Patents Issued in May 2, 2017
  • Patent number: 9640515
    Abstract: A microelectronic package can include a substrate having first and second opposed surfaces, and first and second microelectronic elements having front surfaces facing the first surface. The substrate can have a plurality of substrate contacts at the first surface and a plurality of terminals at the second surface. Each microelectronic element can have a plurality of element contacts at the front surface thereof. The element contacts can be joined with corresponding ones of the substrate contacts. The front surface of the second microelectronic element can partially overlie a rear surface of the first microelectronic element and can be attached thereto. The element contacts of the first microelectronic element can be arranged in an area array and are flip-chip bonded with a first set of the substrate contacts. The element contacts of the second microelectronic element can be joined with a second set of the substrate contacts by conductive masses.
    Type: Grant
    Filed: April 8, 2016
    Date of Patent: May 2, 2017
    Assignee: Tessera, Inc.
    Inventors: Wael Zohni, Belgacem Haba
  • Patent number: 9640516
    Abstract: A flexible display includes a plurality of pixel chips, chixels, provided on a flexible substrate. The chixels and the light emitters thereon may be shaped, sized and arranged to minimize chixel, pixel, and sub-pixel gaps and to provide a desired bend radius of the display. The flexible substrate may include light manipulators, such as filters, light converters and the like to manipulate the light emitted from light emitters of the chixels. The light manipulators may be arranged to minimize chixel gaps between adjacent chixels.
    Type: Grant
    Filed: October 8, 2015
    Date of Patent: May 2, 2017
    Assignee: Nanolumens Acquisition, Inc.
    Inventor: Richard C. Cope
  • Patent number: 9640517
    Abstract: A stacked electronic package includes a substrate and conductive straps each having sides, a top, and a bottom opposite the top. Each conductive strap is coupled along the bottom to an upper surface of the substrate and is separate from others of the conductive straps. A length of at least one of the sides is greater than a width of at least another one of the sides. An encapsulant extends over the upper surface and side surfaces of the substrate and the sides of the conductive straps. A passive electronic component is disposed over the conductive straps, and each conductive strap is coupled along the top to a terminal of the passive electronic component.
    Type: Grant
    Filed: October 29, 2014
    Date of Patent: May 2, 2017
    Assignee: CARSEM (M) SDN. BHD.
    Inventors: Thong Kai Choh, Lily Khor, Oo Choo Yee
  • Patent number: 9640518
    Abstract: The present invention relates to a method of making a semiconductor package with package-on-package stacking capability. In accordance with a preferred embodiment, the method is characterized by forming through openings that extend through a metallic carrier between first and second surfaces of the metallic carrier, attaching a chip-on-interposer subassembly on the metallic carrier using an adhesive, with the chip inserted into a cavity of the metallic carrier, and with the chip-on-interposer subassembly attached to the metallic carrier, forming first and second buildup circuitry on a first surface of the interposer and the second surface of the metallic carrier, respectively, and subsequently forming plated through holes that extend into the through openings to provide electrical and thermal connections between the first and second buildup circuitry. The method and resulting device advantageously provides vertical signal routing and stacking capability for a semiconductor package.
    Type: Grant
    Filed: March 11, 2016
    Date of Patent: May 2, 2017
    Assignee: BRIDGE SEMICONDUCTOR CORPORATION
    Inventors: Charles W. C. Lin, Chia-Chung Wang
  • Patent number: 9640519
    Abstract: A self-powered electronic system comprises a first chip (401) of single-crystalline semiconductor embedded in a second chip (302) of single-crystalline semiconductor shaped as a container bordered by ridges. The assembled chips are nested and form an electronic device assembled, in turn, in a slab of weakly p-doped low-grade silicon shaped as a container (330) bordered by ridges (331). The flat side (335) of the slab includes a heavily n-doped region (314) forming a pn-junction (315) with the p-type bulk. A metal-filled deep silicon via (350) through the p-type ridge (331) connects the n-region with the terminal (322) on the ridge surface as cathode of the photovoltaic cell with the p-region as anode. The voltage across the pn-junction serves as power source of the device.
    Type: Grant
    Filed: June 11, 2015
    Date of Patent: May 2, 2017
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Osvaldo Jorge Lopez, Walter Hans Paul Schroen, Jonathan Almeria Noquil, Thomas Eugene Grebs, Simon John Molloy
  • Patent number: 9640520
    Abstract: The invention provides a photocoupler package. The photocoupler package includes a light-emitting diode (LED) mounted on a first lead frame, electrically connected to the first lead frame. A photodetector is mounted on a second lead frame, electrically connected to the second lead frame. A first insulating material is disposed on the first lead frame, surrounding the LED. A second insulating material is disposed on the second lead frame, surrounding the photodetector. A third insulating material encapsulates the first insulating material and the LED. A third insulating material also encapsulates the second insulating material and the photodetector. This photocoupler possesses high photocoupling efficiency, small volume, and superior high-isolation capability.
    Type: Grant
    Filed: September 1, 2015
    Date of Patent: May 2, 2017
    Assignee: Lextar Electronics Corporation
    Inventors: Yi-An Chang, Chih-Hung Tzeng
  • Patent number: 9640521
    Abstract: A package structure includes a substrate having a first bond pad layer. A silicon bridge layer having one or more redistribution layers therein. The silicon bridge layer has a second bond pad, and the silicon bridge layer is attached to the substrate by an adhesive layer. A first die is coupled to the substrate and the silicon bridge layer. A second die is coupled to the silicon bridge layer, wherein the first die and the second die communicate with one another by way of the one or more redistribution layers. Power and/or ground connectors are coupled to the first bond pad and the second bond pad for enabling grounding and/or transferring power from the semiconductor substrate to the second die.
    Type: Grant
    Filed: January 2, 2015
    Date of Patent: May 2, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Wei Sen Chang, Yu-Feng Chen, Chen-Shien Chen, Mirng-Ji Lii
  • Patent number: 9640522
    Abstract: In an aspect of the disclosure, apparatuses for reducing the cost of using an ECO standard cell library in chip design are provided. Such an apparatus may be a MOS device including several regions. The MOS device may include a pMOS transistor and an nMOS transistor in a first region of the device. The pMOS transistor gate of the pMOS transistor and the nMOS transistor gate of the nMOS transistor may be formed by a gate interconnect extending in a first direction across the device. The MOS device may include several unutilized pMOS transistors and several unutilized nMOS transistors in a second region of the device adjacent to the first region. Fins of the pMOS transistors and the nMOS transistors in the first region may be disconnected from fins of the unutilized pMOS transistors and the unutilized nMOS transistors in the second region.
    Type: Grant
    Filed: April 19, 2016
    Date of Patent: May 2, 2017
    Assignee: QUALCOMM Incorporated
    Inventors: Satyanarayana Sahu, Vinod Gupta, Xiangdong Chen, Triveni Rachapalli
  • Patent number: 9640523
    Abstract: A lateral p-n diode in the center of and surrounded by a vertical Silicon-Controlled Rectifier (SCR) forms an Electro-Static-Discharge (ESD) protection structure. The lateral p-n diode has a cross-shaped P+ diode tap with four rectangles of N+ diode regions in each corner of the cross. A P-well under the P+ diode tap is also an anode of a vertical PNPN SCR that has a deep N-well in a P-substrate. The deep N-well surrounds the lateral diode. Triggering MOS transistors are formed just beyond the four ends of the cross shaped P+ diode tap. Each triggering MOS transistor has N+ regions at the edge of the deep N-well and in the P-substrate that act as the cathode terminals. A deep P+ implant region under the N+ region at the edge of the deep N-well decreases a trigger voltage of the vertical SCR.
    Type: Grant
    Filed: September 8, 2015
    Date of Patent: May 2, 2017
    Assignee: Hong Kong Applied Science and Technology Research Institute Company Limited
    Inventors: Xiaowu Cai, Beiping Yan, Zhongzi Chen
  • Patent number: 9640524
    Abstract: An ESD protection semiconductor device includes a substrate, a gate set formed on the substrate, a source region and a drain region formed in the substrate respectively at two sides of the gate set, at least a first doped region formed in the source region, and at least a second doped region formed in the drain region. The source region, the drain region and the second doped region include a first conductivity type, and the first doped region includes a second conductivity type. The first conductivity type and the second conductivity type are complementary to each other. The second doped region is electrically connected to the first doped region.
    Type: Grant
    Filed: October 27, 2015
    Date of Patent: May 2, 2017
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chung-Yu Huang, Kuan-Cheng Su, Tien-Hao Tang, Ping-Jui Chen, Po-Ya Lai
  • Patent number: 9640525
    Abstract: Provided is an ESD protection circuit including: a power MOS transistor provided between an external connection terminal and a reference voltage terminal; a clamping circuit that is provided between the external connection terminal and a gate of the power MOS transistor and clamps a voltage between the external connection terminal and the gate of the power MOS transistor at a predetermined value or less; a first resistive element provided between the gate and a source of the power MOS transistor; and a MOS transistor that is provided in series with the power MOS transistor and has a gate and a source which are commonly connected to each other.
    Type: Grant
    Filed: May 29, 2014
    Date of Patent: May 2, 2017
    Assignee: Renesas Electronics Corporation
    Inventor: Yutaka Hayashi
  • Patent number: 9640526
    Abstract: A semiconductor device includes a plurality of gate electrodes, and a plurality of stripe contacts, each formed alternately with each of the gate electrodes along a length direction of the gate electrodes. A conductive transistor with a reference potential applied to one of the stripe contacts forming one of a source and a drain is formed. One of the gate electrodes adjacent to one of the stripe contacts forming the other of the source and the drain is used as a first dummy gate electrode. The semiconductor device further includes a metal extending over the first dummy gate electrode to electrically connect together the stripe contacts formed on opposing sides of the first dummy gate electrode, and a pad connected to one of the stripe contacts formed on opposing sides of the first dummy gate electrode, which is provided across the first dummy gate electrode from the conductive transistor.
    Type: Grant
    Filed: July 23, 2015
    Date of Patent: May 2, 2017
    Assignee: RENESAS ELECTRONICS CORPORATION
    Inventor: Koki Narita
  • Patent number: 9640527
    Abstract: An electrostatic discharge (ESD) protection device includes a first trigger element and a first silicon control rectifier (SCR) element. The first trigger element has a first parasitic bipolar junction transistor (BJT) formed in a substrate. The first SCR element has a second parasitic BJT formed in the substrate. The first parasitic BJT and the second parasitic BJT has a common parasitic bipolar base, and the first parasitic BJT has a trigger voltage substantially lower than that of the second parasitic BJT.
    Type: Grant
    Filed: June 2, 2015
    Date of Patent: May 2, 2017
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Ya-Ting Lin, Yi-Chun Chen, Tien-Hao Tang
  • Patent number: 9640528
    Abstract: A bipolar complementary-metal-oxide-semiconductor (BiCMOS) device is disclosed. The BiCMOS device includes a CMOS device in a CMOS region, a first CMOS well in the CMOS region, an NPN bipolar device in a bipolar region, a second CMOS well in the bipolar region, the second CMOS well being a collector sinker and being electrically connected to a sub-collector of the NPN bipolar device, where the first CMOS well in the CMOS region and the second CMOS well in the bipolar region form a p-n junction to provide electrical isolation between the CMOS device and the NPN bipolar device. The BiCMOS device further includes a PNP bipolar device having a sub-collector, the sub-collector of the PNP bipolar device being electrically connected to a third CMOS well.
    Type: Grant
    Filed: March 17, 2015
    Date of Patent: May 2, 2017
    Assignee: Newport Fab, LLC
    Inventors: Edward Preisler, Todd Thibeault
  • Patent number: 9640529
    Abstract: Provided is a method of fabricating a semiconductor device. The method includes providing a substrate including a transistor area and a resistor area, forming dummy gate structures on the substrate in the resistor area, and a lower interlayer insulating layer; forming a resistor structure having a buffer insulating pattern, a resistor element and an etch-retard pattern disposed sequentially on the lower interlayer insulating layer; and forming resistor contact structures configured to pass through the etch-retard pattern and to contact with the resistor element.
    Type: Grant
    Filed: June 29, 2016
    Date of Patent: May 2, 2017
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hyun-Seung Song, Hwi-Chan Jun
  • Patent number: 9640530
    Abstract: A semiconductor device includes a package, an input terminal fixed to the package, an input pre-matched substrate provided in the package, a semiconductor element provided in the package and formed on a substrate different from the input pre-matched substrate, a matching circuit including a circuit element formed on the input pre-matched substrate, a first wire for connecting the input terminal and the circuit element, and a second wire for connecting the circuit element and the semiconductor element, a first MIM capacitor formed as part of the circuit element, and a first stabilization circuit formed as part of the circuit element to reduce oscillation, wherein a lower electrode of the first MIM capacitor is connected to the package through a via provided in the input pre-matched substrate.
    Type: Grant
    Filed: November 3, 2015
    Date of Patent: May 2, 2017
    Assignee: Mitsubishi Electric Corporation
    Inventor: Yoshinobu Sasaki
  • Patent number: 9640531
    Abstract: A 3D semiconductor device, including: a first layer including first transistors; a second layer overlaying the first layer, the second layer including second transistors, where the second layer includes at least one thru layer via with a diameter less than 200 nm, where the second layer includes an oscillator, and where the oscillator has a frequency stability of less than 100 ppm error/° C.
    Type: Grant
    Filed: January 28, 2015
    Date of Patent: May 2, 2017
    Assignee: MONOLITHIC 3D INC.
    Inventors: Zvi Or-Bach, Brian Cronquist
  • Patent number: 9640532
    Abstract: A device includes a first stacked capacitor comprising a first MOS capacitance and a first MOM capacitance, the first MOS capacitance coupled to a first node, the first node configured to receive a first bias voltage, and a second stacked capacitor comprising a second MOS capacitance and a second MOM capacitance, the second MOS capacitance coupled to the first node.
    Type: Grant
    Filed: September 3, 2014
    Date of Patent: May 2, 2017
    Assignee: Qualcomm Incorporated
    Inventor: Timothy Donald Gathman
  • Patent number: 9640533
    Abstract: At least one method, apparatus and system disclosed herein for suppressing over-growth of epitaxial layer formed on fins of fin field effect transistor (finFET) to prevent shorts between fins of separate finFET devices. A set of fins of a first transistor is formed. The set of fins comprises a first outer fin, an inner fin, and a second outer fin. An oxide deposition process is performed for depositing an oxide material upon the set of fins. A first recess process is performed for removing a portion of oxide material. This leaves a portion of the oxide material remaining on the inside walls of the first and second outer fins. A spacer nitride deposition process is performed. A spacer nitride removal process is performed, leaving spacer nitride material at the outer walls of the first and second outer fins. A second recess process is performed for removing the oxide material from the inside walls of the first and second outer fins. An epitaxial layer deposition processed upon the set of fins.
    Type: Grant
    Filed: March 12, 2015
    Date of Patent: May 2, 2017
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Kwan-Yong Lim, Christopher Michael Prindle
  • Patent number: 9640534
    Abstract: A method for manufacturing a semiconductor device is provided. The method includes forming an insulation film including a trench on a substrate, forming a first metal gate film pattern along side and bottom surfaces of the trench, forming a second metal gate film on the first metal gate film pattern and the insulation film, and forming a second metal gate film pattern positioned on the first metal gate film pattern by removing the second metal gate film to expose at least a portion of the insulation film and forming a blocking layer pattern on the second metal gate film pattern by oxidizing an exposed surface of the second metal gate film pattern.
    Type: Grant
    Filed: November 19, 2015
    Date of Patent: May 2, 2017
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Ju-Youn Kim, Je-Don Kim
  • Patent number: 9640535
    Abstract: A semiconductor device includes an isolation region laterally defining an active region in a semiconductor substrate, a gate structure positioned above the active region, and a sidewall spacer positioned adjacent to sidewalls of the gate structure. An etch stop layer is positioned above and covers a portion of the active region, an interlayer dielectric material is positioned above the active region and covers the etch stop layer, and a confined raised source/drain region is positioned on and in contact with an upper surface of the active region. The confined raised source/drain region extends laterally between and contacts a lower sidewall surface portion of the sidewall spacer and at least a portion of a sidewall surface of the etch stop layer, and a conductive contact element extends through the interlayer dielectric material and directly contacts an upper surface of the confined raised source/drain region.
    Type: Grant
    Filed: June 7, 2016
    Date of Patent: May 2, 2017
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Hiroaki Niimi, Ruilong Xie
  • Patent number: 9640536
    Abstract: A semiconductor device and a method for fabricating the device are provided. The semiconductor device has a substrate having a first device region and a second device region. A p-type fin field effect transistor is formed in the first device region. The p-type fin field effect transistor has a first fin structure comprised of a first semiconductor material. An n-type fin field effect transistor is formed in the second device region. The n-type fin field effect transistor has a second fin structure comprised of a second semiconductor material that is different than the first semiconductor material. To fabricate the semiconductor device, a substrate having an active layer present on a dielectric layer is provided. The active layer is etched to provide a first region having the first fin structure and a second region having a mandrel structure. The second fin structure is formed on a sidewall of the mandrel structure.
    Type: Grant
    Filed: June 25, 2015
    Date of Patent: May 2, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES
    Inventor: Effendi Leobandung
  • Patent number: 9640537
    Abstract: A single fin or a pair of co-integrated n- and p- type single crystal electronic device fins are epitaxially grown from a substrate surface at a bottom of one or a pair of trenches formed between shallow trench isolation (STI) regions. The fin or fins are patterned and the STI regions are etched to form a height of the fin or fins extending above etched top surfaces of the STI regions. The fin heights may be at least 1.5 times their width. The exposed sidewall surfaces and a top surface of each fin is epitaxially clad with one or more conformal epitaxial materials to form device layers on the fin. Prior to growing the fins, a blanket buffer epitaxial material may be grown from the substrate surface; and the fins grown in STI trenches formed above the blanket layer. Such formation of fins reduces defects from material interface lattice mismatches.
    Type: Grant
    Filed: September 27, 2013
    Date of Patent: May 2, 2017
    Assignee: Intel Corporation
    Inventors: Niti Goel, Robert S. Chau, Jack T. Kavalieros, Benjamin Chu-Kung, Matthew V. Metz, Niloy Mukherjee, Nancy M. Zelick, Gilbert Dewey, Willy Rachmady, Marko Radosavljevic, Van H. Le, Ravi Pillarisetty, Sansaptak Dasgupta
  • Patent number: 9640538
    Abstract: Methods for forming an eDRAM with replacement metal gate technology and the resulting device are disclosed. Embodiments include forming first and second dummy electrodes on a substrate, each dummy electrode having spacers at opposite sides and being surrounded by an ILD; removing the first and second dummy electrodes, forming first and second cavities, respectively; forming a hardmask over the substrate, exposing the first cavity; forming a deep trench in the substrate through the first cavity; removing the hardmask; and forming a capacitor in the first cavity and deep trench and concurrently forming an access transistor in the second cavity.
    Type: Grant
    Filed: October 29, 2014
    Date of Patent: May 2, 2017
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Yanxiang Liu, Min-hwa Chi
  • Patent number: 9640539
    Abstract: An integrated circuit and method includes self-aligned contacts. A gapfill dielectric layer fills spaces between sidewalls of adjacent MOS gates. The gapfill dielectric layer is planarized down to tops of gate structures. A contact pattern is formed that exposes an area for multiple self-aligned contacts. The area overlaps adjacent instances of the gate structures. The gapfill dielectric layer is removed from the area. A contact metal layer is formed in the areas where the gapfill dielectric material has been removed. The contact metal abuts the sidewalls along the height of the sidewalls. The contact metal is planarized down to the tops of the gate structures, forming the self-aligned contacts.
    Type: Grant
    Filed: December 16, 2015
    Date of Patent: May 2, 2017
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventor: Steven Alan Lytle
  • Patent number: 9640540
    Abstract: An integrated circuit includes first and second SRAM cells. The first SRAM cell includes first and second pull-up devices, first and second pull-down devices configured with the first and second pull-up devices to form first and second cross-coupled inverters, first and second pass-gate devices configured with the first and second cross-coupled inverters for writing data, a read pull-down device coupled to the first inverter, and a read pass-gate device coupled to the read pull-down device. The second SRAM cell includes third and fourth pull-up devices, and third and fourth pull-down devices configured with the third and fourth pull-up devices to form third and fourth cross-coupled inverters. Work function layers of gates of the first pull-up device, first pull-down device, and third pull-up device have a first work function, a second work function, and a third work function respectively. The first, second, and third work functions are different from each other.
    Type: Grant
    Filed: July 19, 2016
    Date of Patent: May 2, 2017
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventor: Jhon Jhy Liaw
  • Patent number: 9640541
    Abstract: An anti-fuse based on a Field Nitride Trap (FNT) is disclosed. The anti-fuse includes a first active pillar including a first junction, a second active pillar including a second junction, a selection line buried between the first active pillar and the second active pillar, and a trap layer for electrically coupling the first junction to the second junction by trapping minority carriers according to individual voltages applied to the first junction, the second junction and the selection line. As a result, the fuse can be highly integrated through the above-mentioned structure, and programming of the fuse can be easily achieved.
    Type: Grant
    Filed: April 18, 2016
    Date of Patent: May 2, 2017
    Assignee: SK HYNIX INC.
    Inventor: Eun Sung Lee
  • Patent number: 9640542
    Abstract: A semiconductor device includes a stacked structure having first conductive layers stacked stepwise and first insulating layers interposed between the first conductive layers, wherein undercuts are formed under the first conductive layers and each of the first conductive layers includes a first region covered by the first conductive layer and a second region extending from the first region, contact pads coupled to the second regions of the respective first conductive layers, and a liner layer formed on the contact pads and filling the undercuts.
    Type: Grant
    Filed: April 4, 2016
    Date of Patent: May 2, 2017
    Assignee: SK Hynix Inc.
    Inventors: Ki Hong Lee, Seung Ho Pyi, Ji Yeon Baek
  • Patent number: 9640543
    Abstract: A semiconductor device may include: a plurality of source-side half channels positioned in a first region and arranged in first to 2Nth rows, wherein N is an integer equal to or greater than 2; a plurality of first drain-side half channels positioned in a second region at one side of the first region and arranged in first to Nth rows; a plurality of second drain-side half channels positioned in a third region at the other side of the first region and arranged in first to Nth rows; a plurality of first pipe channels suitable for connecting the first to Nth rows of source-side half channels to the first to Nth rows of first drain-side half channels, respectively; and a plurality of second pipe channels suitable for connecting the (N+1)th to 2Nth rows of source-side half channels to the first to Nth rows of second drain-side half channels, respectively.
    Type: Grant
    Filed: June 15, 2015
    Date of Patent: May 2, 2017
    Assignee: SK Hynix Inc.
    Inventor: Eun-Seok Choi
  • Patent number: 9640544
    Abstract: An integrated circuit such as a NAND flash memory includes a dielectric layer overlying transistors (e.g. NAND flash memory cells) that are formed along a surface of a substrate and a hydrogen absorption structure overlying the dielectric layer, the hydrogen absorption structure extending over the transistors, the hydrogen absorption structure being electrically isolated from the transistors.
    Type: Grant
    Filed: April 24, 2015
    Date of Patent: May 2, 2017
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Arata Okuyama, Ryo Urakawa, Hiroshi Omi
  • Patent number: 9640545
    Abstract: A non-volatile memory device can include a plurality of immediately adjacent offset vertical NAND channels that are electrically coupled to a single upper select gate line or to a single lower select gate line of the non-volatile memory device.
    Type: Grant
    Filed: February 3, 2014
    Date of Patent: May 2, 2017
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kwang Soo Seol, Sukpil Kim, Yoondong Park
  • Patent number: 9640546
    Abstract: A semiconductor memory array includes a first nonvolatile memory cell having a first charge storage layer and a first gate electrode and a second nonvolatile memory cell, adjacent to the first memory cell in a first direction, having a second charge storage layer and a second gate electrode. The first and second electrodes extend in a second direction perpendicular to the first direction, the first electrode has a first contact section extending toward the second electrode in the first direction, and the second electrode has a second contact section extending toward the first electrode in the first direction. The first and second contact positions are shifted in the second direction, respectively, and the first electrode and the first contact section are electrically separated from the second electrode and the second contact section.
    Type: Grant
    Filed: January 30, 2015
    Date of Patent: May 2, 2017
    Assignee: Renesas Electronics Corporation
    Inventors: Tsutomu Okazaki, Daisuke Okada, Kyoya Nitta, Toshihiro Tanaka, Akira Kato, Toshikazu Matsui, Yasushi Ishii, Digh Hisamoto, Kan Yasui
  • Patent number: 9640547
    Abstract: A stacked multilayer structure according to an embodiment of the present invention comprises: a stacked layer part including a plurality of conducting layers and a plurality of insulating layers, said plurality of insulating layers being stacked alternately with each layer of said plurality of conducting layers, one of said plurality of insulating layers being a topmost layer among said plurality of conducting layers and said plurality of insulating layers; and a plurality of contacts, each contact of said plurality of contacts being formed from said topmost layer and each contact of said plurality of contacts being in contact with a respective conducting layer of said plurality of conducting layers, a side surface of each of said plurality of contacts being insulated from said plurality of conducting layers via an insulating film.
    Type: Grant
    Filed: January 14, 2016
    Date of Patent: May 2, 2017
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Makoto Mizukami, Takeshi Kamigaichi
  • Patent number: 9640548
    Abstract: A method for fabricating a non-volatile memory device includes forming a stacked structure where a plurality of inter-layer dielectric layers and a plurality of second sacrificial layers are alternately stacked over the first gate electrode layer, forming a first channel hole that exposes the first sacrificial layer by penetrating through the stacked structure, forming a second channel hole by removing the exposed first sacrificial layer, forming an oxide layer by oxidizing a surface of the first gate electrode layer exposed through the first and second channel holes, forming a channel layer in the first and second channel holes, and forming second gate electrode layers in spaces from which the second sacrificial layers are removed, wherein a memory layer is interposed between the channel layer and the second gate electrode layer.
    Type: Grant
    Filed: September 7, 2012
    Date of Patent: May 2, 2017
    Assignee: SK Hynix Inc.
    Inventor: Ki-Hong Yang
  • Patent number: 9640549
    Abstract: A vertical memory device includes a substrate, a channel, gate lines and a connecting portion. A plurality of the channels extend in a first direction which is vertical to a top surface of a substrate. A plurality of the gate lines are stacked in the first direction to be spaced apart from each other and extend in a second, lengthwise direction, each gate line intersecting a set of channels and surrounding outer sidewalls of each channel of the set of channels. The gate lines forms a stepped structure which includes a plurality of vertical levels. A connecting portion connects a group of gate lines of the plurality of gate lines located at the same vertical level, the connecting portion diverging from the second direction in which the gate lines of the group of gate lines extend.
    Type: Grant
    Filed: November 6, 2014
    Date of Patent: May 2, 2017
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Seok-Won Lee, Joon-Hee Lee, Dong-Seog Eun, Chang-Hyun Lee
  • Patent number: 9640550
    Abstract: A semiconductor device includes a semiconductor pattern; conductive layers each including a first portion through which the semiconductor pattern passes and a second portion having a thickness greater than the first portion, wherein the first portion of each conductive layer includes a first barrier pattern surrounding the semiconductor pattern and a material pattern, which is formed in the first barrier pattern and has an etch selectivity with respect to the first barrier pattern, and the second portion of each conductive layer includes a conductive pattern; and contact plugs connected to the second portion of each of the conductive layers.
    Type: Grant
    Filed: September 13, 2016
    Date of Patent: May 2, 2017
    Assignee: SK Hynix Inc.
    Inventors: Ki Hong Lee, Seung Ho Pyi, Jin Ho Bin
  • Patent number: 9640551
    Abstract: In embodiments, a radio frequency (RF) module includes an RF switching device, an RF active device, a passive device and a control device formed on a high resistivity substrate. The passive device can include a shallow trench device isolation region having a plate shape and formed at a surface portion of the high resistivity substrate, deep trench device isolation regions extending downward from a lower surface of the shallow trench device isolation region so as to define at least one isolated region therebetween, at least one insulating layer formed on the high resistivity substrate, and at least one passive component formed on the insulating layer.
    Type: Grant
    Filed: February 11, 2016
    Date of Patent: May 2, 2017
    Assignee: DONGBU HITEK CO., LTD.
    Inventor: Yong Soo Cho
  • Patent number: 9640552
    Abstract: Semiconductor fins are formed on a top surface of a substrate. A dielectric material is deposited on the top surfaces of the semiconductor fins and the substrate by an anisotropic deposition. A dielectric material layer on the top surface of the substrate is patterned so that the remaining portion of the dielectric material layer laterally surrounds each bottom portion of at least one semiconductor fin, while not contacting at least one second semiconductor fin. Dielectric material portions on the top surfaces of the semiconductor fins may be optionally removed. Each first semiconductor fin has a lesser channel height than the at least one second semiconductor fin. The first and second semiconductor fins can be employed to provide fin field effect transistors having different channel heights.
    Type: Grant
    Filed: October 21, 2014
    Date of Patent: May 2, 2017
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Pranita Kerber, Carl J. Radens, Sudesh Saroop
  • Patent number: 9640553
    Abstract: A thin-film transistor (TFT), a manufacturing method thereof, an array substrate and a display device are disclosed. The method for manufacturing the a TFT comprises the step of forming a gate electrode, a gate insulating layer, an active area, a source electrode and a drain electrode on a base substrate. The active area (4) is made of a ZnON material. When the gate insulating layer is formed, a material for forming the gate insulating layer is subjected to control treatment, so that a sub-threshold amplitude of the TFT is less than or equal to 0.5 mV/dec. The manufacturing method reduces the sub-threshold amplitude of the TFT and improves the semiconductor characteristic of the TFT.
    Type: Grant
    Filed: November 21, 2014
    Date of Patent: May 2, 2017
    Assignee: BOE Technology Group Co., Ltd.
    Inventor: Chunsheng Jiang
  • Patent number: 9640554
    Abstract: A pixel structure includes a semiconductor layer, an insulating layer, a first conductive layer, a second conductive layer, a passivation layer, and a first electrode layer. The semiconductor layer includes a first semiconductor pattern having a first source region, a first drain region, and a first channel region. The insulating layer is disposed on the semiconductor layer. The first conductive layer is disposed on the insulating layer and includes a first gate, a first source, a first drain, and a data line connected to the first source. The second conductive layer is disposed on the first conductive layer and includes a scan line. The passivation layer covers the first and second conductive layers and the semiconductor layer. The first electrode layer is disposed on the passivation layer and provides electrical connection to different layers.
    Type: Grant
    Filed: August 26, 2014
    Date of Patent: May 2, 2017
    Assignee: Au Optronics Corporation
    Inventors: Yi-Cheng Lin, Yu-Chi Chen
  • Patent number: 9640555
    Abstract: A change in electrical characteristics can be inhibited and reliability can be improved in a semiconductor device including an oxide semiconductor. The semiconductor device including an oxide semiconductor film includes a first insulating film, the oxide semiconductor film over the first insulating film, a second insulating film over the oxide semiconductor film, and a third insulating film over the second insulating film. The second insulating film includes oxygen and silicon, the third insulating film includes nitrogen and silicon, and indium is included in a vicinity of an interface between the second insulating film and the third insulating film.
    Type: Grant
    Filed: June 8, 2015
    Date of Patent: May 2, 2017
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Kenichi Okazaki, Junichi Koezuka, Masami Jintyou, Takahiro Iguchi
  • Patent number: 9640556
    Abstract: Provided is a thin film transistor that has high mobility and excellent stress resistance and is good typically in adaptability to wet etching process. The thin film transistor includes a substrate, and, disposed on the substrate in the following sequence, a gate electrode, a gate insulator film, oxide semiconductor layers, source-drain electrodes, and a passivation film that protects the source-drain electrodes. The oxide semiconductor layers have a first oxide semiconductor layer including In, Ga, Zn, Sn, and O, and a second oxide semiconductor layer including In, Ga, Sn, and O. The second oxide semiconductor layer is disposed on the gate insulator film. The first oxide semiconductor layer is disposed between the second oxide semiconductor layer and the passivation film. The atomic ratios in contents of the individual metal elements to all the metal elements constituting the first and the second oxide semiconductor layers are controlled to predetermined ratios.
    Type: Grant
    Filed: January 15, 2015
    Date of Patent: May 2, 2017
    Assignee: Kobe Steel, Ltd.
    Inventors: Hiroshi Goto, Aya Miki, Mototaka Ochi
  • Patent number: 9640557
    Abstract: A TFT array substrate has an organic insulating film formed of a photosensitive organic resin material. A common electrode and a lead-out wiring are formed on the organic insulating film, and a pixel electrode is formed above the common electrode with an interlayer insulating film provided between them. The pixel electrode is connected to the lead-out wiring through a contact hole formed in the interlayer insulating film. The lead-out wiring and the common electrode are connected to a drain electrode and a common wiring, respectively, through contact holes formed in the organic insulating film. A metal cap film is provided on each of the lead-out wiring and the common electrode in the contact holes formed in the organic insulating film.
    Type: Grant
    Filed: March 21, 2014
    Date of Patent: May 2, 2017
    Assignee: Mitsubishi Electric Corporation
    Inventors: Koji Oda, Kazunori Inoue, Nobuaki Ishiga, Osamu Miyakawa
  • Patent number: 9640558
    Abstract: In case the size of the transistor is enlarged, power consumption of the transistor is increased. Thus, the present invention provides a display device capable of preventing a current from flowing to a display element in signal writing operation without varying potentials of power source lines for supplying a current to the display element per row. In setting a gate-source voltage of a transistor by applying a predetermined current to the transistor, a potential of a gate terminal of the transistor is adjusted so as to prevent a current from flowing to a load connected to a source terminal of the transistor. Therefore, a potential of a wire connected to the gate terminal of the transistor is differentiated from a potential of a wire connected to a drain terminal of the transistor.
    Type: Grant
    Filed: March 11, 2015
    Date of Patent: May 2, 2017
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Hajime Kimura
  • Patent number: 9640559
    Abstract: A low temperature poly-silicon (LTPS) array substrate is disclosed. The array substrate includes a first substrate and a stack structure on the first substrate, where the stack structure includes a first conductive layer, and a second conductive layer. The first and second conductive layers are insulated from each other. The array substrate also includes a polysilicon layer above the first and second conductive layers, an interlayer insulating layer above the polysilicon layer, and a source-drain metal layer on the interlayer insulating layer. The source-drain metal layer includes a source and a drain, the source and the drain are electrically connected with the polysilicon layer through a first via, and one of the source and the drain is electrically connected with the first conductive layer through a second via.
    Type: Grant
    Filed: June 8, 2015
    Date of Patent: May 2, 2017
    Assignees: XIAMEN TIANMA MICRO-ELECTRONICS CO., LTD., TIANMA MICRO-ELECTRONICS CO., LTD.
    Inventors: Bozhi Liu, Zaiwen Zhu
  • Patent number: 9640560
    Abstract: A light-emitting diode (LED) display panel, a manufacturing method thereof and a display device are disclosed. The LED display panel comprises a thin-film transistor (TFT) backplane, a light-emitting structure and an overcoat (OC) layer (10). The OC layer (10) is disposed between the TFT backplane and the light-emitting structure and configured to cover gate lines (21) and data lines (22) in a display area of the LED display panel. The manufacturing process of the LED display panel adds the process of the OC layer (10) and hence can effectively avoid the scratches onto the TFT backplane caused by an evaporation mask plate when the light-emitting structure is formed and prevent the caused electrostatic problem.
    Type: Grant
    Filed: November 5, 2014
    Date of Patent: May 2, 2017
    Assignee: BOE TECHNOLOGY GROUP CO., LTD.
    Inventor: Yongqian Li
  • Patent number: 9640561
    Abstract: An electronic device may have a flexible display with portions that are bent along a bend axis. The display may have display circuitry such as an array of display pixels in an active area. Contact pads may be formed in an inactive area of the display. Signal lines may couple the display pixels to the contact pads. The signal lines may overlap the bend axis in the inactive area of the display. During fabrication, an etch stop may be formed on the display that overlaps the bend axis. The etch stop may prevent over etching of dielectric such as a buffer layer on a polymer flexible display substrate. A layer of polymer that serves as a neutral stress plane adjustment layer may be formed over the signal lines in the inactive area of the display. Upon bending, the neutral stress plane adjustment layer helps prevent stress in the signal lines.
    Type: Grant
    Filed: November 30, 2015
    Date of Patent: May 2, 2017
    Assignee: Apple Inc.
    Inventors: Young Bae Park, Shih Chang Chang, Vasudha Gupta
  • Patent number: 9640562
    Abstract: A display panel is disclosed and includes an active area and a non-active area. A first, a second, a third, a fourth, a fifth, and a sixth charging scanning lines and a first, a second, a third, a fourth, a fifth, and a sixth charge-sharing scanning lines of an array unit on the active area are connected to a first, a second, a third, a fourth, a fifth, and a sixth pixel row, respectively. A first, a second, and a third detection lines on the non-active area are connected to the active area.
    Type: Grant
    Filed: August 7, 2014
    Date of Patent: May 2, 2017
    Assignee: Shenzhen China Star Optoelectronics Technology Co., Ltd.
    Inventors: Zui Wang, Jinbo Guo
  • Patent number: 9640563
    Abstract: Disclosed is a TFT substrate, including a substrate and a gate electrode thereon. A gate insulation layer over the substrate covers the gate electrode. An active layer is disposed over the gate insulation layer. An etch stop layer is disposed over the active layer and the gate insulation layer. A first opening penetrates the etch stop layer to expose a first part of the active layer. A source electrode over the etch stop layer is electrically connected to the first part of the active layer through the first opening. A first inorganic insulation layer is disposed over the source electrode and the etch stop layer. A second opening penetrates the first inorganic insulation layer and the etch stop layer to expose a second part of the active layer.
    Type: Grant
    Filed: October 12, 2015
    Date of Patent: May 2, 2017
    Assignee: INNOLUX CORPORATION
    Inventors: Kuan-Feng Lee, Tzu-Min Yan
  • Patent number: 9640564
    Abstract: A thin film transistor substrate including a thin film transistor and a capacitor formed of a pair of electrodes, which includes: a first electrode above a substrate; a first insulating film above the first electrode; a second electrode above the first insulating film; a second insulating film above the second electrode; and a semiconductor layer above the second insulating film, in which the capacitor includes the first electrode as one of the pair of electrodes and the second electrode as the other of the pair of electrodes, and the thin film transistor includes the second electrode as a gate electrode, the second insulating film as a gate insulating film, and the semiconductor layer as a channel layer.
    Type: Grant
    Filed: November 23, 2015
    Date of Patent: May 2, 2017
    Assignee: JOLED INC.
    Inventors: Eiichi Sato, Shinya Ono