Patents Issued in March 6, 2014
  • Publication number: 20140061780
    Abstract: A semiconductor device is fabricated by, inter alia, forming a sacrificial liner on an active portion of a semiconductor substrate, oxidizing the sacrificial liner to transform the sacrificial liner into a gate dielectric layer, and forming a gate on the gate dielectric layer.
    Type: Application
    Filed: March 18, 2013
    Publication date: March 6, 2014
    Applicant: SK HYNIX INC.
    Inventors: Young Jin SON, Dong Seok KIM, Jin Yul LEE
  • Publication number: 20140061781
    Abstract: A semiconductor device and a method for manufacturing the same are capable of improving GIDL in a buried gate, and preventing degradation of device characteristics and reliability due to reduction in gate resistance. The semiconductor device may include: junction regions formed at both sidewalls of a trench formed in a semiconductor substrate; a first gate electrode formed in a lower portion of the trench; a second gate electrode formed on at least one inner sidewall of the trench which overlaps one of the junction regions on the first gate electrode; and a third gate electrode formed on one side of the second gate electrode on the first gate electrode.
    Type: Application
    Filed: December 18, 2012
    Publication date: March 6, 2014
    Applicant: SK HYNIX INC.
    Inventor: Sung Soo KIM
  • Publication number: 20140061782
    Abstract: According to example embodiments, a semiconductor device may include a substrate having an upper surface defining a groove and an active region, a device isolation layer in the groove, and a contact structure on the active region. The device isolation exposes the active region and may have a top surface that is higher than a top surface of the active region. The contact structure may include a first portion filling a gap region delimited by a sidewall of the device isolation layer and the top surface of the active region, the contact structure may include and a second portion on the device isolation layer so the second portion overlaps with the device isolation layer in a plan view.
    Type: Application
    Filed: August 14, 2013
    Publication date: March 6, 2014
    Inventor: Seongho KIM
  • Publication number: 20140061783
    Abstract: A super-junction device including a unit region is disclosed. The unit region includes a heavily doped substrate; a first epitaxial layer over the heavily doped substrate; a second epitaxial layer over the first epitaxial layer; a plurality of first trenches in the second epitaxial layer; an oxide film in each of the plurality of first trenches; and a pair of first films on both sides of each of the plurality of first trenches, thereby forming a sandwich structure between every two adjacent ones of the plurality of first trenches, the sandwich structure including two first films and a second film sandwiched therebetween, the second film being formed of a portion of the second epitaxial layer between the two first films of a sandwich structure. A method of forming a super-junction device is also disclosed.
    Type: Application
    Filed: September 5, 2013
    Publication date: March 6, 2014
    Applicant: SHANGHAI HUA HONG NEC ELECTRONICS CO., LTD.
    Inventor: Shengan Xiao
  • Publication number: 20140061784
    Abstract: The present invention provides a semiconductor device in which the threshold voltage of NMOS and the threshold voltage of PMOS are independently controllable, and a method for fabricating the same.
    Type: Application
    Filed: December 18, 2012
    Publication date: March 6, 2014
    Applicant: SK hynix Inc.
    Inventor: Dong-Kyun KANG
  • Publication number: 20140061785
    Abstract: An integrated circuit containing a diode with a drift region containing a first dopant type plus scattering centers. An integrated circuit containing a DEMOS transistor with a drift region containing a first dopant type plus scattering centers. A method for designing an integrated circuit containing a DEMOS transistor with a counter doped drift region.
    Type: Application
    Filed: November 6, 2013
    Publication date: March 6, 2014
    Applicant: Texas Instruments Incorporated
    Inventors: Philipp Steinmann, Amitava Chatterjee, Sameer Pendharkar
  • Publication number: 20140061786
    Abstract: The present invention discloses a double diffused metal oxide semiconductor (DMOS) device and a manufacturing method thereof. The DMOS device includes a first conductive type substrate, a second conductive type high voltage well, a first conductive type deep buried region, a field oxide region, a first conductive type body region, a gate, a second conductive type source, and a second conductive type drain. The deep buried region is formed below the high voltage well with a gap in between, and the gap is not less than a predetermined distance.
    Type: Application
    Filed: September 4, 2012
    Publication date: March 6, 2014
    Inventors: Tsung-Yi Huang, Chien-Wei Chiu
  • Publication number: 20140061787
    Abstract: The present invention provides a semiconductor device that ensures both the breakdown voltage characteristic and specific on-resistance characteristic required for a high-voltage semiconductor device and that includes a gate over a substrate, a source region formed at one side of the gate, a drain region formed at the other side of the gate, and a plurality of device isolation films formed between the source region and the drain region, below the gate.
    Type: Application
    Filed: December 27, 2012
    Publication date: March 6, 2014
    Applicant: SK HYNIX INC.
    Inventor: Dae-Hoon KIM
  • Publication number: 20140061788
    Abstract: A semiconductor device is provided. The semiconductor device includes a drain region, a source region, a channel region and a hybrid doped region. The drain region of a first conductivity type is located in a substrate. The source region of the first conductivity type is located in the substrate and surrounding the drain region. The channel region is located in the substrate between the source region and the drain region. The hybrid doped region includes a top doped region and a compensation doped region. The top doped region is of a second conductivity type, having a doping concentration decreased from a region near the channel region to a region near the drain region, and located in the substrate between the channel region and the drain region. The compensation doped region of the first conductivity type is located in the top doped region to compensate the top doped region.
    Type: Application
    Filed: October 8, 2013
    Publication date: March 6, 2014
    Applicant: Nuvoton Technology Corporation
    Inventors: Po-An Chen, Gene Sheu, Shao-Ming Yang, MD Imran Siddiqui
  • Publication number: 20140061789
    Abstract: An integrated circuit containing an extended drain MOS transistor with deep semiconductor (SC) RESURF trenches in the drift region, in which each deep SC RESURF trench has a semiconductor RESURF layer at a sidewall of the trench contacting the drift region. The semiconductor RESURF layer has an opposite conductivity type from the drift region. The deep SC RESURF trenches have depth:width ratios of at least 5:1, and do not extend through a bottom surface of the drift region. A process of forming an integrated circuit with deep SC RESURF trenches in the drift region by etching undersized trenches and counterdoping the sidewall region to form the semiconductor RESURF layer. A process of forming an integrated circuit with deep SC RESURF trenches in the drift region by etching trenches and growing an epitaxial layer on the sidewall region to form the semiconductor RESURF layer.
    Type: Application
    Filed: November 6, 2013
    Publication date: March 6, 2014
    Applicant: Texas Instruments Incorporated
    Inventors: Marie Denison, Sameer Pendharkar
  • Publication number: 20140061790
    Abstract: A semiconductor device includes a source region, a drain region, and a drift region between the source and drain regions. A split gate is disposed over a portion of the drift region, and between the source and drain regions. The split gate includes first and second gate electrodes separated by a gate oxide layer. A self-aligned RESURF region is disposed within the drift region between the gate and the drain region. PI gate structures including an upper polysilicon layer are disposed near the drain region, such that the upper polysilicon layer can serve as a hard mask for the formation of the double RESURF structure, thereby allowing for self-alignment of the double RESURF structure.
    Type: Application
    Filed: November 11, 2013
    Publication date: March 6, 2014
    Inventors: Chien-Wen CHU, Wing-Chor CHAN, Shyi-Yuan WU
  • Publication number: 20140061791
    Abstract: A MOS transistor is described, including: a source region and a drain region in a semiconductor substrate, an isolation between the source region and the drain region, a first gate conductor between the source region and the isolation, at least one conductive plug electrically connected to the first gate conductor and penetrating into the isolation, and at least one second gate conductor on the isolation, which is electrically connected to the first gate conductor and the at least one conductive plug. One of the at least one conductive plug is between the first gate conductor and the at least one second gate conductor.
    Type: Application
    Filed: August 28, 2012
    Publication date: March 6, 2014
    Applicant: United Microelectronics Corp.
    Inventors: KUN-HUANG YU, Chin-Fu Chen
  • Publication number: 20140061792
    Abstract: A field effect transistor device includes a bulk semiconductor substrate, a fin arranged on the bulk semiconductor substrate, the fin including a source region, a drain region, and a channel region, a first shallow trench isolation (STI) region arranged on a portion of the bulk semiconductor substrate adjacent to the fin, a first recessed region partially defined by the first STI region and the channel region of the fin, and a gate stack arranged over the channel region of the fin, wherein a portion of the gate stack is partially disposed in the first recessed region.
    Type: Application
    Filed: August 28, 2012
    Publication date: March 6, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Huiming Bu, Terence B. Hook, Reinaldo A. Vega
  • Publication number: 20140061793
    Abstract: A dielectric mandrel structure is formed on a single crystalline semiconductor layer. An amorphous semiconductor material layer is deposited on the physically exposed surfaces of the single crystalline semiconductor layer and surfaces of the mandrel structure. Optionally, the amorphous semiconductor material layer can be implanted with at least one different semiconductor material. Solid phase epitaxy is performed on the amorphous semiconductor material layer employing the single crystalline semiconductor layer as a seed layer, thereby forming an epitaxial semiconductor material layer with uniform thickness. Remaining portions of the epitaxial semiconductor material layer are single crystalline semiconductor fins and thickness of these fins are sublithographic. After removal of the dielectric mandrel structure, the single crystalline semiconductor fins can be employed to form a semiconductor device.
    Type: Application
    Filed: August 29, 2012
    Publication date: March 6, 2014
    Applicant: International Business Machines Corporation
    Inventors: Chengwen Pei, Kangguo Cheng, Joseph Ervin, Juntao Li, Ravi M. Todi, Geng Wang
  • Publication number: 20140061794
    Abstract: A finFET with self-aligned punchthrough stopper and methods of manufacture are disclosed. The method includes forming spacers on sidewalls of a gate structure and fin structures of a finFET device. The method further includes forming a punchthrough stopper on exposed sidewalls of the fin structures, below the spacers. The method further includes diffusing dopants from the punchthrough stopper into the fin structures. The method further includes forming source and drain regions adjacent to the gate structure and fin structures.
    Type: Application
    Filed: August 29, 2012
    Publication date: March 6, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kangguo Cheng, Balasubramanian S. Haran, Shom Ponoth, Theodorus E. Standaert, Tenko Yamashita
  • Publication number: 20140061795
    Abstract: A transistor includes a substrate; a gate including a first electrically conductive layer stack on the substrate; and a first inorganic thin film dielectric layer on the substrate with the first inorganic thin film dielectric layer having a first pattern. A second inorganic thin film dielectric layer has a second pattern. A semiconductor layer is in contact with and has the same pattern as the second inorganic thin film dielectric material layer. A source/drain includes a second electrically conductive layer stack.
    Type: Application
    Filed: August 31, 2012
    Publication date: March 6, 2014
    Inventors: David H. Levy, Carolyn R. Ellinger, Shelby F. Nelson
  • Publication number: 20140061796
    Abstract: Techniques are provided for gate work function engineering in FIN FET devices using a work function setting material an amount of which is provided proportional to fin pitch. In one aspect, a FIN FET device is provided. The FIN FET device includes a SOI wafer having an oxide layer and a SOI layer over a BOX, and a plurality of fins patterned in the oxide layer and the SOI layer; an interfacial oxide on the fins; and at least one gate stack on the interfacial oxide, the gate stack having (i) a conformal gate dielectric layer present, (ii) a conformal gate metal layer, and (iii) a conformal work function setting material layer. A volume of the conformal gate metal layer and a volume of the conformal work function setting material layer present in the gate stack is proportional to a pitch of the fins.
    Type: Application
    Filed: September 12, 2012
    Publication date: March 6, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Josephine B. Chang, Isaac Lauer, Chung-Hsun Lin, Jeffrey W. Sleight
  • Publication number: 20140061797
    Abstract: Embodiments of the present invention disclose a thin film transistor array substrate, a method of manufacturing the same, and display device. A method of manufacturing a thin film transistor array substrate, comprises: forming a resin layer on a substrate formed with a thin film transistor array, patterning the resin layer by using a mask process to form a spacer and a contact hole filling layer, the contact hole filing layer is used for filling contact holes on the thin film transistor array substrate; forming an alignment film on the substrate patterning with the spacer and the contact hole filing layer.
    Type: Application
    Filed: December 13, 2012
    Publication date: March 6, 2014
    Applicant: BOE TECHNOLOGY GROUP CO., LTD.
    Inventors: Hyun Sic Choi, Zhiqiang Xu, Hui Li
  • Publication number: 20140061798
    Abstract: A microelectronic device including: a substrate including a first semiconductor layer positioned on a dielectric layer and a second semiconductor layer, an isolation trench made through the first semiconductor layer, the dielectric layer and a part of the thickness of the second semiconductor layer, including at least one dielectric material and delimiting, in the first semiconductor layer, at least one rectangular active area of the device, and in which, in said part of the thickness of the second semiconductor layer, at least one portion of dielectric material of the isolation trench is positioned under the active area by forming two side walls, two other side walls of the isolation trench being not arranged under the active area.
    Type: Application
    Filed: September 4, 2013
    Publication date: March 6, 2014
    Applicant: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENE ALT
    Inventors: Maud VINET, Laurent Grenouillet, Yannick Le Tiec, Romain Wacquez
  • Publication number: 20140061799
    Abstract: A method is provided for fabricating an integrated circuit that includes multiple transistors. A replacement gate stack is formed on a semiconductor layer, a gate spacer is formed, and a dielectric layer is formed. The dummy gate stack is removed to form a cavity. A gate dielectric and a work function metal layer are formed in the cavity. The cavity is filled with a gate conductor. One and only one of the gate conductor and the work function metal layer are selectively recessed. An oxide film is formed in the recess such that its upper surface is co-planar with the upper surface of the dielectric layer. The oxide film is used to selectively grow an oxide cap. An interlayer dielectric is formed and etched to form a cavity for a source/drain contact. A source/drain contact is formed in the contact cavity, with a portion of the source/drain contact being located directly on the oxide cap.
    Type: Application
    Filed: November 6, 2013
    Publication date: March 6, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Susan S. FAN, Balasubramanian S. HARAN, David V. HORAK, Charles W. KOBURGER
  • Publication number: 20140061800
    Abstract: After formation of raised source and drain regions, a conformal dielectric material liner is deposited within recessed regions formed by removal of shallow trench isolation structures and underlying portions of a buried insulator layer in a semiconductor-on-insulator (SOI) substrate. A dielectric material that is different from the material of the conformal dielectric material liner is subsequently deposited and planarized to form a planarized dielectric material layer. The planarized dielectric material layer is recessed selective to the conformal dielectric material liner to form dielectric fill portions that fill the recessed regions. Horizontal portions of the conformal dielectric material liner are removed by an anisotropic etch, while remaining portions of the conformal dielectric material liner form an outer gate spacer. At least one contact-level dielectric layer is deposited. Contact via structures electrically isolated from a handle substrate can be formed within the contact via holes.
    Type: Application
    Filed: November 13, 2013
    Publication date: March 6, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Balasubramanian S. Haran, David V. Horak, Charles W. Koburger, III, Shom Ponoth
  • Publication number: 20140061801
    Abstract: The present disclosure describes a layout for stress optimization. The layout includes a substrate, at least two fin field effect transistors (FinFET) cells formed in the substrate, a FinFET fin designed to cross the two FinFET cells, a plurality of gates formed on the substrate, and an isolation unit formed between the first FinFET cell and the second FinFET cell. The two FinFET cells include a first FinFET cell and a second FinFET cell. The FinFET fin includes a positive charge FinFET (Fin PFET) fin and a negative charge FinFET (Fin NFET) fin. The isolation unit isolates the first FinFET cell from the second FinFET cell without breaking the FinFET fin.
    Type: Application
    Filed: August 31, 2012
    Publication date: March 6, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Gerben Doornbos, Mark van Dal
  • Publication number: 20140061802
    Abstract: An antifuse of a semiconductor device includes a semiconductor substrate including a device isolation layer and an active region, a gate structure extending across an interface between the device isolation layer and the active region, a contact coupled to at least a portion of a sidewall of the gate structure, and a metal interconnection provided on the contact and gate structure.
    Type: Application
    Filed: December 18, 2012
    Publication date: March 6, 2014
    Applicant: SK HYNIX INC.
    Inventor: Chi Hwan JANG
  • Publication number: 20140061803
    Abstract: A structure and method of fabricating electrostatic discharge (EDS) circuitry in an integrated circuit chip by integrating a lateral bipolar, either a p-n-p with a NMOSFET or a n-p-n with a PMOSFET within a triple well. The lateral bipolar preferably includes diodes at the I/O and/or the VDDs of the circuitry.
    Type: Application
    Filed: November 6, 2013
    Publication date: March 6, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Shunhua CHANG, Kiran V. CHATTY, Robert J. GAUTHIER, JR., Mujahid MUHAMMAD
  • Publication number: 20140061804
    Abstract: Provided is a semiconductor device including active regions formed in a semiconductor substrate and arranged in a first direction parallel to a surface of the semiconductor substrate; a first element isolating region formed in the semiconductor substrate and electrically isolating adjacent active regions from each other; and gate electrodes extending over the active regions respectively and arranged in the first direction. The first element isolating region includes a first region extending in a second direction orthogonal to the first direction and a second region extending in a direction intersecting the first region, one gate electrode of adjacent gate electrodes has a first edge side which includes a first overlap part placed on the second region, and another gate electrode of the adjacent gate electrodes has a second edge side which faces the first edge side and includes a second overlap part placed on the second region.
    Type: Application
    Filed: August 16, 2013
    Publication date: March 6, 2014
    Applicant: LAPIS SEMICONDUCTOR CO., LTD.
    Inventor: JUNICHI KAMOSHITA
  • Publication number: 20140061805
    Abstract: A semiconductor device includes a gate structure penetrating an interlayer insulating layer formed on a semiconductor substrate, an epitaxial growth layer grown on the interlayer insulating layer, a first transistor including a first channel region in the semiconductor substrate formed by a bias applied to source/drain contacts penetrating the interlayer insulating layer, and a second transistor including a second channel region formed in the epitaxial growth layer by the bias applied to the source/drain contacts and sharing the gate structure. A current flowable path flows more current at any given time, so that operation current is increased and operation speed is improved. A smaller area of the semiconductor device is necessary to cause the current to flow, and the effective net die area is increased.
    Type: Application
    Filed: December 17, 2012
    Publication date: March 6, 2014
    Applicant: SK HYNIX INC.
    Inventor: Sang Min WON
  • Publication number: 20140061806
    Abstract: A semiconductor device includes a substrate including a cell region and a peripheral circuit region, buried gates formed in the substrate of the cell region, a bit line formed over the cell region between the buried gates and including a first barrier layer, and a gate formed over the peripheral circuit region and including a second barrier layer and a third barrier layer.
    Type: Application
    Filed: December 17, 2012
    Publication date: March 6, 2014
    Applicant: SK HYNIX INC.
    Inventor: Byung-Soo EUN
  • Publication number: 20140061807
    Abstract: A method is provided for fabricating a semiconductor structure. The method includes providing a semiconductor substrate, and forming a shallow trench isolation structure in the semiconductor substrate. The method also includes forming a plurality of parallel gate structures on the semiconductor substrate surrounded by the shallow trench isolation structure. Further, the method includes forming a plurality of first trenches in the semiconductor substrate at least one side of the gate structures proximity to the shallow trench isolation structure, and forming a first silicon germanium layer with a first germanium concentration in each of the first trenches. Further the method also includes forming a plurality second trenches in semiconductor substrate at least one side of the gate structures farther from the shallow trench isolation structure, and forming a second silicon germanium layer with a second germanium concentration greater than the first germanium concentration in each of the second trenches.
    Type: Application
    Filed: January 3, 2013
    Publication date: March 6, 2014
    Applicant: SEMICONDUCTOR MANUFACTURING INTERNATIONAL CORP.
    Inventors: HAO DENG, BIN ZHANG
  • Publication number: 20140061808
    Abstract: According to an embodiment, a semiconductor storage device includes an SRAM cell. The SRAM cell includes first and second transfer gates each comprising a pass gate. The pass gate includes first and second tunnel transistors. The first tunnel transistor includes a first conductivity type first diffusion region as a source or drain region, a second conductivity type second diffusion region as a drain or source region, and a gate electrode supplied with a control voltage. The second tunnel transistor includes a first conductivity type first diffusion region as a source or drain region, a second conductivity type second diffusion region as a drain or source region electrically connected to the second diffusion region of the first tunnel transistor, and a gate electrode electrically connected to the gate electrode of the first tunnel transistor.
    Type: Application
    Filed: February 27, 2013
    Publication date: March 6, 2014
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Keisuke NAKATSUKA, Shigeru KAWANAKA
  • Publication number: 20140061809
    Abstract: There is provided a semiconductor device comprising, at least one SRAM cell, wherein the SRAM cell includes a pull-up transistor, a pull-down transistor, and a pass-gate transistor, and an inversion-layer thickness (Tinv) of a gate stack of the pass-gate transistor is different from Tinv of a gate stack of the pull-up transistor and Tinv of a gate stack of the pull-down transistor.
    Type: Application
    Filed: June 11, 2013
    Publication date: March 6, 2014
    Inventors: Cheong-Sik Yu, Choel-Hwyi Bae, Ju-Youn Kim, Chang-Min Hong
  • Publication number: 20140061810
    Abstract: Provided is an in-wiring-layer active element (component) which allows for electrical isolation between a gate electrode and a channel in a top gate structure. A semiconductor device includes a first wiring layer, a second wiring layer, and a semiconductor element. The first wiring layer has a first interlayer insulating layer, and a first wire embedded in the first interlayer insulating layer. The second wiring layer has a second interlayer insulating layer, and second wires embedded in the second interlayer insulating layer. The semiconductor element is provided at least in the second wiring layer. The semiconductor element includes a semiconductor layer provided in the second wiring layer, a gate insulating film provided in contact with the semiconductor layer, a gate electrode provided on the opposite side of the semiconductor layer via the first gate insulating film, and a first side wall film provided over a side surface of the semiconductor layer.
    Type: Application
    Filed: August 22, 2013
    Publication date: March 6, 2014
    Applicant: Renesas Electronics Corporation
    Inventors: Hiroshi Sunamura, Kishou Kaneko, Yoshihiro Hayashi
  • Publication number: 20140061811
    Abstract: The disclosure relates to integrated circuit fabrication, and more particularly to a metal gate structure. An exemplary structure for a semiconductor device comprises a substrate comprising an isolation region separating and surrounding both a P-active region and an N-active region; a P-work function metal layer in a P-gate structure over the P-active region, wherein the P-work function metal layer comprises a first bottom portion and first sidewalls, wherein the first bottom portion comprises a first layer of metallic compound with a first thickness; and an N-work function metal layer in an N-gate structure over the N-active region, wherein the N-work function metal layer comprises a second bottom portion and second sidewalls, wherein the second bottom portion comprises a second layer of the metallic compound with a second thickness less than the first thickness.
    Type: Application
    Filed: August 30, 2012
    Publication date: March 6, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Pei-Shan Chien, Andrew Joseph Kelly
  • Publication number: 20140061812
    Abstract: Approaches are provided for forming a semiconductor device (e.g., a FET) having a multi-function layer (e.g., niobium carbide (NbC)) that serves as a work function layer and a gate metal layer in gate stacks of solid state applications. By introducing a single layer with multiple functions, total number of layers that needs processing (e.g., recessing) may be decreased. As such, the complexity of device integration and resulting complications may be reduced.
    Type: Application
    Filed: September 4, 2012
    Publication date: March 6, 2014
    Applicant: GLOBALFOUNDRIES INC.
    Inventor: Derya Deniz
  • Publication number: 20140061813
    Abstract: A semiconductor device includes a semiconductor substrate including a first region and a second region, a first high-k dielectric film pattern on the first region, a second high-k dielectric film pattern on the second region and having the same thickness as the first high-k dielectric film pattern. First and second work function control film patterns are positioned on the high-k dielectric film patterns of the first region. Third and fourth work function control patterns are positioned on the high-k dielectric film pattern of the second region, the first work function control pattern being thicker than the third work function control pattern and the fourth work function control pattern being thicker than the second.
    Type: Application
    Filed: May 24, 2013
    Publication date: March 6, 2014
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Cheong-Sik Yu, Choel-Hwyi Bae, Ju-Youn Kim, Chang-Min Hong
  • Publication number: 20140061814
    Abstract: A semiconductor device comprises: a semiconductor substrate comprising a first region and a second region; and first and second transistors on the first and second regions, respectively, wherein the first transistor comprises a first gate insulating layer pattern, the second transistor comprises a second gate insulating layer pattern, the first and second transistors both comprise a work function adjustment film pattern and a gate metal pattern, wherein the work function adjustment film pattern of the first transistor comprises the same material as the work function adjustment film pattern of the second transistor and the gate metal pattern of the first transistor comprises the same material as gate metal pattern of the second transistor, and a concentration of a metal contained in the first gate insulating layer pattern to adjust a threshold voltage of the first transistor is different from a concentration of the metal contained in the second gate insulating layer pattern to adjust a threshold voltage of the
    Type: Application
    Filed: May 30, 2013
    Publication date: March 6, 2014
    Inventors: Ju-Youn Kim, Shigenobu Maeda, Bong-Seok Kim
  • Publication number: 20140061815
    Abstract: A non-planar semiconductor transistor device includes a substrate layer. Conductive channels extend between corresponding source and drain electrodes. A gate stack extending in a direction perpendicular to the conductive channels crosses over the plurality of conductive channels. The gate stack includes a dielectric layer running along the substrate and the plurality of conductive channels and arranged with a substantially uniform layer thickness, a work-function electrode layer covers the dielectric layer and is arranged with a substantially uniform layer thickness, and a metal layer, distinct from the work-function electrode layer, covers the work-function electrode layer and is arranged with a substantially uniform height with respect to the substrate such that the metal layer fills a gap between proximate conductive channels of the plurality of conductive channels.
    Type: Application
    Filed: November 6, 2013
    Publication date: March 6, 2014
    Applicant: International Business Machines Corporation
    Inventors: HEMANTH JAGANNATHAN, Sivananda Kanakasabapathy
  • Publication number: 20140061816
    Abstract: A method of manufacturing a semiconductor device includes the steps of: providing a supply of molecules containing a plurality of dopant atoms into an ionization chamber, ionizing said molecules into dopant cluster ions, extracting and accelerating the dopant cluster ions with an electric field, selecting the desired cluster ions by mass analysis, modifying the final implant energy of the cluster ion through post-analysis ion optics, and implanting the dopant cluster ions into a semiconductor substrate. In general, dopant molecules contain n dopant atoms, where n is an integer number greater than 10. This method enables increasing the dopant dose rate to n times the implantation current with an equivalent per dopant atom energy of 1/n times the cluster implantation energy, while reducing the charge per dopant atom by the factor n.
    Type: Application
    Filed: November 6, 2013
    Publication date: March 6, 2014
    Applicant: SemEquip, Inc.
    Inventors: Thomas N. Horsky, Dale C. Jacobson
  • Publication number: 20140061817
    Abstract: Provided is a method of fabricating a semiconductor device that includes forming first and second fins over first and second regions of a substrate, forming first and second gate structures over the first and second fins, the first and second gate structures including first and second poly gates, forming an inter-level dielectric (ILD) over the substrate, performing a chemical mechanical polishing on the ILD to expose the first and second poly gates, forming a mask to protect the first poly gate of the first gate structure, removing the second poly gate thereby forming a first trench, removing the mask, partially removing the first poly gate thereby forming a second trench, forming a work function metal layer partially filling the first and second trenches, forming a fill metal layer filling a remainder of the first and second trenches, and removing the metal layers outside the first and second trenches.
    Type: Application
    Filed: November 19, 2013
    Publication date: March 6, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Tian-Choy Gan, Hsien-Chin Lin, Chia-Pin Lin, Shyue-Shyh Lin, Li-Shiun Chen, Shin Hsien Liao
  • Publication number: 20140061818
    Abstract: A TFT array substrate, a fabrication method thereof and a display device. The TFT array substrate, comprising: gate lines (19), data lines (20) and a plurality of pixel units, each pixel unit comprises: a common electrode line (11), a gate insulating layer (16), a passivation layer (17) and a pixel electrode (12) in this order, wherein a backup common electrode line (41) is disposed at a position between the gate insulating layer (16) and the passivation layer (17) and opposite to the common electrode line (11), the backup common electrode line (41) is electrically insulated from the data line (20). The TFT array substrate with this structure can avoid the short circuit between the pixel electrode (12) and the common electrode line (11).
    Type: Application
    Filed: February 7, 2013
    Publication date: March 6, 2014
    Applicant: BOE Technology Group Co., Ltd.
    Inventor: Mi Zhang
  • Publication number: 20140061819
    Abstract: A semiconductor device including a germanium containing substrate including a gate structure on a channel region of the semiconductor substrate. The gate structure may include a silicon oxide layer that is in direct contact with an upper surface of the germanium containing substrate, at least one high-k gate dielectric layer in direct contact with the silicon oxide layer, and at least one gate conductor in direct contact with the high-k gate dielectric layer. The interface between the silicon oxide layer and the upper surface of the germanium containing substrate is substantially free of germanium oxide. A source region and a drain region may be present on opposing sides of the channel region.
    Type: Application
    Filed: November 12, 2013
    Publication date: March 6, 2014
    Applicant: International Business Machines Corporation
    Inventors: MaryJane Brodsky, Murshed M. Chowdhury, Michael P. Chudzik, Min Dai, Siddarth A. Krishnan, Shreesh Narasimha, Shahab Siddiqui
  • Publication number: 20140061820
    Abstract: A method of forming a semiconductor device that includes forming a material stack on a semiconductor substrate, the material stack including a first dielectric layer on the substrate, a second dielectric layer on the first dielectric layer, and a third dielectric layer on the second dielectric layer, wherein the second dielectric layer is a high-k dielectric. Openings are formed through the material stack to expose a surface of the semiconductor substrate. A semiconductor material is formed in the openings through the material stack. The first dielectric layer is removed selectively to the second dielectric layer and the semiconductor material. A gate structure is formed on a channel portion of the semiconductor material. In some embodiments, the method may provide a plurality of finFET or trigate semiconductor device in which the fin structures of those devices have substantially the same height.
    Type: Application
    Filed: September 6, 2012
    Publication date: March 6, 2014
    Applicant: International Business Machines Corporation
    Inventors: Alexander Reznicek, Thomas N. Adam, Kangguo Cheng, Ali Khakifirooz
  • Publication number: 20140061821
    Abstract: Provided is an electronic device having a semiconductor device and a mounting board. The semiconductor device has a die pad, a semiconductor chip on the die pad, a coupling member coupling the die pad to the semiconductor chip, and a semiconductor package member covering the upper portion of the semiconductor chip and the side surface of the die pad. In this semiconductor device, the plane area of the coupling member coupling the mounting board to the die pad is smaller than the plane area of the lower surface of the die pad exposed from the semiconductor package material. This makes it possible to reduce separation between the die pad and the semiconductor chip resulting from cracks, due to temperature cycling, of the coupling member present between the die pad and the semiconductor chip.
    Type: Application
    Filed: August 22, 2013
    Publication date: March 6, 2014
    Applicant: RENESAS ELECTRONICS CORPORATION
    Inventors: Kenya KAWANO, Hiroyuki NAKAMURA, Yukihiro SATO
  • Publication number: 20140061822
    Abstract: Structures and methods for reducing backside polysilicon peeling are disclosed. A structure includes a substrate having a first side and a second opposite side, a first dielectric layer on the second side of the substrate extending in a direction from an edge of the substrate towards a center of the substrate, a high-k layer on the first dielectric layer, and a polysilicon layer on the high-k layer. The first dielectric layer has a first innermost sidewall relative to the center of the substrate, and the high-k layer has a second innermost sidewall relative to the center of the substrate. The second innermost sidewall is within 2 millimeters from the first innermost sidewall in a direction parallel to the second side. The polysilicon layer extends towards the center of the substrate further than the first innermost sidewall.
    Type: Application
    Filed: December 20, 2012
    Publication date: March 6, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventor: SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
  • Publication number: 20140061823
    Abstract: A micro-electrochemical sensor contains magnetic compounds inserted within a substrate that exert a magnetic force of attraction on paramagnetic beads held in contact with an electrode. The magnetic compounds can be contained within a fluid that is introduced into a void in the substrate. The electrode can be spaced apart from the magnetic compounds by a dielectric multi-layer membrane. During the fabrication process, different layers within the membrane-electrode structure can be tuned to have compressive or tensile stress so as to maintain structural integrity of the membrane, which is thin compared with the size of the void beneath it. During a process of forming the structure of the sensor, the tensile stress in a TiW adhesion layer can be adjusted to offset a composite net compressive stress associated with the dielectric layers of the membrane. The membrane can also be used in forming both the electrode and the void.
    Type: Application
    Filed: August 28, 2012
    Publication date: March 6, 2014
    Applicant: STMICROELECTRONICS PTE LTD.
    Inventors: Shian-Yeu Kam, Tien-Choy Loh, Ying Yu, Fery Riswan, Frederic Sala
  • Publication number: 20140061824
    Abstract: A packaging scheme for MEMS device is provided. A method of packaging MEMS device in a semiconductor structure includes forming an insulation fence that surrounds the MEMS device on the semiconductor structure. The method further includes attaching a wafer of dielectric material to the insulation fence. The lid wafer, the insulation fence, and the semiconductor structure enclose the MEMS device.
    Type: Application
    Filed: March 4, 2013
    Publication date: March 6, 2014
    Applicant: STMICROELECTRONICS, INC.
    Inventor: STMicroelectronics, Inc.
  • Publication number: 20140061825
    Abstract: Provided are a micro electro mechanical system (MEMS) acoustic sensor for removing a nonlinear component that occurs due to a vertical motion of a lower electrode when external sound pressure is received by fixing the lower electrode to a substrate using a fixing pin, and a fabrication method thereof. The MEMS acoustic sensor removes an undesired vertical motion of a fixed electrode when sound pressure is received by forming a fixing groove on a portion of the substrate and then forming a fixing pin on the fixing groove, and fixing the fixed electrode to the substrate using the fixing pin, and thereby improves a frequency response characteristic and also improves a yield of a process by inhibiting thermal deformation of the fixed electrode that may occur during the process.
    Type: Application
    Filed: April 29, 2013
    Publication date: March 6, 2014
    Applicant: Electronics and Telecommunications Research Institute
    Inventor: Electronics and Telecommunications Research Institute
  • Publication number: 20140061826
    Abstract: An ultrasonic transducer and a method of manufacturing the same are disclosed. The ultrasonic transducer includes a first electrode layer which is disposed to cover a conductive substrate and an inner wall and a top of a via hole penetrating a membrane and has a top surface at a same height as a top surface of the membrane; a second electrode layer which is disposed on a bottom surface of the conductive substrate to be spaced apart from the first electrode layer; and a top electrode which is disposed on the top surface of the membrane and which contacts the top surface of the first electrode layer.
    Type: Application
    Filed: August 28, 2013
    Publication date: March 6, 2014
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Seog-woo HONG, Dong-kyun KIM, Byung-gil JEONG, Seok-whan CHUNG
  • Publication number: 20140061827
    Abstract: A magnetic thin film deposition is patterned and protected from oxidation during subsequent processes, such as bit line formation, by an oxidation-prevention encapsulation layer of SiN. The SiN layer is then itself protected during the processing by a metal overlayer, preferably of Ta, Al, TiN, TaN or W. A sequence of low pressure plasma etches, using Oxygen, Cl2, BCl3 and C2H4 chemistries provide selectivity of the metal overlayer to various oxide layers and to the photo-resist hard masks used in patterning and metal layer and thereby allow the formation of bit lines while maintaining the integrity of the SiN layer.
    Type: Application
    Filed: August 29, 2012
    Publication date: March 6, 2014
    Applicant: HEADWAY TECHNOLOGIES, INC.
    Inventors: Kenlin Huang, Yuan-Tung Chin, Tom Zhong, Chyu-Jiuh Torng
  • Publication number: 20140061828
    Abstract: A magnetic memory device according to embodiments includes a first reference magnetic layer on a substrate, a second reference magnetic layer on the first reference magnetic layer, a free layer between the first reference magnetic layer and the second reference magnetic layer, a first tunnel barrier layer between the first reference magnetic layer and the free layer, and a second tunnel barrier layer between the second reference magnetic layer and the free layer. The first reference magnetic, second reference magnetic and free layers each have a magnetization direction substantially perpendicular to a top surface of the substrate. A resistance-area product (RA) value of the first tunnel barrier layer is greater than that of the second tunnel barrier layer.
    Type: Application
    Filed: August 14, 2013
    Publication date: March 6, 2014
    Inventors: WOO CHANG LIM, SANGYONG KIM, Whankyun KIM, SANG HWAN PARK, JEONGHEON PARK
  • Publication number: 20140061829
    Abstract: An apparatus (200) for detecting slow or thermal neutrons (160). The apparatus (200) includes an alpha particle-detecting layer (240) that is a hydrogenated amorphous silicon p-i-n diode structure. The apparatus includes a bottom metal contact (220) and a top metal contact (250) with the diode structure (240) positioned between the two contacts (220, 250) to facilitate detection of alpha particles (170). The apparatus (200) includes a neutron conversion layer (230) formed of a material containing boron-10 isotopes. The top contact (250) is pixilated with each contact pixel extending to or proximate to an edge of the apparatus to facilitate electrical contacting. The contact pixels have elongated bodies to allow them to extend across the apparatus surface (242) with each pixel having a small surface area to match capacitance based upon a current spike detecting circuit or amplifier connected to each pixel.
    Type: Application
    Filed: September 13, 2013
    Publication date: March 6, 2014
    Applicant: Alliance for Sustainable Energy, LLC
    Inventors: Pauls STRADINS, Howard M. BRANZ, Qi WANG, Harold R. McHUGH