending from bypass cable members 18 are mounted within connector housing 32. Connector housing 32, along with individual wires 30 and a portion of bypass cable members 18, are overmolded with terminal housing 34 38. Terminal housing 34 38 is then inserted into the via hole of the printed circuit board, where it couples to termination member.

FIG. 5 illustrates a perspective close up of first connector member 16. As illustrated, each first connector 16 houses the termination of bypass cable members 18. Individual wires 36 extending from bypass cable members are overmolded with terminal housing 38. Terminal housing 38 is then coupled to chip member 12.

FIGS. 6-13E illustrate another embodiment of a bypass cable assembly 100 constructed in accordance with the principles of the Present Disclosure. As shown in FIG. 6, a circuit board 101 that is used in an electronic device (not shown) has mounted thereon a chip member 104, such as an ASIC, at one location and a shielding cage 102 mounted to the circuit board at another location, remote from the one location. The shielding cage 102 houses a receptacle connector assembly 110 that includes a receptacle connector 112 configured to receive the mating blade (typically the leading edge of a circuit card) of an opposing, mating connector (not shown) in a elongated card-receiving slot 113. The connector 112 may also include a channel 114 disposed underneath the card slot 113 to receive a polarizing member of the mating connector. The connector 112 is accessible through an opening 103 at one end of the shielding cage 102. A portion of the shielding cage 102 extends past the edge of the circuit board 101 and out of the enclosure which houses the circuit board 101. This opening 103 permits access to the connector 112 from the exterior of the device and permits the insertion of a mating connector, typically in the form of a plug connector, therein in order to connect the device to another device and permit the transfer of signals between them.

A bypass cable assembly 105 is provided to connect together, the connector 112 and the chip member 104, in order to form a signal transmission line extending therebetween for transmitting signals at high speeds of approximately 5 GHz and greater and preferably of approximately 10 GHz and greater. The cable assembly 105 includes a preselected length of cable 107 that has at a first end 107a thereof, a first termination assembly and at a second and opposite end 107b thereof, a second termination assembly. As shown best in FIG. 12B, each cable 107 may be of the “twin-ax” type, in which a pair of signal conductors 144A, 144B are positioned in spaced-apart relationship within an insulative body 142. This cable body 142 is surrounded by an outer conductive shielding layer 148 that is located underneath an exterior, insulative covering 140 and all of the cable elements may be formed as the single component illustrated. The structure of this particular type of twin-ax cable lends itself to uniformity throughout its length so that a consistent impedance profile is attained for the length of the cable. The cable assemblies 105 of this disclosure may include as few as one or two cables, or they may include greater numbers, such as the eight cables shown in FIGS. 6, 9 & 11.

In order to avoid losses that normally occur in the use of signal transmission lines in the circuit board 101 using FR-4 as the board material, the cables 107 are used as the signal transmission lines. As noted above, the cables 107 are made in a manner that controls their size, thickness and the position and spacing of the signal conductors 144A, 144B so as to define a constant impedance profile throughout the lengths of the cables. Accordingly, twin-ax type of cable is desirable as well as flexible circuitry where positioning of the conductors and insulators may be controlled to a high degree of tolerance. Problems with impedance profiles typically occur at the termination points of cables where the geometry of the cable disrupted in order to effect a termination. One such solution to this problem is disclosed in U.S. Pat. No. 6,454,605, issued Sep. 24, 2002 and assigned to the assignee of the Present Disclosure and which is hereby incorporated by reference, in its entirety.

The cable assemblies of the Present Disclosure are terminated at their opposite ends 107A, 107B in a manner that seeks to reduce the modification of the cable geometry in order to reduce the magnitude of the aforementioned discontinuities and to prevent to the extent possible excessive loss, noise and crosstalk. Returning to the drawings and in particular FIGS. 12 & 12A, it can be seen that the terminals 120 of the receptacle connector 112 have tail portions 132 that extend outwardly from the rear face of the terminal assembly supports 118A, 118B and contact portions 130 that extend forwardly within the card-receiving slot 113 of the body of the receptacle connector 112. The terminal contact and tail portions 130, 132a, 132b, extend in a continuous, generally horizontal extent through the connector without any vertical terminal extents that would provide an interruption of the horizontal extent. Consequently, as used herein, the term uninterrupted means a generally horizontal extent without any vertical portions. Similarly, “generally horizontal extent” also means that there are no vertical portions of the terminals that change the levels of the terminal contact and tail portions as would be found in terminals configured for surface mounting such as the low speed, power and status terminals 134 that are interposed between the high speed terminal sets. These non-high speed terminals 134 may be positioned with the use of a tail aligner block 116 or the like. In order to provide strain relief and to facilitate assembly, two cables may be held together by a block 106 applied to the cables 107 downstream of the termination areas.

In this manner, a “direct connection” is effected between the cable first end 107A and the connector 112, in a manner such that the signal terminal tail portions 132a, 132b are aligned with the exposed leads of the cable conductors 144A, 144B so that the exposed leads may be placed on the flat surfaces which the terminal tail portions 132a, 132b preferably provide. The inner shielding 148 of each cable 107 is pulled back over the exposed end of the cable and a shield extension 146 is provided for engaging these cable ends. The extension 146 is shown as a dual extension that can accommodate two cables. The shield extension 146 has what may be considered a cup portion 145 that is formed in a configuration that is generally complementary to the exterior configuration of the cable 107, and it is provided with contact feet 146a-c for contacting the associated terminal tail portions 132c of ground terminals in the receptacle connector 112.

The dual shield extension 146 shown in the drawings has two such cup portions 145 and three contact feet. Two contact feet 146a, 146b are formed along the outer edges of the cup portion 145, while the third contact foot 14c is formed between the cup portions 145. The contact surfaces 147 formed on the bottom of the contact feet are preferably aligned with each other along a common plane, shown as “H” in FIG. 12B. The conductors 144A, 144B of the cable 107 are also preferably aligned with the contact feet, along H as illustrated best in FIG. 12B. In this manner a “direct” connection is effected between first ends 107A of the cables 107 and the board mounted connector 112, thereby eliminating the need for surface mounting or through hole mounting of the connector high speed terminal tails, all of which contribute to loss, noise and crosstalk at high speeds. Terminals of the connector 112 for which high speed performance is not an issue, such as low speed signal terminals and/or power and status terminals 134, may be terminated in conventional manners mentioned above and they are shown in FIGS. 12 & 12A as surface mounted, and such terminals may be disposed between sets of high speed terminals as illustrated for additional separation between the high speed terminal sets. Removing the high speed signals of the receptacle connector from attachment directly to the board, reduces the cost in formation and manufacture of the circuit board 102. Additionally, the termination style shown in the drawings mirrors the geometry of the cable and provides generally complete shielding at the direct connection.

The shield extensions 146 provide as close as can be attained complete shielding at the direct termination to the board connector and they extend forwardly to completely cover the exposed ends of the cable signal conductors 144A, 144B as shown in FIG. 11. The shield extension mounting feet 146a-c thereof are spaced apart and contact opposing tail portions of ground terminals of the first connector 112. The shield extension feet 146a-c and the conductors 144A, 144B of the cables 107 can be soldered or welded in their attachment to the connector terminals and the shield extensions 146 may be attached to the cables 107 by contact, a conductive adhesive, soldering or other suitable means. In this manner, the cable geometry is closely replicated in the termination area and more effective shielding is provided than just an ordinary ground wire to ground terminal connection. An EMI housing 109 may be utilized to provide an enclosure, in combination with the shielding cage 102 about the cable termination area.

FIGS. 13A-D illustrate one form of termination that may be applied to the second ends of the cables 107, which may be either connected directly to the chip member or to the circuit board 101 in close proximity thereto. As illustrated in FIGS. 13B-D, the exposed leads of the cable conductors 144A, 144B are attached to signal terminals 160, shown as a pair of signal terminals 160A, 160B. These terminal preferably have flat tail portions 163 and through hole contact portions 162. The flat tail portions 163 preferably provide a flat surface to which the exposed conductors 144A, 144B may be contacted and attached via solder, welding or the like. The signal terminal 160 may be held in by an insulative support 156 that as shown is molded over body portions of the terminal 160, leaving the tail and contact portions 163, 162 exposed for termination purposes. A shield collar 152 is provided that houses the signal terminal support 156 and substantially encloses the signal terminals with a conductive shield. The shield collar 152 has a shield extension 153B that is similar in configuration to cable first end shield extensions 146 in that is has a cup portion 145 that contacts and receives the cable 107 and its inner shielding 148 therein. A cap member 153 is also provided and the cap member includes a block portion 154 that preferably abuts the terminal support 156 and which further preferably engages the shield collar 152 by way of tabs 156 that engage like holes 157 in the walls of the collar 152.

FIGS. 14-14B illustrate another embodiment of a manner or termination to a second connector. In this embodiment, the second connector 200 is one that is used to attach directly to the chip member 104, and typically to a top surface thereof. In this regard, the second connector 200 has a housing 202 that receives a plurality of cables 204, and the type of cables illustrated are of a different twin-ax structure, namely one in which each cable 204 contain a pair of signal wires 205 and a drain (ground) wire 206. The signal wires 205 have signal conductors 207 running their length and surrounded by an outer insulative covering 208 and an outer covering 209 is provided that encloses a pair of the signal wires 205 and an associated drain wire 206. A perforated base portion 210 of the housing 202 has a plurality of slots, or cavities 211, each of which is configured to receive a single terminal 212 therein. LGA-style terminals are illustrated and each such terminal 212 includes a body portion 213 that engages the housing cavity 211, a tail portion or mounting stub 214 that extends out of the cavity 211 and into contact with an exposed conductor 207 of the signal wires 205, and a contact portion 215 that extend out of the opposite end of the cavity 211. The second connector 200 also includes second cavities 216 that receive ground terminals (not shown) that are connected at their upper ends to the drain wires 206 and at their lower ends to the chip member 104. The termination arrangement of this connector 200 also maintains, to the extent possible the geometry of the cables 204 through the connector termination, in the sense that the triangular arrangement of the three wires of each cable is maintained until the point where the drain wire is attached to the ground terminal and then the extent of the ground terminal is spaced from the ends of the signal wire terminals 212 as evidenced by the pattern of the first and second terminal cavities 211, 216.

FIG. 15 illustrates an alternate construction for use as a signal transmission line in accordance with the disclosure and takes the form of an extent of flat flexible circuitry 300. The extent includes a pair of signal conductors 302 that are spaced apart from each other and which run lengthwise between opposite ends of the cable 300. The conductors 302 are surrounded on their top and bottom surfaces and sides by insulative portions 304, 305. Ground shields 306 are provided to enclose the signal conductors 302, and although shown only as above and below the signal conductors 302, it will be understood that they may be disposed alongside of the signal conductors. With this sort of structure, the signal conductors may be exposed and aligned with terminal tails, while the ground shield extended to cover the termination areas in a manner similar to that shown above.

FIG. 16 is a graph comparing the loss between two 12-inch lengths of signal transmission lines, with one of the transmission lines comprising a pair of circuit traces formed in or on FR-4 circuit board material and the other transmission line comprising cables of the Present Disclosure. It can be seen from FIG. 16 that the use of the cable of the Present Disclosure leads to a very low loss transition that only breaks past the 5 dB mark at approximately the 20 GHz frequency. Within the range of testing error, we believe that the cables of the Present Disclosure have low loss characteristics of no greater than between about 5 dB and about 8 dB at frequencies greater than about 19 Ghz.

While a preferred embodiment of the Present Disclosure is shown and described, it is envisioned that those skilled in the art may devise various modifications without departing from the spirit and scope of the foregoing Description and the appended Claims.

Claims

1. A cable bypass assembly, the cable bypass assembly comprising:

a first connector, the first connector being configured for mounting to a circuit board, the first connector including a connector body, the connector body including a card slot and supporting a plurality of conductive terminals that extend into the card slot, the conductive terminals including contact portions and tail portions, the contact portions being held within the connector body card slot for contacting a mating blade of an opposing, mating connector, the tail portions extending out from the connector body rearward of the card slot;
an elongated cable, the elongated cable including: a pair of signal conductors, the signal conductors being disposed within an insulative body portion of the elongated cable, the signal conductors extending, in a spaced-apart relationship, lengthwise through a body portion of the elongated cable, a conductive shield, the conductive shield extending over an exterior of the elongated cable body portion, an insulative outer covering, the insulative outer covering extending over the conductive shield, and opposing first and second free ends, the first free end terminating directly to selected terminal tails of the first connector in a manner so that the signal conductors are in electrical communication with a pair of signal terminal tails;
a shield extension member, the shield extension member being configured to engage a first length of the conductive shield exposed at the first free end and extending therefrom over the signal conductors attached to the pair of signal terminal tails, the shield extension member including at least two spaced apart mounting feet; and
a second connector, the second connector including: an insulative body, the insulative body supporting at least a pair of conductive signal terminals in a spaced-apart relationship, each conductive signal terminal including contact and tail portions wherein the second free end is connected to the tail portions of the at least a pair of terminals in the insulative body, and a shielding collar, the shielding collar enclosing a body portion of the second connector, the shielding collar includes an extension portion, the extension portion engaging and receiving the conductive shield exposed at the second free end; wherein the cable bypass assembly is configured to support 10 GHz signaling.

2. The cable bypass assembly of claim 1, further including a second cable, the second cable including a pair of signal conductors, the second cable signal conductors disposed lengthwise therethrough in a spaced-apart relationship, the second cable signal conductors being attached to corresponding signal terminal tails of the first connector alongside the elongated cable.

3. The cable bypass assembly of claim 1, wherein the shield extension member further includes a cup portion, the cup portion being configured to receive the first free end therein.

4. The cable bypass assembly of claim 2, wherein the shield extension member further includes a pair of cup portions, each cup portion receivings receiving ends of the two cables therein.

5. The cable bypass assembly of claim 4, wherein the shield extension member includes at least three mounting feet, two of the mounting feet being disposed on opposing side edges of the shield extension member and a third of the three mounting feet being disposed between the cup portions.

6. The cable bypass assembly of claim 5, wherein the mounting feet and the two cable signal conductors are aligned with each other.

7. The cable bypass assembly of claim 1, wherein the tail and contact portions extend uninterruptedly lengthwise in a general horizontal plane through the first connector body.

8. The cable bypass assembly of claim 1, wherein the elongated cable includes a preselected length of flexible circuitry.

9. The cable bypass assembly of claim 1, A cable bypass assembly, the cable bypass assembly comprising:

a first connector, the first connector being configured for mounting to a circuit board, the first connector including a connector body, the connector body including a card slot and supporting a plurality of conductive terminals that extend into the card slot, the conductive terminals including contact portions and tail portions, the contact portions being held within the card slot for contacting a mating blade of an opposing, mating connector, the tail portions extending rearward of the card slot;
an elongated cable, the elongated cable including:
a pair of signal conductors, the signal conductors being disposed within an insulative body portion of the elongated cable, the signal conductors extending, in a spaced-apart relationship, lengthwise through a body portion of the elongated cable,
a conductive shield, the conductive shield extending over an exterior of the elongated cable body portion,
an insulative outer covering, the insulative outer covering extending over the conductive shield, and
opposing first and second free ends, the first free end terminating directly to selected terminal tails of the first connector in a manner so that the signal conductors are in electrical communication with a pair of signal terminal tails;
a shield extension member, the shield extension member being configured to engage a first length of the conductive shield exposed at the first free end and extending therefrom over the signal conductors attached to the pair of signal terminal tails, the shield extension member including at least two spaced apart mounting feet; and
a second connector, the second connector including:
an insulative body, the insulative body supporting at least a pair of conductive signal terminals in a spaced-apart relationship, each conductive signal terminal including contact and tail portions wherein the second free end is connected to the tail portions of the at least a pair of terminals in the insulative body, and
a shielding collar, the shielding collar enclosing a body portion of the second connector, the shielding collar includes an extension portion, the extension portion engaging and receiving the conductive shield exposed at the second free end, wherein the shielding collar further includes at least one through-hole terminal, the through-hole terminal extending from the shielding collar and engaging a through-hole of the circuit board.

10. The cable bypass assembly of claim 1, wherein the shielding collar further includes a cap portion, the cap portion having a cup portion formed therein, the cup portion being configured to receive an exposed second end of the cable therein and contact a length of exposed cable shielding.

11. The cable bypass assembly of claim 1, A cable bypass assembly, the cable bypass assembly comprising:

a first connector, the first connector being configured for mounting to a circuit board, the first connector including a connector body, the connector body including a card slot and supporting a plurality of conductive terminals that extend into the card slot, the conductive terminals including contact portions and tail portions, the contact portions being held within the card slot for contacting a mating blade of an opposing, mating connector, the tail portions extending rearward of the card slot;
an elongated cable, the elongated cable including:
a pair of signal conductors, the signal conductors being disposed within an insulative body portion of the elongated cable, the signal conductors extending, in a spaced-apart relationship, lengthwise through a body portion of the elongated cable,
a conductive shield, the conductive shield extending over an exterior of the elongated cable body portion,
an insulative outer covering, the insulative outer covering extending over the conductive shield, and
opposing first and second free ends, the first free end terminating directly to selected terminal tails of the first connector in a manner so that the signal conductors are in electrical communication with a pair of signal terminal tails;
a shield extension member, the shield extension member being configured to engage a first length of the conductive shield exposed at the first free end and extending therefrom over the signal conductors attached to the pair of signal terminal tails, the shield extension member including at least two spaced apart mounting feet; and
a second connector, the second connector including:
an insulative body, the insulative body supporting at least a pair of conductive signal terminals in a spaced-apart relationship, each conductive signal terminal including contact and tail portions wherein the second free end is connected to the tail portions of the at least a pair of terminals in the insulative body, and
a shielding collar, the shielding collar enclosing a body portion of the second connector, the shielding collar includes an extension portion, the extension portion engaging and receiving the conductive shield exposed at the second free end, wherein the second connector is configured to connect directly to a chip member.

12. A cable bypass assembly with low loss performance at high data frequencies, the cable bypass assembly comprising:

a first connector, the first connector being configured for mounting to a circuit board, the first connector including a connector body with a card slot, the connector body supporting a plurality of conductive terminals, the conductive terminals including contact portions and tail portions, the contact portions being held within the connector body card slot for contacting a mating blade of an opposing, mating connector, the tail portions extending out from rearward of the connector body card slot;
an elongated cable having, the elongated cable including: first and second opposing ends, a pair of signal conductors, the signal conductors being disposed within the elongated cable in a spaced-apart relationship and extending lengthwise through the elongated cable, and at least one conductive shield, each conductive shield extending lengthwise through the elongated cable and substantially enclosing the signal conductors, the signal conductors, at the first end, being terminated directly to selected terminal tails of the first connector in a manner so that the signal conductors are in electrical communication with a pair of signal terminal tails along a horizontal extent thereof;
a shield, the shield extending over the signal conductors attached to the signal terminal tails, the shield including a pair of ground shields; and
a second connector, the second connector including an insulative body, the insulative body supporting at least a pair of conductive signal terminals in a spaced-apart relationship, each conductive signal terminal including contact and tail portions, the cable signal conductors at the second end thereof being terminated to the contact portions, and the cable at least one conductive shield being terminated to selected terminals of the second connector designated for ground purposes; wherein the cable bypass assembly is configured to support 10 GHz signaling.

13. The cable bypass assembly of claim 12, wherein the cable is an extent of flexible circuitry, the signal conductors including two signal conductors.

14. The cable bypass assembly of claim 13, wherein the ground shields are disposed on opposite sides of the signal conductors.

15. A cable bypass assembly, the cable bypass assembly comprising:

a first connector, the first connector being configured for mounting to a circuit board, the first connector including a connector body with a card slot, the connector body supporting a plurality of conductive terminals, the conductive terminals including contact portions and tail portions, the contact portions extending in the card slot for contacting an opposing mating connector;
an elongated cable, the elongated cable including:
a pair of signal conductors, the signal conductors being disposed within an insulative body portion of the elongated cable, the signal conductors extending, in a spaced-apart relationship, lengthwise through a body portion of the elongated cable,
a conductive shield, the conductive shield extending over an exterior of the elongated cable body portion,
an insulative outer covering, the insulative outer covering extending over the conductive shield, and
opposing first and second free ends, the first free end terminating directly to selected terminal tails of the first connector in a manner so that the signal conductors are in electrical communication with a pair of signal terminal tails;
a shield extension member, the shield extension member being configured to engage a first length of the conductive shield exposed at the first free end and extending therefrom over the signal conductors attached to the pair of signal terminal tails, the shield extension member including at least two spaced apart mounting feet; and
a second connector, the second connector including:
an insulative body, the insulative body supporting at least a pair of conductive signal terminals in a spaced-apart relationship, each conductive signal terminal including contact and tail portions, and
a shielding collar, the shielding collar enclosing a body portion of the second connector, the shielding collar includes an extension portion, the extension portion engaging and receiving the conductive shield exposed at the second free end, wherein the cable bypass assembly is configured to support 10 GHz signaling.

16. The cable bypass assembly of claim 15, further including a second cable, the second cable including a pair of signal conductors, the second cable signal conductors disposed lengthwise therethrough in a spaced-apart relationship, the second cable signal conductors being attached to corresponding signal terminal tails of the first connector alongside the elongated cable.

Referenced Cited
U.S. Patent Documents
3007131 October 1961 Dahlgren et al.
3594613 July 1971 Prietula
3963319 June 15, 1976 Schumacher et al.
4025141 May 24, 1977 Thelissen
4072387 February 7, 1978 Sochor
4083615 April 11, 1978 Volinskie
4157612 June 12, 1979 Rainal
4290664 September 22, 1981 Davis et al.
4307926 December 29, 1981 Smith
4346355 August 24, 1982 Tsukii
4417779 November 29, 1983 Wilson
4508403 April 2, 1985 Weltman
4611186 September 9, 1986 Ziegner
4615578 October 7, 1986 Stadler et al.
4639054 January 27, 1987 Kersbergen
4656441 April 7, 1987 Takahashi et al.
4657329 April 14, 1987 Dechelette
4679321 July 14, 1987 Plonski
4697862 October 6, 1987 Hasircoglu
4724409 February 9, 1988 Lehman
4889500 December 26, 1989 Lazar et al.
4924179 May 8, 1990 Sherman
4948379 August 14, 1990 Evans
4984992 January 15, 1991 Beamenderfer et al.
4991001 February 5, 1991 Takubo et al.
5112251 May 12, 1992 Cesar
5197893 March 30, 1993 Morlion et al.
5332979 July 26, 1994 Roskewitsch
5387130 February 7, 1995 Fedder et al.
5402088 March 28, 1995 Pierro et al.
5435757 July 25, 1995 Fedder et al.
5441424 August 15, 1995 Morlion et al.
5487673 January 30, 1996 Hurtarte
5509827 April 23, 1996 Huppenthal et al.
5554038 September 10, 1996 Morlion et al.
5598627 February 4, 1997 Saka et al.
5632634 May 27, 1997 Soes
5691506 November 25, 1997 Miyazaki et al.
5781759 July 14, 1998 Kashiwabara
6004139 December 21, 1999 Dramstad
6053770 April 25, 2000 Blom
6083046 July 4, 2000 Wu et al.
6095872 August 1, 2000 Lang
6144559 November 7, 2000 Johnson et al.
6156981 December 5, 2000 Ward et al.
6203376 March 20, 2001 Magajne
6255741 July 3, 2001 Yoshihara
6266712 July 24, 2001 Henrichs
6273753 August 14, 2001 Ko
6273758 August 14, 2001 Lloyd et al.
6366471 April 2, 2002 Edwards et al.
6368120 April 9, 2002 Scherer
6371788 April 16, 2002 Bowling et al.
6452789 September 17, 2002 Pallotti et al.
6489563 December 3, 2002 Zhao et al.
6535367 March 18, 2003 Carpenter
6574115 June 3, 2003 Asano et al.
6575772 June 10, 2003 Soubh et al.
6592401 July 15, 2003 Gardner et al.
6652296 November 25, 2003 Kuroda et al.
6652318 November 25, 2003 Winings et al.
6685501 February 3, 2004 Wu
6692262 February 17, 2004 Loveless
6705893 March 16, 2004 Ko
6780069 August 24, 2004 Scherer
6797891 September 28, 2004 Blair et al.
6824426 November 30, 2004 Spink, Jr.
6843657 January 18, 2005 Driscoll et al.
6882241 April 19, 2005 Abo et al.
6903934 June 7, 2005 Lo
6910914 June 28, 2005 Spink, Jr.
6916183 July 12, 2005 Alger et al.
6955565 October 18, 2005 Lloyd et al.
6969270 November 29, 2005 Renfro
6969280 November 29, 2005 Chien
6971887 December 6, 2005 Trobough
7004765 February 28, 2006 Hsu
7004793 February 28, 2006 Scherer
7044772 May 16, 2006 McCreery
7052292 May 30, 2006 Hsu et al.
7056128 June 6, 2006 Driscoll et al.
7066756 June 27, 2006 Lange et al.
7070446 July 4, 2006 Henry
7108522 September 19, 2006 Verelst et al.
7148428 December 12, 2006 Meier et al.
7168961 January 30, 2007 Hsieh
7175446 February 13, 2007 Bright
7192300 March 20, 2007 Hashiguchi et al.
7214097 May 8, 2007 Hsu
7223915 May 29, 2007 Hackman
7234944 June 26, 2007 Nordin
7244137 July 17, 2007 Renfro et al.
7280372 October 9, 2007 Grundy et al.
7307293 December 11, 2007 Fjelstad
7331816 February 19, 2008 Krohn
7384275 June 10, 2008 Ngo
7394665 July 1, 2008 Hamasaki et al.
7402048 July 22, 2008 Meier et al.
7431608 October 7, 2008 Sakaguchi et al.
7445471 November 4, 2008 Scherer et al.
7462924 December 9, 2008 Shuey
7489514 February 10, 2009 Hamasaki
7534142 May 19, 2009 Avery
7540773 June 2, 2009 Ko
7549897 June 23, 2009 Fedder
7621779 November 24, 2009 Laurx et al.
7637767 December 29, 2009 Davis
7654831 February 2, 2010 Wu
7658654 February 9, 2010 Ohyama
7690930 April 6, 2010 Chen
7719843 May 18, 2010 Dunham
7744385 June 29, 2010 Scherer
7744403 June 29, 2010 Barr
7744414 June 29, 2010 Scherer et al.
7748988 July 6, 2010 Hori
7771207 August 10, 2010 Hamner et al.
7789529 September 7, 2010 Roberts
7819675 October 26, 2010 Ko et al.
7824197 November 2, 2010 Westman
7857629 December 28, 2010 Chin
7857630 December 28, 2010 Hermant et al.
7862344 January 4, 2011 Morgan et al.
7892019 February 22, 2011 Rao
7906730 March 15, 2011 Atkinson et al.
7931502 April 26, 2011 Iida
7985097 July 26, 2011 Gulla
7997933 August 16, 2011 Feldman
8002583 August 23, 2011 van Woensel
8018733 September 13, 2011 Jia
8036500 October 11, 2011 McColloch
8157573 April 17, 2012 Tanaka
8162675 April 24, 2012 Regnier
8187038 May 29, 2012 Kamiya
8192222 June 5, 2012 Kameyama
8226441 July 24, 2012 Regnier
8308491 November 13, 2012 Nichols et al.
8337243 December 25, 2012 Elkhatib et al.
8338713 December 25, 2012 Fjelstad et al.
8398433 March 19, 2013 Yang
8419472 April 16, 2013 Swanger et al.
8435074 May 7, 2013 Grant
8439704 May 14, 2013 Reed
8449312 May 28, 2013 Lang
8449330 May 28, 2013 Schroll
8465302 June 18, 2013 Regnier
8480413 July 9, 2013 Minich
8517765 August 27, 2013 Schroll
8535069 September 17, 2013 ZHang
8540525 September 24, 2013 Regnier
8553102 October 8, 2013 Yamada
8575491 November 5, 2013 Gundel et al.
8575529 November 5, 2013 Asahi
8588561 November 19, 2013 Zbinden
8597055 December 3, 2013 Regnier
8651890 February 18, 2014 Chiarelli
8672707 March 18, 2014 Nichols et al.
8690604 April 8, 2014 Davis
8715003 May 6, 2014 Buck et al.
8740644 June 3, 2014 Long
8747158 June 10, 2014 Szczesny
8753145 June 17, 2014 Lang
8758051 June 24, 2014 Nonen et al.
8764483 July 1, 2014 Ellison
8784122 July 22, 2014 Soubh
8787711 July 22, 2014 Zbinden
8794991 August 5, 2014 Ngo
8804342 August 12, 2014 Behziz et al.
8814595 August 26, 2014 Cohen et al.
8834190 September 16, 2014 Ngo
8864521 October 21, 2014 Atkinson et al.
8888533 November 18, 2014 Westman et al.
8905767 December 9, 2014 Putt, Jr. et al.
8911255 December 16, 2014 Scherer et al.
8926342 January 6, 2015 Vinther
8926377 January 6, 2015 Kirk
8992236 March 31, 2015 Wittig
8992237 March 31, 2015 Regnier
8992258 March 31, 2015 Raschilla
9011177 April 21, 2015 Lloyd
9028281 May 12, 2015 Kirk
9035183 May 19, 2015 Kodama et al.
9040824 May 26, 2015 Guetig et al.
9054432 June 9, 2015 Yang
9071001 June 30, 2015 Scherer et al.
9119292 August 25, 2015 Gundel
9136652 September 15, 2015 Ngo
9142921 September 22, 2015 Wanha et al.
9155214 October 6, 2015 Ritter
9160123 October 13, 2015 Pao
9160151 October 13, 2015 Vinther
9161463 October 13, 2015 Takamura
9166320 October 20, 2015 Herring
9196983 November 24, 2015 Saur et al.
9203171 December 1, 2015 Yu
9209539 December 8, 2015 Herring
9214756 December 15, 2015 Nishio
9214768 December 15, 2015 Pao
9232676 January 5, 2016 Sechrist et al.
9246251 January 26, 2016 Regnier
9277649 March 1, 2016 Ellison
9312618 April 12, 2016 Regnier
9331432 May 3, 2016 Phillips
9350108 May 24, 2016 Long
9356366 May 31, 2016 Moore
9385455 July 5, 2016 Regnier
9391407 July 12, 2016 Bucher
9401563 July 26, 2016 Simpson
9413090 August 9, 2016 Nagamine
9413112 August 9, 2016 Helster
9431773 August 30, 2016 Chen
9437981 September 6, 2016 Wu
9455538 September 27, 2016 Nishio
9484671 November 1, 2016 Zhu
9484673 November 1, 2016 Yang
9490587 November 8, 2016 Phillips
9496655 November 15, 2016 Huang
9515429 December 6, 2016 DeGeest
9525245 December 20, 2016 Regnier
9543688 January 10, 2017 Pao
9553381 January 24, 2017 Regnier
9559465 January 31, 2017 Phillips
9565780 February 7, 2017 Nishio
9608388 March 28, 2017 Kondo
9608590 March 28, 2017 Hamner
9627818 April 18, 2017 Chen
9660364 May 23, 2017 Wig et al.
9666998 May 30, 2017 deBoer
9673570 June 6, 2017 Briant
9812799 November 7, 2017 Wittig
9985367 May 29, 2018 Wanha et al.
20010016438 August 23, 2001 Reed
20020111067 August 15, 2002 Sakurai et al.
20020157865 October 31, 2002 Noda
20020180554 December 5, 2002 Clark et al.
20030064616 April 3, 2003 Reed et al.
20030073331 April 17, 2003 Peloza
20030222282 December 4, 2003 Fjelstad et al.
20040029406 February 12, 2004 Loveless
20040094328 May 20, 2004 Fjelstad et al.
20040121633 June 24, 2004 David
20040155328 August 12, 2004 Kline
20040155734 August 12, 2004 Kosemura et al.
20040229510 November 18, 2004 Lloyd et al.
20040264894 December 30, 2004 Cooke
20050006126 January 13, 2005 Aisenbrey
20050051810 March 10, 2005 Funakura
20050093127 May 5, 2005 Fjelstad et al.
20050130490 June 16, 2005 Rose
20050142944 June 30, 2005 Ling
20050239339 October 27, 2005 Pepe
20060001163 January 5, 2006 Kolbehdari et al.
20060035523 February 16, 2006 Kuroda et al.
20060038287 February 23, 2006 Hamasaki
20060067066 March 30, 2006 Meier
20060079102 April 13, 2006 DeLessert
20060079119 April 13, 2006 Wu
20060091507 May 4, 2006 Fjelstad et al.
20060114016 June 1, 2006 Suzuki
20060160399 July 20, 2006 Dawiedczyk
20060189212 August 24, 2006 Avery
20060194475 August 31, 2006 Miyazaki
20060216969 September 28, 2006 Bright
20060228922 October 12, 2006 Morriss
20060234556 October 19, 2006 Wu
20060238991 October 26, 2006 Drako
20060282724 December 14, 2006 Roulo
20060292898 December 28, 2006 Meredith
20070032104 February 8, 2007 Yamada
20070141871 June 21, 2007 Scherer
20070243741 October 18, 2007 Yang
20080131997 June 5, 2008 Kim et al.
20080171476 July 17, 2008 Liu
20080297988 December 4, 2008 Chau
20080305689 December 11, 2008 Zhang
20090023330 January 22, 2009 Stoner et al.
20090166082 July 2, 2009 Liu et al.
20090215309 August 27, 2009 Mongold
20100068944 March 18, 2010 Scherer
20100112850 May 6, 2010 Rao
20100159829 June 24, 2010 McCormack
20100177489 July 15, 2010 Yagisawa
20100203768 August 12, 2010 Kondo
20110074213 March 31, 2011 Schaffer
20110080719 April 7, 2011 Jia
20110136387 June 9, 2011 Matsuura
20110212633 September 1, 2011 Regnier
20110230104 September 22, 2011 Lang
20110263156 October 27, 2011 Ko
20110300757 December 8, 2011 Regnier
20110304966 December 15, 2011 Schrempp
20120003848 January 5, 2012 Casher
20120034820 February 9, 2012 Lang
20120225585 September 6, 2012 Lee
20120246373 September 27, 2012 Chang
20130005178 January 3, 2013 Straka et al.
20130012038 January 10, 2013 Kirk
20130017715 January 17, 2013 Laarhoven
20130040482 February 14, 2013 Ngo
20130092429 April 18, 2013 Ellison
20130148321 June 13, 2013 Liang
20130340251 December 26, 2013 Regnier
20140041937 February 13, 2014 Lloyd et al.
20140073173 March 13, 2014 Yang
20140073174 March 13, 2014 Yang
20140073181 March 13, 2014 Yang
20140111293 April 24, 2014 Madeberg et al.
20140217571 August 7, 2014 Ganesan et al.
20140242844 August 28, 2014 Wanha
20140273551 September 18, 2014 Resendez
20140273594 September 18, 2014 Jones et al.
20140335736 November 13, 2014 Regnier
20150079845 March 19, 2015 Wanha
20150090491 April 2, 2015 Dunwoody
20150180578 June 25, 2015 Leigh et al.
20150207247 July 23, 2015 Chen et al.
20160013596 January 14, 2016 Regnier
20160064119 March 3, 2016 Grant
20160104956 April 14, 2016 Santos
20160181713 June 23, 2016 Peloza
20160190720 June 30, 2016 Lindkamp
20160190747 June 30, 2016 Regnier
20160197423 July 7, 2016 Regnier
20160218455 July 28, 2016 Sayre
20160233598 August 11, 2016 Wittig
20160233615 August 11, 2016 Scholeno
20160336692 November 17, 2016 Champion
20160380383 December 29, 2016 Lord
20170033482 February 2, 2017 Liao
20170033509 February 2, 2017 Liao
20170077621 March 16, 2017 Liao
20170098901 April 6, 2017 Regnier
20170110222 April 20, 2017 Liptak et al.
20170162960 June 8, 2017 Wanha
20170302036 October 19, 2017 Regnier
20170365942 December 21, 2017 Regnier
20180034175 February 1, 2018 Lloyd
Foreign Patent Documents
3447556 July 1986 DE
3447556 October 1986 DE
02-079571 June 1990 JP
04-14372 February 1992 JP
05-059761 August 1993 JP
2008-041285 February 2008 JP
2008-059857 March 2008 JP
2009-043590 February 2009 JP
2010-017388 January 2010 JP
2010-123274 June 2010 JP
2013-016394 January 2013 JP
M359141 June 2009 TW
M408835 August 2011 TW
201225455 June 2012 TW
WO 2008-072322 June 2008 WO
WO 2012-078434 June 2012 WO
WO 2013-006592 January 2013 WO
Other references
  • U.S. Appl. No. 61/714,871, filed Oct. 17, 2012, Wig et al.
  • Agilent, “Designing Scalable 10G Backplane Interconnect Systems Utilizing Advanced Verification Methodologies,” White Paper, Published May 5, 2012, USA.
  • Amphenol Aerospace, “Size 8 High Speed Quadrax and Differential Twinax Contacts for Use in MIL-DTL-38999 Special Subminiature Cylindrical and ARINC 600 Rectangular Connectors”, published May 2008. Retrieved from www.peigenesis.com/images/content/news/amphenol_quadrax.pdf.
  • Hitachi Cable America Inc., “Direct Attach Cables: OMNIBIT supports 25 Gbit/s interconnections”. Retrieved Aug. 10, 2017 from www.hca.hitachi-cable.com/products/hca/catalog/pdfs/direct-attach-cable-assemblies.pdf.
  • Amphenol TCS, “Amphenol TCS expands the XCede Platform with 85 Ohm Connectors and High-Speed Cable Solutions,” Press Release, Published Feb. 25, 2009, http://www.amphenol.com/about/news_archive/2009/58.
  • “File:Wrt54gl-layout.jpg-Embedded Xinu”, Internet Citation, Sep. 8, 2006. Retrieved from the Internet: URL:http://xinu.mscs.edu/File:Wrt54gl-layout.jpg [retrieved on Sep. 23, 2014].
Patent History
Patent number: RE47342
Type: Grant
Filed: Sep 21, 2016
Date of Patent: Apr 9, 2019
Assignee: Molex, LLC (Lisle, IL)
Inventors: Brian Keith Lloyd (Maumelle, AR), Christopher David Hirschy (Conway, AR), Munawar Ahmad (Maumelle, AR), Eran J. Jones (Conway, AR), Stephen W. Hamblin (Little Rock, AR), Darian Ross Schulz (Little Rock, AR), Todd David Ward (Maumelle, AR), Gregory B. Walz (Maumelle, AR), Ebrahim Abunasrah (Little Rock, AR), Rehan Khan (Little Rock, AR)
Primary Examiner: Christopher E. Lee
Application Number: 15/271,903
Classifications
Current U.S. Class: Single Cable End Into Dual Rows Of Contacts (439/494)
International Classification: H01R 13/58 (20060101); H01B 11/00 (20060101); H05K 1/02 (20060101); H05K 3/22 (20060101); H01R 13/6471 (20110101); H01R 13/6593 (20110101);