Patents Issued in September 17, 2019
  • Patent number: 10418439
    Abstract: At least one embodiment is directed to a semiconductor edge termination structure, where the edge termination structure comprises several doped layers and a buffer layer.
    Type: Grant
    Filed: October 10, 2016
    Date of Patent: September 17, 2019
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Jaume Roig-Guitart, Peter Moens, Zia Hossain
  • Patent number: 10418440
    Abstract: A memory structure including a substrate, stacked structures, at least one isolation structure, a second conductive layer, and a second dielectric layer is provided. The stacked structures are disposed on the substrate. Each of the stacked structures includes a first dielectric layer and a first conductive layer sequentially disposed on the substrate. A first opening is located between two adjacent stacked structures, and the first opening extends into the substrate. The isolation structure is disposed in the first opening and covers a sidewall of the first dielectric layer. The isolation structure has a recess, such that a top profile of the isolation structure is shaped as a funnel. The second conductive layer is disposed on the stacked structures and fills the first opening. The second dielectric layer is disposed between the second conductive layer and the first conductive layer.
    Type: Grant
    Filed: August 30, 2017
    Date of Patent: September 17, 2019
    Assignee: Winbond Electronics Corp.
    Inventors: Chung-Hsien Liu, Chun-Hsu Chen, Lu-Ping Chiang
  • Patent number: 10418441
    Abstract: A plurality of trenches is provided in a stripe shape extending in a direction parallel to a substrate front surface to a predetermined depth in a depth direction. A gate electrode is provided inside each trench, with a gate insulating film interposed there between. In mesa regions separated by the trenches, p-Type base regions at an emitter potential are provided over the entire surface layer on the substrate front surface side. Inside the p-type base regions, n+-type emitter regions are provided dispersedly at a predetermined interval in the longitudinal direction of the trenches. A p-type collector layer and an n+-type buffer layer are provided in this order on the surface layer of the substrate back surface. The thickness of the n+-type buffer layer is substantially equal to or larger than the thickness of an n?-type drift layer. As a result, switching losses are reduced while maintaining an ON voltage.
    Type: Grant
    Filed: March 15, 2016
    Date of Patent: September 17, 2019
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventor: Tatsuya Naito
  • Patent number: 10418442
    Abstract: Provided is a trench gate MOSFET including a substrate of a first conductivity type, an epitaxial layer of the first conductivity type, a first conductive layer of a second conductivity type, a second conductive layer and an interlayer insulating layer. The epitaxial layer is disposed on the substrate and has at least one trench therein. The first conductive layer is disposed in the lower portion of the trench and in physical contact with the epitaxial layer. The second conductive layer is disposed in the upper portion of the trench. The interlayer insulating layer is disposed between the first conductive layer and the second conductive layer.
    Type: Grant
    Filed: July 20, 2018
    Date of Patent: September 17, 2019
    Assignee: UBIQ Semiconductor Corp.
    Inventors: Chin-Fu Chen, Yi-Yun Tsai
  • Patent number: 10418443
    Abstract: A platform for trapping atomic ions includes a substrate and a plurality of metallization layers that overlie the substrate. The metallization layer farthest from the substrate is a top layer patterned with electrostatic control trap electrodes and radio-frequency trap electrodes. Another metallization layer is a microwave layer patterned to define a microwave circuit. The microwave layer lies below the top layer. The microwave circuit is adapted to generate, in use, a microwave magnetic field above the electrostatic control and radio-frequency trap electrodes. The top metallization layer includes slots that, in use, are penetrated by microwave energy from the microwave circuit.
    Type: Grant
    Filed: February 3, 2017
    Date of Patent: September 17, 2019
    Assignee: National Technology & Engineering Solutions of Sandia, LLC
    Inventors: Christopher Nordquist, Christopher W. Berry, Peter Lukas Wilhelm Maunz, Matthew G. Blain, Jonathan David Sterk, Paul J. Resnick, John F. Rembetski
  • Patent number: 10418444
    Abstract: A SiC semiconductor device capable of increasing a switching speed without destroying a gate insulating film. In addition, in a SiC-MOSFET including an n-type semiconductor substrate formed of SiC, a p-type semiconductor layer is entirely or partially provided on an upper surface of a p-type well layer that has a largest area of the transverse plane among a plurality of p-type well layers provided in an n-type drift layer and is arranged on an outermost periphery immediately below a gate electrode pad. It is preferable that a concentration of an impurity contained in the p-type semiconductor layer be larger than that of the p-type well layer.
    Type: Grant
    Filed: April 4, 2014
    Date of Patent: September 17, 2019
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Yukiyasu Nakao, Masayuki Imaizumi, Shuhei Nakata, Naruhisa Miura
  • Patent number: 10418445
    Abstract: In a vertical MOSFET having a trench gate structure, a lifetime killer region is provided in a p-type epitaxial layer formed by epitaxial growth. The lifetime killer region includes an electron lifetime killer that causes electrons entering the lifetime killer region to recombine and become extinct. As a result, the lifetime killer region decreases the electrons generated at the pn interface of the p-type epitaxial layer and an n-type drift layer and enables a configuration in which electrons are not delivered to the p-type epitaxial layer.
    Type: Grant
    Filed: May 24, 2018
    Date of Patent: September 17, 2019
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventors: Mina Ryo, Takeshi Tawara, Masaki Miyazato, Masaaki Miyajima
  • Patent number: 10418447
    Abstract: Provided is a thin film transistor, a production method thereof, and an electronic apparatus. The thin film transistor comprises a substrate, and a gate electrode, a gate insulator layer, a source electrode, a drain electrode and an active layer on the substrate, wherein the active layer comprises a stack of two or more layers of graphene-like two-dimensional semiconductor material. The electronic apparatus comprises the thin film transistor, and may be used as an optical or mechanical sensor.
    Type: Grant
    Filed: March 29, 2018
    Date of Patent: September 17, 2019
    Assignees: BOE TECHNOLOGY GROUP CO., LTD., HEFEI XINSHENG OPTOELECTRONICS TECHNOLOGY CO., LTD.
    Inventors: Guangyao Li, Guangcai Yuan, Dongfang Wang, Jun Wang, Qinghe Wang, Ning Liu
  • Patent number: 10418448
    Abstract: A semiconductor device includes an active pattern provided on a substrate and a gate electrode crossing over the active pattern. The active pattern includes a first buffer pattern on the substrate, a channel pattern on the first buffer pattern, a doped pattern between the first buffer pattern and the channel pattern, and a second buffer pattern between the doped pattern and the channel pattern. The doped pattern includes graphene injected with an impurity.
    Type: Grant
    Filed: May 10, 2017
    Date of Patent: September 17, 2019
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Mirco Cantoro, Zhenhua Wu, Krishna Bhuwalka, Sangsu Kim, Shigenobu Maeda
  • Patent number: 10418449
    Abstract: Structures and circuits including multiple nanosheet field-effect transistors and methods of forming such structures and circuits. A complementary field-effect transistor includes a first nanosheet transistor with a source/drain region and a second nanosheet transistor with a source/drain region stacked over the source/drain region of the first nanosheet transistor. A contact extends vertically to connect the source/drain region of the first nanosheet transistor of the complementary field-effect transistor and the source/drain region of the second nanosheet transistor of the complementary field-effect transistor.
    Type: Grant
    Filed: January 10, 2018
    Date of Patent: September 17, 2019
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Bipul C. Paul, Ruilong Xie, Puneet Harischandra Suvarna
  • Patent number: 10418450
    Abstract: A fin-shaped field effect transistor (finFET) device comprising includes a substrate, an insulating layer displaced over the substrate, and a fin. The device also includes a gate formed over the fin, the gate including: a gate stack; and a high-k dielectric on opposing side of the gate stack. The device further includes metallic source and drain regions formed over the fin and on opposing sides of the gate.
    Type: Grant
    Filed: April 22, 2016
    Date of Patent: September 17, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Emre Alptekin, Robert R. Robison, Reinaldo A Vega
  • Patent number: 10418451
    Abstract: A memory device includes a semiconductor substrate having spaced apart source and drain regions, with a channel region of the substrate extending there between, a floating gate of polysilicon disposed over and insulated from a first portion of the channel region by insulation material having a first thickness, wherein the floating gate has a sloping upper surface that terminates in a sharp edge, a word line gate of polysilicon disposed over and insulated from a second portion of the channel region by insulation material having a second thickness, and an erase gate of polysilicon disposed over and insulated from the source region by insulation material having a third thickness, wherein the erase gate includes a notch that wraps around and is insulated from the sharp edge of the floating gate. The third thickness is greater than the first thickness, and the first thickness is greater than the second thickness.
    Type: Grant
    Filed: August 7, 2018
    Date of Patent: September 17, 2019
    Assignee: Silicon Storage Technology, Inc.
    Inventors: Nhan Do, Chien-Sheng Su, Jeng-Wei Yang
  • Patent number: 10418452
    Abstract: A semiconductor device includes a first trench and a second trench in a first main surface of a semiconductor substrate. Each of the first and second trenches includes first sections extending lengthwise in a first direction and a second section extending lengthwise in a second direction transvers to the first direction, the second section of the first trench being disposed opposite to the second section of the second trench. The semiconductor device further includes a semiconductor mesa separating the first and second trenches, and a source metal layer above the first main surface of the semiconductor substrate and electrically connected to source regions in the semiconductor mesa. Corresponding methods of manufacture are also described.
    Type: Grant
    Filed: April 9, 2018
    Date of Patent: September 17, 2019
    Assignee: Infineon Technologies Austria AG
    Inventors: Britta Wutte, Sylvain Leomant
  • Patent number: 10418453
    Abstract: A conductive layer is formed between a metal gate structure, which includes a high-k gate dielectric layer and a gate electrode, and a contact feature. The conductive layer can be selectively deposited on a top surface of the gate electrode or, alternatively, non-selectively formed on the top surface of the gate electrode and the gate dielectric layer by controlling, for example, time of deposition. The conductive layer can have a bottom portion embedded into the gate electrode. The conductive layer and the contact feature can include the same composition, though they may be formed using different deposition techniques.
    Type: Grant
    Filed: January 30, 2018
    Date of Patent: September 17, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chao-Hsun Wang, Yu-Feng Yin, Kuo-Yi Chao, Mei-Yun Wang, Feng-Yu Chang, Chen-Yuan Kao
  • Patent number: 10418454
    Abstract: This disclosure relates to the technical field of semiconductors, and discloses a semiconductor device and a manufacturing method therefor. The semiconductor device may include a substrate; a first fin on the substrate for forming a first electronic component; a first gate structure on a portion of the first fin including a first gate dielectric layer on a portion of the first fin and a first gate on the first gate dielectric layer; and a first source region and a first drain region that each at one of two sides of the first gate structure and at least partially located in the first fin, where the first gate dielectric layer comprises a first region abutting against the first drain region, a second region abutting against the first source region, and a third region between the first region and the second region, and wherein thickness of the first region is greater than that of the third region.
    Type: Grant
    Filed: May 8, 2018
    Date of Patent: September 17, 2019
    Assignees: SEMICONDUCTOR MANUFACTURING INTL. (SHANGHAI) CORP., SEMICONDUCTOR MANUFACTURING INTL. (BEIJING) CORP.
    Inventors: Yong Li, Zhongshan Hong
  • Patent number: 10418455
    Abstract: At least one method, apparatus and system disclosed herein involves forming trench in a gate region, wherein the trench having an oxide layer to a height to reduce or prevent process residue. A plurality of fins are formed on a semiconductor substrate. Over a first portion of the fins, an epitaxial (EPI) feature at a top portion of each fin of the first portion. Over a second portion of the fins, a gate region is formed. In a portion of the gate region, a trench is formed. A first oxide layer at a bottom region of the trench is formed. Prior to performing an amorphous-silicon (a-Si) deposition, a flowable oxide material is deposited into the trench for forming a second oxide layer. The second oxide layer comprises the flowable oxide and the first oxide layer. The second oxide layer has a first height.
    Type: Grant
    Filed: September 26, 2017
    Date of Patent: September 17, 2019
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Hui Zang, Daniel Jaeger, Haigou Huang, Veeraraghavan Basker, Christopher Nassar, Jinsheng Gao, Michael Aquilino
  • Patent number: 10418456
    Abstract: A method of forming a semiconductor device having a semiconductor substrate with a dielectric layer disposed thereon. A trench is defined in the dielectric layer. A metal gate structure is formed in the trench. The metal gate structure includes a first layer and a second layer disposed on the first layer. The first layer extends to a first height in the trench and the second layer extends to a second height in the trench; the second height is greater than the first height. In some embodiments, the second layer is a work function metal and the first layer is a dielectric. In some embodiments, the second layer is a barrier layer.
    Type: Grant
    Filed: June 5, 2017
    Date of Patent: September 17, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Lien Huang, Chi-Wen Liu, Clement Hsingjen Wann, Ming-Huan Tsai, Zhao-Cheng Chen
  • Patent number: 10418457
    Abstract: The structures and methods disclosed herein include changing composition of a metal alloy layer in an epitaxial electrode material to achieve tunable work functions for the electrode. In one example, the tunable work function is achieved using a layered structure, in which a crystalline rare earth oxide (REO) layer is epitaxially over a substrate or semiconductor, and a metal layer is over the crystalline REO layer. A semiconductor layer is thus in turn epitaxially grown over the metal layer, with a metal alloy layer over the semiconductor layer such that the ratio of constituents in the metal alloy is used to tune the work function of the metal layer.
    Type: Grant
    Filed: September 21, 2018
    Date of Patent: September 17, 2019
    Assignee: IQE plc
    Inventors: Rytis Dargis, Richard Hammond, Andrew Clark, Rodney Pelzel
  • Patent number: 10418458
    Abstract: The present invention discloses a manufacturing method for a semiconductor device. The manufacturing method includes: providing a substrate; forming a semiconductor stacked structure on the substrate; forming at least apart of a stacked cap layer on the semiconductor stacked structure, wherein the part of the stacked cap layer includes a nitride layer; removing a part of the nitride layer; forming the rest part of the stacked cap layer; forming a protection layer on the stacked cap layer, and etching the protection layer to form an opening, wherein the nitride layer is not exposed by the opening; and introducing an etchant material into the opening to etch the substrate. The present invention also provides a semiconductor device made by the method.
    Type: Grant
    Filed: March 19, 2019
    Date of Patent: September 17, 2019
    Assignee: PIXART IMAGING INCORPORATION
    Inventors: Chih-Ming Sun, Hsin-Hui Hsu, Ming-Han Tsai
  • Patent number: 10418459
    Abstract: A high electron mobility transistor includes a III-V compound layer, a nitride layer, a source electrode, a drain electrode, a gate electrode, a surface plasma treatment region, and at least one moat. The nitride layer is disposed on the III-V compound layer. The source and the drain electrodes are disposed above the III-V compound layer. The gate electrode is disposed above the nitride layer. The moat is at least partially disposed in the nitride layer and between the source and the drain electrodes. The surface plasma treatment region is at least partially disposed in the nitride layer. The surface plasma treatment region is at least partially disposed at a top surface of the nitride layer between the moat and the drain electrode, a top surface of the nitride layer between the moat and the source electrode, and/or a top surface of the nitride layer under the moat.
    Type: Grant
    Filed: November 6, 2017
    Date of Patent: September 17, 2019
    Assignee: Wavetek Microelectronics Corporation
    Inventors: Chih-Yen Chen, Hsien-Lung Yang
  • Patent number: 10418460
    Abstract: A structure and method for implementation of dummy gate structures within multi-gate device structures includes a semiconductor device including an isolation region that separates a first and second active region. The first active region is adjacent to a first side of the isolation region and the second active region is adjacent to a second side of the isolation region. A device including a source, a drain, and a gate is formed within the first active region. One of the source and drain regions are disposed adjacent to the isolation region. A dummy gate is formed at least partially over the isolation region and adjacent to the one of the source and drain regions. In various examples, the gate includes a first dielectric layer having a first thickness and the dummy gate includes a second dielectric layer having a second thickness greater than the first thickness.
    Type: Grant
    Filed: April 16, 2018
    Date of Patent: September 17, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chia-Chu Liu, Kuei-Shun Chen, Chiang Mu-Chi, Chao-Cheng Chen
  • Patent number: 10418461
    Abstract: Semiconductor structures and fabrication methods thereof are provided. An exemplary fabrication method includes providing a base substrate; forming a dummy gate structure over the base substrate; forming source/drain regions having source/drain doping ions in the base substrate at both sides of the dummy gate structure; forming a dielectric layer on the source/drain regions and covering the side surfaces of the dummy gate structure; removing the dummy gate structure to form an opening in the dielectric layer; performing one or more of a first ion implantation process, for implanting first barrier ions in the base substrate toward the source region to form a first barrier layer under the opening, and a second ion implantation process, for implanting second barrier ions in the base substrate toward the source region to form a second barrier layer under the opening; and forming a gate structure in the opening.
    Type: Grant
    Filed: December 13, 2018
    Date of Patent: September 17, 2019
    Assignees: Semiconductor Manufacturing International (Shanghai) Corporation, Semiconductor Manufacturing International (Beijing) Corporation
    Inventor: Meng Zhao
  • Patent number: 10418462
    Abstract: A vertical fin field-effect-transistor and a method for fabricating the same. The vertical fin field-effect-transistor includes at least a substrate, a first source/drain layer, and a plurality of fins each disposed on and in contact with the first source/drain layer. Silicide regions are disposed within a portion of the first source/drain layer. A gate structure is in contact with the plurality of fins, and a second source/drain layer is disposed on the gate structure. The method includes forming silicide in a portion of a first source/drain layer. A first spacer layer is formed in contact with at least the silicide, the first source/drain layer and the plurality of fins. A gate structure is formed in contact with the plurality of fins and the first spacer layer. A second spacer layer is formed in contact with the gate structure and the plurality of fins.
    Type: Grant
    Filed: September 27, 2017
    Date of Patent: September 17, 2019
    Assignee: International Business Machines Corporation
    Inventors: Brent A. Anderson, Huiming Bu, Terence B. Hook, Fee Li Lie, Junli Wang
  • Patent number: 10418463
    Abstract: A silicon germanium alloy is formed on sidewall surfaces of a silicon fin. An oxidation process or a thermal anneal is employed to convert a portion of the silicon fin into a silicon germanium alloy fin. In some embodiments, the silicon germanium alloy fin has a wide upper portion and a narrower lower portion. In such an embodiment, the wide upper portion has a greater germanium content than the narrower lower portion. In other embodiments, the silicon germanium alloy fin has a narrow upper portion and a wider lower portion. In this embodiment, the narrow upper portion of the silicon germanium alloy fin has a greater germanium content than the wider lower portion of the silicon germanium alloy fin.
    Type: Grant
    Filed: February 28, 2017
    Date of Patent: September 17, 2019
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Hong He, Juntao Li
  • Patent number: 10418464
    Abstract: Techniques are disclosed for forming transistors on the same substrate with varied channel materials. The techniques include forming a replacement material region in the substrate, such region used to form a plurality of fins therefrom, the fins used to form transistor channel regions. In an example case, the substrate may comprise Si and the replacement materials may include Ge, SiGe, and/or at least one III-V material. The replacement material regions can have a width sufficient to ensure a substantially planar interface between the replacement material and the substrate material. Therefore, the fins formed from the replacement material regions can also have a substantially planar interface between the replacement material and the substrate material. One example benefit from being able to form replacement material channel regions with such substantially planar interfaces can include at least a 30 percent improvement in current flow at a fixed voltage.
    Type: Grant
    Filed: June 12, 2015
    Date of Patent: September 17, 2019
    Assignee: INTEL Corporation
    Inventors: Glenn A. Glass, Anand S. Murthy, Hei Kam, Tahir Ghani, Karthik Jambunathan, Chandra S. Mohapatra
  • Patent number: 10418465
    Abstract: Certain aspects of the present disclosure provide a memory device. One example memory device generally includes a first semiconductor region having a first region, a second region, and a third region, the second region being between the first region and the third region and having a different doping type than the first region and the third region. In certain aspects, the memory device also includes a first non-insulative region, a first insulative region being disposed between the first non-insulative region and the first semiconductor region. In certain aspects, the memory device may include a second non-insulative region, and a second insulative region disposed between the second region and the second non-insulative region, wherein the first insulative region and the second insulative region are disposed adjacent to opposite sides of the second region.
    Type: Grant
    Filed: May 3, 2018
    Date of Patent: September 17, 2019
    Assignee: QUALCOMM Incorporated
    Inventors: Qingqing Liang, Francesco Carobolante, Sinan Goktepeli, George Imthurn, Fabio Alessio Marino, Narasimhulu Kanike
  • Patent number: 10418466
    Abstract: An object is to provide a high reliability thin film transistor using an oxide semiconductor layer which has stable electric characteristics. In the thin film transistor in which an oxide semiconductor layer is used, the amount of change in threshold voltage of the thin film transistor before and after a BT test is made to be 2 V or less, preferably 1.5 V or less, more preferably 1 V or less, whereby the semiconductor device which has high reliability and stable electric characteristics can be manufactured. In particular, in a display device which is one embodiment of the semiconductor device, a malfunction such as display unevenness due to change in threshold voltage can be reduced.
    Type: Grant
    Filed: February 14, 2017
    Date of Patent: September 17, 2019
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Takahiro Tsuji, Kunihiko Suzuki
  • Patent number: 10418467
    Abstract: It is an object to provide a highly reliable semiconductor device which includes a thin film transistor having stable electric characteristics. It is another object to manufacture a highly reliable semiconductor device at lower cost with high productivity. In a method for manufacturing a semiconductor device which includes a thin film transistor where a semiconductor layer having a channel formation region, a source region, and a drain region are formed using an oxide semiconductor layer, heat treatment (heat treatment for dehydration or dehydrogenation) is performed so as to improve the purity of the oxide semiconductor layer and reduce impurities such as moisture. Moreover, the oxide semiconductor layer subjected to the heat treatment is slowly cooled under an oxygen atmosphere.
    Type: Grant
    Filed: April 16, 2018
    Date of Patent: September 17, 2019
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Toshinari Sasaki, Junichiro Sakata, Hiroki Ohara, Shunpei Yamazaki
  • Patent number: 10418468
    Abstract: The present disclosure relates to a semiconductor device with multiple heterojunction bipolar transistors (HBTs) that have different emitter ballast resistances. The disclosed semiconductor device includes a substrate, a first HBT and a second HBT formed over the substrate. The first HBT includes a first collector, a first base over the first collector, a first emitter over the first base, and a first cap structure over the first emitter. The second HBT includes a second collector, a second base over the second collector, a second emitter over the second base, and a second cap structure over the second emitter. Herein, the first cap structure is different from the second cap structure, such that a first emitter ballast resistance from the first cap structure is at least 1.5 times greater than a second emitter ballast resistance from the second cap structure.
    Type: Grant
    Filed: November 7, 2018
    Date of Patent: September 17, 2019
    Assignee: Qorvo US, Inc.
    Inventors: Peter J. Zampardi, Brian G. Moser, Thomas James Rogers
  • Patent number: 10418469
    Abstract: Provided are an insulated gate bipolar transistor and a preparation method therefor. An auxiliary groove gate, namely a structure of an auxiliary groove, an auxiliary gate layer and the corresponding gate oxide layer, is arranged below an emitting metal electrode between a first common groove and a second common groove so as to provide a carrier pathway when the insulated gate bipolar transistor is turned off, so that not only the turn-off speed of the insulated gate bipolar transistor is increased, but also the reverse-biased safety operation area characteristic of the insulated gate bipolar transistor is improved, thus improving the performance of the insulated gate bipolar transistor.
    Type: Grant
    Filed: June 22, 2016
    Date of Patent: September 17, 2019
    Assignee: ZHUZHOU CRRC TIMES ELECTRIC CO., LTD.
    Inventors: Guoyou Liu, Rongzhen Qin, Jianwei Huang, Haihui Luo, Xiaoping Dai
  • Patent number: 10418470
    Abstract: A semiconductor device according to an embodiment includes a first diode portion including a first trench extending in a first direction, and a first trench electrode; a second diode portion adjacent to the first diode portion in the first direction and includes a second trench extending in the first direction, and a second trench electrode and of which the width in the first direction is greater than the width of the first diode portion in a second direction perpendicular to the first direction; and a first IGBT portion adjacent to the first diode portion in the second direction and is adjacent to the second diode portion in the first direction and includes a third trench extending in the first direction, and a first gate electrode.
    Type: Grant
    Filed: March 6, 2018
    Date of Patent: September 17, 2019
    Assignees: Kabushiki Kaisha Toshiba, Toshiba Electronic Devices & Storage Corporation
    Inventors: Ryohei Gejo, Kazutoshi Nakamura, Norio Yasuhara, Tomohiro Tamaki
  • Patent number: 10418471
    Abstract: Dual-base two-sided bipolar power transistors which use an insulated field plate to separate the emitter/collector diffusions from the nearest base contact diffusion. This provides a surprising improvement in turn-off performance, and in breakdown voltage.
    Type: Grant
    Filed: April 13, 2017
    Date of Patent: September 17, 2019
    Assignee: Ideal Power, Inc.
    Inventors: William C. Alexander, Richard A. Blanchard
  • Patent number: 10418472
    Abstract: An electronic device can include a HEMT including at least two channel layers. In an embodiment, a lower semiconductor layer overlies a lower channel layer, wherein the lower semiconductor layer has an aluminum content that is at least 10% of a total metal content of the lower semiconductor layer. An upper semiconductor layer overlies the upper channel layer, wherein the upper semiconductor layer has an aluminum content that is greater as compared to the lower semiconductor layer. In another embodiment, an electronic device can include stepped source and drain electrodes, so that lower contact resistance can be achieved. In a further embodiment, an absolute value of a difference between pinch-off or threshold voltages between different channel layers is greater than 1 V and allows current to be turned on or turned off for a channel layer without affecting another channel layer.
    Type: Grant
    Filed: April 28, 2017
    Date of Patent: September 17, 2019
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Peter Moens, Jia Guo, Ali Salih, Chun-Li Liu
  • Patent number: 10418473
    Abstract: A monolithically integrated device includes a substrate, a first set of Group III nitride epitaxial layers grown for a first HFET on a first region of the substrate, and a second set of Group III nitride epitaxial layers for a second HFET grown on a second region of the substrate.
    Type: Grant
    Filed: February 7, 2018
    Date of Patent: September 17, 2019
    Assignee: HRL Laboratories, LLC
    Inventors: David F. Brown, Keisuke Shinohara, Miroslav Micovic, Andrea Corrion
  • Patent number: 10418474
    Abstract: A high electron mobility transistor (HEMT) includes a semiconductor structure including a cap layer and a channel layer forming a heterojunction, such that a two dimensional electron gas is formed at the interface of cap layer and the channel layer. The HEMT also includes a set of electrodes including a source electrode, a drain electrode, and a gate electrode deposited on the cap layer. The gate electrode is arranged between the source and the drain electrode along the length of the HEMT. The thickness of the cap layer at least under the gate electrode is varying along the width of the HEMT.
    Type: Grant
    Filed: October 17, 2017
    Date of Patent: September 17, 2019
    Assignee: Mitsubishi Electric Research Laboratories, Inc.
    Inventors: Koon Hoo Teo, Nadim Chowdhury
  • Patent number: 10418475
    Abstract: A semiconductor structure, device, or vertical field effect transistor is comprised of a drain, a drift layer disposed in a first direction relative to the drain and in electronic communication with the drain, a barrier layer disposed in the first direction relative to the drift layer and in electronic communication with the drain, the barrier layer comprising a current blocking layer and an aperture region, a two-dimensional hole gas-containing layer disposed in the first direction relative to the barrier layer, a gate electrode oriented to alter an energy level of the aperture region when a gate voltage is applied to the gate electrode, and a source in ohmic contact with the two-dimensional hole gas-containing layer. At least one of an additional layer, the drain, the drift region, the current blocking layer, the two-dimensional hole gas-containing layer, and the aperture region comprises diamond.
    Type: Grant
    Filed: November 28, 2017
    Date of Patent: September 17, 2019
    Assignees: ARIZONA BOARD OF REGENTS ON BEHALF OF ARIZONA STATE UNIVERSITY, THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Srabanti Chowdhury, Maitreya Dutta, Robert Nemanich, Franz Koeck
  • Patent number: 10418476
    Abstract: The present invention is related to a silicon carbide semiconductor device which employs a silicon carbide substrate to form an integrated device. The integrated device of the present invention comprises a metal oxide semiconductor field-effect transistor (MOSFET) and an integrated junction barrier Schottky (JBS) diode in an anti-parallel connection with the MOSFET.
    Type: Grant
    Filed: May 16, 2017
    Date of Patent: September 17, 2019
    Assignee: HESTIA POWER INC.
    Inventors: Cheng-Tyng Yen, Chien-Chung Hung, Chwan-Ying Lee
  • Patent number: 10418477
    Abstract: A silicon carbide semiconductor device, including a silicon carbide substrate, a drift layer provided on a front surface of the silicon carbide substrate, an embedded layer selectively provided in a surface layer of the drift layer, an epitaxial layer provided on the drift layer, a channel layer provided on the epitaxial layer, a source region selectively provided in a surface layer of the channel layer, a trench penetrating the source region and the channel layer and reaching the epitaxial layer, a gate electrode provided in the trench via a gate insulating film, a source electrode in contact with the channel layer and the source region, and a drain electrode provided on a rear surface of the silicon carbide substrate. The embedded layer is arranged underneath the trench in a depth direction. A longitudinal direction of the trench, which is perpendicular to the depth direction, is parallel to the off-direction of the silicon carbide substrate.
    Type: Grant
    Filed: November 1, 2017
    Date of Patent: September 17, 2019
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventors: Takeshi Tawara, Akimasa Kinoshita, Shinsuke Harada, Yasunori Tanaka
  • Patent number: 10418478
    Abstract: On a surface of an n-type silicon carbide epitaxial layer on an n+-type silicon carbide substrate, first and second p+-type base regions are formed in the n-type silicon carbide epitaxial layer, an n-type region is formed in the n-type silicon carbide epitaxial layer, a p-type base layer is formed on the n-type region, an n+-type source region and a p++-type contact region are formed in the p-type base layer, and a trench is formed to a position shallower than the second p+-type base region and penetrates the p-type base layer. A first sidewall angle of the trench at a position of the p-type base layer is 80° to 90° with respect to a main surface. A difference of the first sidewall angle and a second sidewall angle of the trench at a position deeper than a boundary of the p-type base layer and the n-type region is 1° to 25°.
    Type: Grant
    Filed: April 24, 2018
    Date of Patent: September 17, 2019
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventors: Takahito Kojima, Shinsuke Harada, Yasuhiko Oonishi
  • Patent number: 10418479
    Abstract: A vertical MOSFET is provided in an output stage region of a semiconductor substrate while a lateral n-channel MOSFET and a vertical diode are provided in a circuit region. The vertical diode is constituted by a p+-type diffusion region that penetrates a p?-type well region in a depth direction. A bottom of a first contact trench provided in an n+-type source region of the vertical MOSFET is covered by a p++-type contact region. A bottom of a second contact trench provided in an n+-type source region of the lateral n-channel MOSFET is covered by a p++-type contact region and a third contact trench provided in an n+-type drain region is covered entirely by the n+-type drain region.
    Type: Grant
    Filed: June 4, 2018
    Date of Patent: September 17, 2019
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventor: Yoshiaki Toyoda
  • Patent number: 10418480
    Abstract: A semiconductor device capable of high-voltage operation includes a semiconductor substrate having a first conductivity type. A first well doped region is formed in the semiconductor substrate, having a second conductivity type that is the opposite of the first conductivity type. A first doped region and a second doped region are formed on the first well doped region, having the second conductivity type. A first gate structure is formed over the first well doped region and adjacent to the first doped region. A second gate structure overlaps the first gate structure and the first well doped region. A third gate structure is formed beside the second gate structure and close to the second doped region. The top surface of the first well doped region between the second gate structure and the third gate structure avoids having any gate structure and silicide formed thereon.
    Type: Grant
    Filed: February 7, 2017
    Date of Patent: September 17, 2019
    Assignee: MediaTek Inc.
    Inventors: Chu-Wei Hu, Cheng Hua Lin
  • Patent number: 10418481
    Abstract: One embodiment is directed towards a method. The method includes forming a drift region of a first conductivity type above or in a substrate. The substrate has first and second surfaces. A first insulator is formed over a first portion of the channel, and which has a first thickness. A second insulator is formed over the second portion of the channel, and which has a second thickness that is less than the first thickness. A first gate is formed over the first insulator. A second gate is formed over the second insulator. A body region of a second conductivity type is formed above or in the substrate.
    Type: Grant
    Filed: October 20, 2017
    Date of Patent: September 17, 2019
    Assignee: Intersil Americas LLC
    Inventor: Dev Alok Girdhar
  • Patent number: 10418482
    Abstract: A high voltage device is formed in a semiconductor substrate, and includes: a first deep well, a lateral lightly doped region, a high voltage well, an isolation region, a body region, a gate, a source, a drain, and a first isolation well. The first deep well and the first isolation well are for electrical isolating the high voltage device from neighboring devices below a top surface of the semiconductor substrate. The lateral lightly doped region is located between the first deep well and the high voltage well in a vertical direction, and the lateral lightly doped region contacts the first deep well and the high voltage well. The lateral lightly doped region is for reducing an inner capacitance of the high voltage device when the high voltage device operates, to improve transient response.
    Type: Grant
    Filed: August 7, 2018
    Date of Patent: September 17, 2019
    Assignee: RICHTEK TECHNOLOGY CORPORATION
    Inventor: Tsung-Yi Huang
  • Patent number: 10418483
    Abstract: An example laterally diffused metal oxide semiconducting (LDMOS) device includes a semiconductor substrate of a first conductivity type, active MOS regions, and a lightly-doped isolation layer (LDIL) of a second conductivity type. The active MOS regions include source and drain regions and a plurality of PN junctions. The LDIL is formed above and laterally along the semiconductor substrate, and located between the semiconductor substrate and at least a part of the active MOS regions. The LDIL is doped with dopant of the second conductivity type to cause, in response to selected voltages applied to the LDMOS device, the plurality of PN junctions to deplete each other and to support a voltage drop between the source and drain regions along the LDIL.
    Type: Grant
    Filed: October 30, 2017
    Date of Patent: September 17, 2019
    Assignee: NXP B.V.
    Inventors: Bernhard Grote, Xin Lin, Saumitra Raj Mehrotra, Ljubo Radic, Ronghua Zhu
  • Patent number: 10418484
    Abstract: Disclosed is a semiconductor structure that includes a vertical field effect transistor (VFET) with a U-shaped semiconductor body. The semiconductor structure can be a standard VFET or a feedback VFET. In either case, the VFET includes a lower source/drain region, a semiconductor body on the lower source/drain region, and an upper source/drain region on the top of the semiconductor body. Rather than having an elongated fin shape, the semiconductor body folds back on itself in the Z direction so as to be essentially U-shaped (as viewed from above). Using a U-shaped semiconductor body reduces the dimension of the VFET in the Z direction without reducing the end-to-end length of the semiconductor body. Thus, VFET cell height can be reduced without reducing device drive current or violating critical design rules. Also disclosed is a method of forming a semiconductor structure that includes such a VFET with a U-shaped semiconductor body.
    Type: Grant
    Filed: March 14, 2018
    Date of Patent: September 17, 2019
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Ruilong Xie, Lars Liebmann, Edward J. Nowak, Julien Frougier, Jia Zeng
  • Patent number: 10418485
    Abstract: A method of forming a vertical transport fin field effect transistor and a long-channel field effect transistor on the same substrate, including, forming a recessed region in a substrate and a fin region adjacent to the recessed region, forming one or more vertical fins on the fin region, forming a long-channel pillar from the substrate in the recessed region, where the long-channel pillar is at a different elevation than the one or more vertical fins, forming two or more long-channel source/drain plugs on the long-channel pillar, forming a bottom source/drain plug in the fin region, where the bottom source/drain plug is below the one or more vertical fins, forming a gate structure on the long-channel pillar and a gate structure on the one or more vertical fins, and forming a top source/drain on the top surface of the one or more vertical fins.
    Type: Grant
    Filed: July 26, 2018
    Date of Patent: September 17, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Cheng Chi, Tenko Yamashita, Chen Zhang
  • Patent number: 10418486
    Abstract: Longitudinal trenches extend between and on either side of first and second side-by-side strips. Transverse trenches extend from one edge to another edge of the first strip to define tensilely strained semiconductor slabs in the first strip, with the second strip including portions that are compressively strained in the longitudinal direction and/or tensilely strained in the transverse direction. In the first strip, N-channel MOS transistors are located inside and on top of the semiconductor slabs. In the second strip, P-channel MOS transistors are located inside and on top of the portions.
    Type: Grant
    Filed: May 10, 2018
    Date of Patent: September 17, 2019
    Assignees: STMicroelectronics (Crolles 2) SAS, Commissariat A L'Energie Atomique et aux Energies Alternatives
    Inventors: Remy Berthelon, Francois Andrieu
  • Patent number: 10418487
    Abstract: A non-planar gate all-around device and method of fabrication thereby are described. In one embodiment, the device includes a substrate having a top surface with a first lattice constant. Embedded epi source and drain regions are formed on the top surface of the substrate. The embedded epi source and drain regions have a second lattice constant that is different from the first lattice constant. A channel nanowire having a third lattice is formed between and are coupled to the embedded epi source and drain regions. In an embodiment, the second lattice constant and the third lattice constant are different from the first lattice constant. A gate dielectric layer is formed on and all-around the channel nanowire. A gate electrode is formed on the gate dielectric layer and surrounding the channel nanowire.
    Type: Grant
    Filed: November 19, 2015
    Date of Patent: September 17, 2019
    Assignee: Intel Corporation
    Inventors: Willy Rachmady, Ravi Pillarisetty, Van H. Le, Jack T. Kavalieros, Robert S. Chau, Jessica S. Kachian
  • Patent number: 10418488
    Abstract: Methods and structures for forming strained-channel FETs are described. A strain-inducing layer may be formed under stress in a silicon-on-insulator substrate below the insulator. Stress-relief cuts may be formed in the strain-inducing layer to relieve stress in the strain-inducing layer. The relief of stress can impart strain to an adjacent semiconductor layer. Strained-channel, fully-depleted SOI FETs and strained-channel finFETs may be formed from the adjacent semiconductor layer. The amount and type of strain may be controlled by etch depths and geometries of the stress-relief cuts and choice of materials for the strain-inducing layer.
    Type: Grant
    Filed: August 15, 2017
    Date of Patent: September 17, 2019
    Assignee: STMicroelectronics, Inc.
    Inventor: Pierre Morin
  • Patent number: 10418489
    Abstract: Embodiments of the present disclosure provide a thin film transistor and a method of manufacturing the same, and a display device. In an embodiment, the thin film transistor includes a gate, a gate insulation layer, an active layer, a source electrode and a drain electrode, and further includes a heat source disposed above or below the active layer and configured to heat a channel region of the active layer.
    Type: Grant
    Filed: July 26, 2017
    Date of Patent: September 17, 2019
    Assignees: BOE TECHNOLOGY GROUP CO., LTD., CHENGDU BOE OPTOELECTRONICS TECHNOLOGY CO., LTD.
    Inventors: Shan Gao, Tingliang Liu, Yang Wang, Wei Guo