Using An Organic Precursor (e.g., Propane, Metal-organic, Mocvd, Movpe) Patents (Class 117/104)
  • Patent number: 7303630
    Abstract: Dotted seeds are implanted in a regular pattern upon an undersubstrate. A GaN crystal is grown on the seed implanted undersubstrate by a facet growth method. The facet growth makes facet pits above the seeds. The facets assemble dislocations from neighboring regions, accumulate the dislocations into pit bottoms, and make closed defect accumulating regions (H) on the seeds. The polycrystalline or slanting orientation single crystal closed defect accumulating regions (H) induce microcracks due to thermal expansion anisotropy. The best one is orientation-inversion single crystal closed defect accumulating regions (H). At an early stage, orientation-inverse protrusions are induced on tall facets and unified with each other above the seeds. Orientation-inverse crystals growing on the unified protrusions become the orientation-inverse single crystal closed defect accumulating regions (H).
    Type: Grant
    Filed: September 3, 2004
    Date of Patent: December 4, 2007
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Kensaku Motoki, Takuji Okahisa, Ryu Hirota, Seiji Nakahata, Koji Uematsu
  • Patent number: 7273664
    Abstract: The invention concerns a monocrystalline coating crack-free coating of gallium nitride or mixed gallium nitride and another metal, on a substrate likely to cause extensive stresses in the coating, said substrate being coated with a buffer layer, wherein: at least a monocrystalline layer of a material having a thickness ranging between 100 and 300 nm, preferably between 200 and 250 nm, and whereof crystal lattice parameter is less than the crystal lattice parameter of the gallium nitride or of the mixed gallium nitride with another metal, is inserted in the coating of gallium nitride or mixed gallium nitride with another metal. The invention also concerns the method for preparing said coating. The invention further concerns electronic and optoelectronic devices comprising said coating.
    Type: Grant
    Filed: June 8, 2001
    Date of Patent: September 25, 2007
    Assignee: Picogiga International SAS
    Inventors: Fabrice Semond, Jean Claude Massies, Nicolas Pierre Grandjean
  • Patent number: 7258742
    Abstract: A method of manufacturing KNbO3 single crystal thin film having single-phase high quality and excellent morphology on each of single crystal substrates. A surface acoustic wave element, frequency filter, frequency oscillator, electronics circuit, and electronic device employ the thin film manufactured by the method, and have high k2, and are wideband, reduced in size and economical in power consumption. A plasma plume containing K, Nb, and O in the range 0.5?x?xE is supplied to a substrate, where x is a mole ratio of niobium (Nb) to potassium (K) in KxNb1?xOy, and xE is a mole composition ratio at the eutectic point for KNbO3 and 3K2O.Nb2O5 under a predetermined oxygen partial pressure. Maintaining the temperature Ts of the substrate in the range TE?Ts?Tm where TE represents the temperature at the eutectic point and Tm represents a complete melting temperature, the KNbO3 single crystal is precipitated from the KxNb1?xOy deposited on the substrate.
    Type: Grant
    Filed: August 11, 2004
    Date of Patent: August 21, 2007
    Assignee: Seiko Epson Corporation
    Inventors: Takamitsu Higuchi, Setsuya Iwashita, Hiromu Miyazawa
  • Patent number: 7258741
    Abstract: Synthetic monocrystalline diamond compositions having one or more monocrystalline diamond layers formed by chemical vapor deposition, the layers including one or more layers having an increased concentration of one or more impurities (such as boron and/or isotopes of carbon), as compared to other layers or comparable layers without such impurities. Such compositions provide an improved combination of properties, including color, strength, velocity of sound, electrical conductivity, and control of defects. A related method for preparing such a composition is also described, as well as a system for use in performing such a method, and articles incorporating such a composition.
    Type: Grant
    Filed: April 8, 2003
    Date of Patent: August 21, 2007
    Assignee: Apollo Diamond, Inc.
    Inventors: Robert C. Linares, Patrick J. Doering
  • Patent number: 7255746
    Abstract: MBE nitrogen sources of dimethylhydrazine, tertiarybutlyhydrazine, nitrogentrifloride, and NHx radicals. Those nitrogen sources are beneficial in forming nitrogen-containing materials on crystalline subtrates using MBE. Semiconductor lasers in general, and VCSEL in particular, that have nitrogen-containing layers can be formed using such nitrogen sources.
    Type: Grant
    Filed: September 4, 2002
    Date of Patent: August 14, 2007
    Assignee: Finisar Corporation
    Inventors: Ralph H. Johnson, Jin K. Kim, James K. Guenter
  • Patent number: 7255743
    Abstract: This invention is a method of making a synthetic gem comprising elements recovered from remains of a species of the Kingdom Animalia, comprising the steps of collecting substantially pure carbon from the remains and creating gems from the carbon using crystal growth sublimation.
    Type: Grant
    Filed: August 19, 2003
    Date of Patent: August 14, 2007
    Assignee: International Research & Recovery Corporation
    Inventors: Russell P. VandenBiesen, Gregory R. Herro, Dean T. VandenBiesen
  • Patent number: 7255744
    Abstract: Concerns lithium-doped diamond: Low-resistivity n-type semiconductor diamond doped with lithium and nitrogen, and a method of manufacturing such diamond are provided. Low-resistivity n-type semiconductor diamond containing 1017 cm?3 or more of lithium atoms and nitrogen atoms together, in which are respectively doped lithium atoms into carbon-atom interstitial lattice sites, and nitrogen atoms into carbon-atom substitutional sites, with the lithium and the nitrogen holding arrangements that neighbor each other. To obtain low-resistivity n-type semiconductor diamond, in a method for the vapor synthesis of diamond, photodissociating source materials by photoexcitation utilizing vacuum ultraviolet light and irradiating a lithium source material with an excimer laser to scatter and supply lithium atoms enables the diamond to be produced.
    Type: Grant
    Filed: December 22, 2003
    Date of Patent: August 14, 2007
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Akihiko Namba, Takahiro Imai, Hisao Takeuchi
  • Patent number: 7232487
    Abstract: A method of making a highly sensitive epitaxial germanium low temperature sensor that is superior in the method of production and performance than those currently available. The geometry and sensitivity of the sensor can be tuned to desired temperature ranges, and specifically can operate at cryogenic temperatures. The sensor can be manufactured uniformly and reproducibly in large quantities at relatively low cost in which large area arrays are possible. The applications of the sensors range from conventional low temperature thermometry and control in laboratory and industrial settings, to applications associated with infrared, x-ray, particle and plasma physics and spectroscopy.
    Type: Grant
    Filed: November 9, 2001
    Date of Patent: June 19, 2007
    Assignee: Smithsonian Astrophysical Observatory
    Inventors: Eric H. Silver, Norman W. Madden, McDonald Robinson, Lamonte H. Lawrence
  • Patent number: 7229498
    Abstract: Nanostructures (18) and methods for production thereof by phase separation during metal organic vapor-phase epitaxy (MOVPE). An embodiment of one of the methods may comprise providing a growth surface in a reaction chamber and introducing a first mixture of precursor materials into the reaction chamber to form a buffer layer (12) thereon. A second mixture of precursor materials may be provided into the reaction chamber to form an active region (14) on the buffer layer (12), wherein the nanostructure (18) is embedded in a matrix (16) in the active region (14). Additional steps are also disclosed for preparing the nanostructure (18) product for various applications.
    Type: Grant
    Filed: October 29, 2002
    Date of Patent: June 12, 2007
    Assignee: Midwest Research Institute
    Inventors: Andrew G. Norman, Jerry M. Olson
  • Patent number: 7220451
    Abstract: Electrically conductive noble metal thin films can be deposited on a substrate by atomic layer deposition. According to one embodiment of the invention a substrate with a surface is provided in a reaction chamber and a vaporised precursor of a noble metal is pulsed into the reaction chamber. By contacting the vaporised precursor with the surface of the substrate, no more than about a molecular layer of the metal precursor is formed on the substrate. In a next step, a pulse of molecular oxygen-containing gas is provided in the reaction chamber, where the oxygen reacts with the precursor on the substrate. Thus, high-quality metal thin films can be deposited by utilising reactions between the metal precursor and oxygen. In one embodiment, electrically conductive layers are deposited in structures that have high aspect ratio vias and trenches, local high elevation areas or other similar surface structures that make the surface rough.
    Type: Grant
    Filed: August 10, 2004
    Date of Patent: May 22, 2007
    Assignee: ASM International N.V.
    Inventors: Titta Aaltonen, Petra Alén, Mikko Ritala, Markku Leskelä
  • Patent number: 7217323
    Abstract: A method for manufacturing a silicon carbide single crystal includes the steps of: setting a substrate as a seed crystal in a reactive chamber; introducing a raw material gas into the reactive chamber; growing a silicon carbide single crystal from the substrate; heating the gas at an upstream side from the substrate in a gas flow path; keeping a temperature of the substrate at a predetermined temperature lower than the gas so that the single crystal is grown from the substrate; heating a part of the gas, which is a non-reacted raw material gas and does not contribute to crystal growth, after passing through the substrate; and absorbing a non-reacted raw material gas component in the non-reacted raw material gas with an absorber.
    Type: Grant
    Filed: April 1, 2004
    Date of Patent: May 15, 2007
    Assignee: Denso Corporation
    Inventors: Naohiro Sugiyama, Yasuo Kitou, Emi Makino, Kazukuni Hara, Kouki Futatsuyama, Atsuto Okamoto
  • Patent number: 7214599
    Abstract: Silicon nanocrystals with chemically accessible surfaces are produced in solution in high yield. Silicon tetrahalide such as silicon tetrachloride (SiCl4) can be reduced in organic solvents, such as 1,2-dimethoxyethane(glyme), with soluble reducing agents, such as sodium naphthalenide, to give halide-terminated (e.g., chloride-terminated) silicon nanocrystals, which can then be easily functionalized with alkyl lithium, Grignard or other reagents to give easily processed silicon nanocrystals with an air and moisture stable surface. The synthesis can be used to prepare alkyl-terminated nanocrystals at ambient temperature and pressure in high yield. The two-step process allows a wide range of surface functionality.
    Type: Grant
    Filed: July 23, 2004
    Date of Patent: May 8, 2007
    Assignee: Evergreen Solar Inc.
    Inventors: Susan M. Kauzlarich, Richard K. Baldwin
  • Patent number: 7201886
    Abstract: Synthetic monocrystalline diamond compositions having one or more monocrystalline diamond layers formed by chemical vapor deposition, the layers including one or more layers having an increased concentration of one or more impurities (such as boron and/or isotopes of carbon), as compared to other layers or comparable layers without such impurities. Such compositions provide an improved combination of properties, including color, strength, velocity of sound, electrical conductivity, and control of defects. A related method for preparing such a composition is also described., as well as a system for use in performing such a method, and articles incorporating such a composition.
    Type: Grant
    Filed: October 29, 2004
    Date of Patent: April 10, 2007
    Assignee: Apollo Diamond, Inc.
    Inventors: Robert C. Linares, Patrick J. Doering
  • Patent number: 7196007
    Abstract: A method of forming (and apparatus for forming) refractory metal nitride layers (including silicon nitride layers), such as a tantalum (silicon) nitride barrier layer, on a substrate by using a vapor deposition process with a refractory metal precursor compound, a disilazane, and an optional silicon precursor compound.
    Type: Grant
    Filed: August 30, 2004
    Date of Patent: March 27, 2007
    Assignee: Micron Technology, Inc.
    Inventor: Brian A. Vaartstra
  • Patent number: 7192483
    Abstract: The present invention relates to a method for diamond coating of substrates in which the substrate is exposed in a vacuum atmosphere to a reactive gas mixture excited by means of a plasma discharge, the plasma discharge comprising a plasma beam (14) in an evacuated receiver (16) that is formed between a cathode chamber (1) and an anode (2), and the reactive gas mixture comprising a reactive gas and a working gas, the reactive gas in (9) and the working gas in (8) and/or (9) introduced into the receiver, and the receiver (16) is evacuated by a pump arrangement (15), and the hydrogen concentration of the reactive gas mixture being 0–45 vol. %.
    Type: Grant
    Filed: October 7, 2002
    Date of Patent: March 20, 2007
    Assignee: Unaxis Balzers Aktiengesellschaft
    Inventors: David Franz, Johann Karner
  • Patent number: 7193098
    Abstract: A process for producing semiconductor nanocrystal cores, core-shell, core-buffer-shell, and multiple layer systems is disclosed. The process involves a non-coordinating solvent and in situ surfactant generation.
    Type: Grant
    Filed: March 19, 2004
    Date of Patent: March 20, 2007
    Assignee: The Research Foundation of State University of New York
    Inventors: Derrick W. Lucey, David J. MacRae, Paras N. Prasad, Orville T. Beachley, Jr.
  • Patent number: 7182811
    Abstract: A semiconductor light emitting device comprises: a substrate; an n-type layer provided on the substrate and made of a nitride semiconductor material; a multiple quantum well structure active layer including a plurality of well layers each made of InxGa(1-x-y)AlyN (0?x, 0?y, x+y<1) and a plurality of barrier layers each made of InaGa(1-a-t)AltN (0?s, 0?t, s+t<1), the multiple quantum well structure active layer being provided on the n-type layer; and a p-type layer provided on the multiple quantum well structure active layer and made of a nitride semiconductor material. The p-type layer contains hydrogen, and the hydrogen concentration of the p-type layer is greater than or equal to about 1×1016 atoms/cm3 and less than or equal to about 1×1019 atoms/cm3.
    Type: Grant
    Filed: February 23, 2004
    Date of Patent: February 27, 2007
    Assignee: Sharp Kabushiki Kaisha
    Inventor: Masaya Ishida
  • Patent number: 7175709
    Abstract: A method of forming an epitaxial layer of uniform thickness is provided to improve surface flatness. A substrate is first provided and a Si base layer is then formed on the substrate by epitaxy. A Si—Ge layer containing 5 to 10% germanium is formed on the Si base layer by epitaxy to normalize the overall thickness of the Si base layer and the Si—Ge layer containing 5 to 10% germanium.
    Type: Grant
    Filed: May 17, 2004
    Date of Patent: February 13, 2007
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Pang-Yen Tsai, Liang-Gi Yao, Chun-Chieh Lin, Wen-Chin Lee, Shih-Chang Chen
  • Patent number: 7160529
    Abstract: Novel uses of diamondoid-containing materials in the field of microelectronics are disclosed. Embodiments include, but are not limited to, thermally conductive films in integrated circuit packaging, low-k dielectric layers in integrated circuit multilevel interconnects, thermally conductive adhesive films, thermally conductive films in thermoelectric cooling devices, passivation films for integrated circuit devices (ICs), and field emission cathodes. The diamondoids employed in the present invention may be selected from lower diamondoids, as well as the newly provided higher diamondoids, including substituted and unsubstituted diamondoids. The higher diamondoids include tetramantane, pentamantane, hexamantane, heptamantane, octamantane, nonamantane, decamantane, and undecamantane.
    Type: Grant
    Filed: February 24, 2004
    Date of Patent: January 9, 2007
    Assignee: Chevron U.S.A. Inc.
    Inventors: Jeremy E. Dahl, Robert M. Carlson, Shenggao Liu
  • Patent number: 7148129
    Abstract: A method of growing a semiconductor layer in a selective area by Metal Organic Chemical Vapor Deposition (MOCVD) and a mask pattern for s ame, includes a first mask pattern and a second mask pattern that are formed on a semiconductor substrate having a (100) crystalline plane. The first mask pattern has a first window wider than the selective area and a second mask pattern has a second window and a third window. The second window is defined by spacing the second mask pattern from the first mask pattern, in correspondence with a blocking area for blocking the surface migration of III-group semiconductor source gases at edges of the first window. The third window is as wide as the selective area. The semiconductor layer is grown by MOCVD on the semiconductor substrate exposed by the second and third windows. Trenches can be etched in the second and third windows and growth layers extend from the trench beyond the surface of the InP to block gas dispersion.
    Type: Grant
    Filed: March 22, 2004
    Date of Patent: December 12, 2006
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Young-Churl Bang, Eun-Hwa Lee, Hyeon-Soo Kim, Jung-Kee Lee, Jun-Youn Kim
  • Patent number: 7128785
    Abstract: The invention relates to a device and to a method for depositing especially crystalline layers from the gas phase onto especially crystalline substrates. The device comprises a heated reaction chamber with a substrate support that receives at least one substrate; one or more heated sources where a gaseous halide is formed by chemical reaction of a halogen, especially HCl, fed to the source together with a substrate gas, and a metal, for example GA, In, Al associated with the source, which is transported through a gas inlet section to a substrate supported by the substrate support; and a hydride supply for supplying a hydride, especially NH3, AsH3 or PH3 into the reaction chamber. A plurality of rotationally driven substrate supports is disposed in an annular arrangement on a substrate support carrier, the sources being disposed in the center of said substrate carrier.
    Type: Grant
    Filed: October 14, 2003
    Date of Patent: October 31, 2006
    Assignee: Aixtron AG
    Inventors: Johannes Kaeppeler, Michael Heuken, Rainer Beccard, Gerhard Karl Strauch
  • Patent number: 7118813
    Abstract: A III–V nitride, e.g., GaN, substrate including a (0001) surface offcut from the <0001> direction predominantly toward a direction selected from the group consisting of <10-10> and <11-20> directions, at an offcut angle in a range that is from about 0.2 to about 10 degrees, wherein the surface has a RMS roughness measured by 50×50 ?m2 AFM scan that is less than 1 nm, and a dislocation density that is less than 3E6 cm?2. The substrate may be formed by offcut slicing of a corresponding boule or wafer blank, by offcut lapping or growth of the substrate body on a corresponding vicinal heteroepitaxial substrate, e.g., of offcut sapphire. The substrate is usefully employed for homoepitaxial deposition in the fabrication of III–V nitride-based microelectronic and opto-electronic devices.
    Type: Grant
    Filed: November 14, 2003
    Date of Patent: October 10, 2006
    Assignee: Cree, Inc.
    Inventors: Xueping Xu, Robert P. Vaudo, Jeffrey S. Flynn, George R. Brandes
  • Patent number: 7115166
    Abstract: A method of forming (and apparatus for forming) a layer, such as a strontium titanate, barium titanate, or barium-strontium titanate layer, on a substrate by employing a vapor deposition method, particularly a multi-cycle atomic layer deposition process.
    Type: Grant
    Filed: April 21, 2004
    Date of Patent: October 3, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Brian A. Vaartstra, Stefan Uhlenbrock
  • Patent number: 7108747
    Abstract: The present invention relates to a method for growing oxide thin films which contain barium and/or strontium. According to the method, such thin films are made by the ALE technique by using as precursors for barium and strontium their cyclopentadienyl compounds. A thin film made by means of the invention has a high permittivity and excellent conformality.
    Type: Grant
    Filed: September 13, 1999
    Date of Patent: September 19, 2006
    Assignee: ASM International N.V.
    Inventors: Markku Leskelä, Mikko Ritala, Timo Hatanpää, Timo Hänninen, Marko Vehkamäki
  • Patent number: 7097708
    Abstract: This invention concerns nanoscale products, such as electronic devices fabricated to nanometer accuracy. It also concerns atomic scale products. These products may have an array of electrically active dopant atoms in a silicon surface, or an encapsulated layer of electrically active donor atoms. In a further aspect the invention concerns a method of fabricating such products. The methods include forming a preselected array of donor atoms incorporated into silicon. Encapsulation by growing silicon over a doped surface, after desorbing the passivating hydrogen. Also, using an STM to view donor atoms on the silicon surface during fabrication of a nanoscale device, and measuring the electrical activity of the donor atoms during fabrication of a nanoscale device. Such products and processes are useful in the fabrication of a quantum computer, but could have many other uses.
    Type: Grant
    Filed: August 20, 2002
    Date of Patent: August 29, 2006
    Assignee: Qucor Pty Ltd.
    Inventors: Robert Graham Clark, Neil Jonathan Curson, Toby Hallam, Lars Oberbeck, Steven Richard Schofield, Michelle Yvonne Simmons
  • Patent number: 7083680
    Abstract: A glass bottle containing a sample of an organic material to be purified is located at a position surrounded by a heater near one end in an outer glass tube. An inner glass tube for catching organic crystals obtained by recrystallization is located at a position near the other end in the outer glass tube. When the sample of the organic material is sublimed and purified, the inside of the outer glass tube is kept in a higher vacuum state (lower pressure) than 200 Pa by a vacuum pump. The sample inside the outer glass tube is heated by the heater, to sublime organic molecules of the sample contained in the glass bottle. The outer glass tube is provided with a temperature gradient, so that organic molecule vapor is cooled near the other end in the outer glass tube, and is recrystallized inside the inner glass tube.
    Type: Grant
    Filed: September 23, 2002
    Date of Patent: August 1, 2006
    Assignee: Sanyo Electric Co., Ltd.
    Inventor: Yuji Hamada
  • Patent number: 7077904
    Abstract: The present invention relates to a method for forming silicon oxide films on substrates using an atomic layer deposition process. Specifically, the silicon oxide films are formed at low temperature and high deposition rate via the atomic layer deposition process using a Si2Cl6 source unlike a conventional atomic layer deposition process using a SiCl4 source. The atomic layer deposition apparatus used in the above process can be in-situ cleaned effectively at low temperature using a HF gas or a mixture gas of HF gas and gas containing —OH group.
    Type: Grant
    Filed: April 23, 2003
    Date of Patent: July 18, 2006
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Byoung Ha Cho, Yong Il Kim, Cheol Ho Shin, Won Hyung Lee, Jung Soo Kim, Sang Tae Sim
  • Patent number: 7077902
    Abstract: An aluminum-containing material deposition method includes depositing a first precursor on a substrate in the substantial absence of a second precursor. The first precursor can contain a chelate of Al(NR1R2)x(NR3(CH2)zNR4R5)y or Al(NR1R2)x(NR3(CH2)zOR4)y; where x is 0, 1, or 2; y is 3?x; z is an integer 2 to 8; and R1 to R5 are independently selected from among hydrocarbyl groups containing 1 to 10 carbon atoms with silicon optionally substituted for one or more carbon atoms. The method includes depositing the second precursor on the first deposited precursor, the second precursor containing a nitrogen source or an oxidant. A deposition product of the first and second precursors includes at least one of an aluminum nitride or an aluminum oxide. The deposition method can be atomic layer deposition where the first and second precursors are chemisorbed or reacted as monolayers. The first precursor can further be non-pyrophoric.
    Type: Grant
    Filed: April 13, 2004
    Date of Patent: July 18, 2006
    Assignee: Micron Technology, Inc.
    Inventor: Brian A. Vaartstra
  • Patent number: 7033436
    Abstract: Methods of crystal growth for semiconductor materials, such as nitride semiconductors, and methods of manufacturing semiconductor devices are provided. The method of crystal growth includes forming a number of island crystal regions during a first crystal growth phase and continuing growth of the island crystal regions during a second crystal growth phase while bonding of boundaries of the island crystal regions occurs. The second crystal growth phase can include a crystal growth rate that is higher than the crystal growth rate of the first crystal growth phase and/or a temperature that is lower than the first crystal growth phase. This can reduce the density of dislocations, thereby improving the performance and service life of a semiconductor device which is formed on a nitride semiconductor made in accordance with an embodiment of the present invention.
    Type: Grant
    Filed: April 11, 2002
    Date of Patent: April 25, 2006
    Assignee: Sony Corporation
    Inventors: Goshi Biwa, Hiroyuki Okuyama, Masato Doi, Toyoharu Oohata
  • Patent number: 7022191
    Abstract: The present invention is related to a method of crystallizing an amorphous silicon layer and a crystallizing apparatus thereof which crystallize an amorphous silicon layer using plasma. The present invention includes the steps of depositing an inducing substance for silicon crystallization on an amorphous silicon layer by plasma exposure, and carrying out annealing on the amorphous silicon layer to the amorphous silicon layer. The present invention includes a chamber having an inner space, a substrate support in the chamber wherein the substrate support supports a substrate, a plasma generating means in the chamber wherein the plasma generating means produces plasma inside the chamber, and a heater at the substrate support wherein the heater supplies the substrate with heat.
    Type: Grant
    Filed: July 27, 2004
    Date of Patent: April 4, 2006
    Assignee: LG.Philips LCD Co., Ltd.
    Inventors: Jin Jang, Soo-Young Yoon, Jae-Young Oh, Woo-Sung Shon, Seong-Jin Park
  • Patent number: 7018912
    Abstract: Disclosed is a method of fabricating nitride semiconductors in a MOCVD reactor. GaN is first deposited on an inner wall of the MOCVD reactor, and a sapphire substrate is loaded into the MOCVD reactor. The sapphire substrate is heated and etching gas is injected into the MOCVD reactor. NH3 gas is injected into the MOCVD reactor to nitrify the surface of the sapphire substrate. A nitride semiconductor layer is grown on the nitrified sapphire substrate. By surface-reforming the sapphire substrate and then growing the nitride semiconductor layer on the surface-reformed sapphire substrate via MOCVD without formation of a low temperature buffer layer, an excellent nitride semiconductor structure can be realized. In this circumstance, the nitride semiconductor layer for example of GaN can be grown effectively on the surface-treated sapphire substrate because GaN deposition occurs on the sapphire substrate while it is etched.
    Type: Grant
    Filed: March 23, 2004
    Date of Patent: March 28, 2006
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Sun Woon Kim, In Eung Kim, Hun Joo Hahm, Soo Min Lee, Dong Joon Kim, Je Won Kim
  • Patent number: 7011706
    Abstract: A device substrate is provided having: a Si(111) substrate; a buffer layer formed by epitaxial growth on the Si(111) substrate 11, and containing at least one of a rare earth metal oxide and an alkali earth metal oxide; and a semiconductor material layer formed by epitaxial growth on the buffer layer, and containing at least one of a group II–VI semiconductor material having a wurtzite structure and a group III–V semiconductor material having a wurtzite structure. The buffer layer preferably comprises a hexagonal crystal structure oriented in the (001) plane or a cubic crystal structure oriented in the (111) plane, and the semiconductor material layer preferably comprises a hexagonal crystal structure oriented in the (001) plane.
    Type: Grant
    Filed: March 27, 2003
    Date of Patent: March 14, 2006
    Assignee: Seiko Epson Corporation
    Inventors: Takamitsu Higuchi, Setsuya Iwashita, Hiromu Miyazawa
  • Patent number: 7001460
    Abstract: In a semiconductor element comprising microcrystalline semiconductor, a semiconductor junction is provided within a microcrystal grain. Further, in a semiconductor element comprising microcrystalline semiconductor, microcrystal grains of different grain diameters are provided as a mixture to form a semiconductor layer. Thereby, discontinuity of a semiconductor junction is lessened to thereby improve the characteristics, durability, and heat resisting properties of a semiconductor element. Distortion in a semiconductor layer is also reduced.
    Type: Grant
    Filed: July 24, 2003
    Date of Patent: February 21, 2006
    Assignee: Canon Kabushiki Kaisha
    Inventors: Keishi Saito, Masafumi Sano
  • Patent number: 6969426
    Abstract: Method and apparatus are provided for forming metal nitride (MN), wherein M is contacted with iodine vapor or hydrogen iodide (HI) vapor to form metal iodide (MI) and then contacting MI with ammonia to form the MN in a process of reduced or no toxicity. Such method is conducted in a reactor that is maintained at a pressure below one atmosphere for enhanced uniformity of gas flow and of MN product. The MN is then deposited on a substrate, on one or more seeds or it can self-nucleate on the walls of a growth chamber, to form high purity and uniform metal nitride material. The inventive MN material finds use in semiconductor materials, in nitride electronic devices, various color emitters, high power microwave sources and numerous other electronic applications.
    Type: Grant
    Filed: February 26, 2002
    Date of Patent: November 29, 2005
    Inventors: David F. Bliss, Vladimir L. Tassev, Michael J. Suscavage, John S. Bailey
  • Patent number: 6969670
    Abstract: At the time of selective growth of an active layer on a substrate, crystal is previously grown in an active layer non-growth region, and the active layer is grown in an active layer selective growth region. With this configuration, a source supplied to the non-growth region is incorporated in the deposited crystal from the initial stage of growth, so that the supplied amount of the source to the active layer selective growth region is kept nearly at a constant value over the entire period of growth of the active layer, to eliminate degradation of characteristics of the device due to a variation in growth rate of the active layer. In particular, the selective growth method is effective in fabrication of a semiconductor light emitting device including a cladding layer, a guide layer, and an active layer, each of which is formed by selective growth, wherein the active layer has multiple quantum wells.
    Type: Grant
    Filed: January 14, 2003
    Date of Patent: November 29, 2005
    Assignee: Sony Corporation
    Inventors: Goshi Biwa, Hiroyuki Okuyama
  • Patent number: 6966948
    Abstract: The invention concerns a method for manufacturing sizeable quantum dots of Indium Nitride in which a layer of Indium Nitride is grown onto a layer of crystalline buffer. The crystalline buffer is chosen with a lattice structure similar to the lattice structure of Indium Nitride and with the lattice mismatch between Indium Nitride and the crystalline buffer being greater than 5%. During the growth of Indium Nitride, surface strains are produced by the crystalline buffer, allowing the Indium Nitride to self-organize onto the crystalline buffer so as to form a plurality of sizeable quantum dots.
    Type: Grant
    Filed: October 22, 2003
    Date of Patent: November 22, 2005
    Assignees: Centre National de la Recherche Scientifique (C.N.R.S.), Universite de Montpellier II
    Inventors: Olivier Briot, Bernard Gil, Sandra Ruffenach
  • Patent number: 6942731
    Abstract: The invention relates to a method for improving the efficiency of epitaxially grown quantum dot semiconductor components having at least one quantum dot layer. The efficiency of semiconductor components containing an active medium consisting of quantum dots is often significantly below the theoretically possible values. The inventive method enables the efficiency of the relevant component to be clearly increased without substantially changing the growth parameters of the various epitaxial layers. In order to improve the efficiency of the component, the crystal is morphologically changed when the growth of the component is interrupted at the point in the overall process at which the quantum dots of a layer have just been covered. The growth front is smoothed at the same time, leading to, for example, a reduction in waveguide loss as the thickness of the waveguide is more homogeneous if the relevant component has one such waveguide.
    Type: Grant
    Filed: August 30, 2001
    Date of Patent: September 13, 2005
    Assignee: Technische Universitaet Berlin
    Inventors: Roman Sellin, Nikolai N. Ledenstov, Dieter Bimberg
  • Patent number: 6932867
    Abstract: A method is provided for growing thin oxide films on the surface of a substrate by alternatively reacting the surface of the substrate with a metal source material and an oxygen source material. The oxygen source material is preferably a metal alkoxide. The metal source material may be a metal halide, hydride, alkoxide, alkyl, a cyclopentadienyl compound, or a diketonate.
    Type: Grant
    Filed: July 10, 2003
    Date of Patent: August 23, 2005
    Assignee: ASM International, N.V.
    Inventors: Mikko Ritala, Antti Rahtu, Markku Leskela, Kaupo Kukli
  • Patent number: 6918960
    Abstract: A method and system for performing metal-organic chemical vapor deposition (MOCVD). The method introduces a metal-organic compound into the CVD chamber in the presence of a first reactant selected to have a reducing chemistry and then, subsequently, a second reactant selected to have an oxidizing chemistry. The reducing chemistry results in deposition of metal species having a reduced surface mobility creating more uniform coverage and better adhesion. The oxidizing species results in deposition of metal species having a greater surface mobility leading to greater surface agglomeration and faster growth. By alternating the two reacts, faster growth is achieved and uniformity of the metal structure is enhanced.
    Type: Grant
    Filed: November 28, 2001
    Date of Patent: July 19, 2005
    Assignee: Micron Technology, Inc.
    Inventors: Weimin Li, Mark R. Visokay
  • Patent number: 6905542
    Abstract: A waveguide structure and method of fabricating the same, the method comprising forming a first graded layer on a substrate, wherein the first graded layer comprises a first and a second optical material, and a lattice constant adjusting material, wherein the concentration of the second optical material increases with the height of the first graded layer and the concentration of the lattice constant adjusting material varies in proportion to the second optical material; and forming a second graded layer, the second graded layer comprising the first and second optical materials, and a lattice constant adjusting material, wherein the concentration of the second optical material decreases with the height of the second graded layer and the concentration of the lattice constant adjusting material varies in proportion to the second optical material.
    Type: Grant
    Filed: December 11, 2001
    Date of Patent: June 14, 2005
    Inventors: Arkadii V. Samoilov, Dean E. Berlin
  • Patent number: 6905541
    Abstract: A precursor and method for filling a feature in a substrate. The method generally includes depositing a barrier layer, the barrier layer being formed from pentakis(dimethylamido)tantalum having less than about 5 ppm of chlorine. The method additionally may include depositing a seed layer over the barrier layer and depositing a conductive layer over the seed layer. The precursor generally includes pentakis(dimethylamido)tantalum having less than about 5 ppm of chlorine. The precursor is generated in a canister having a surrounding heating element configured to reduce formation of impurities.
    Type: Grant
    Filed: May 27, 2003
    Date of Patent: June 14, 2005
    Assignee: Applied Materials, Inc.
    Inventors: Ling Chen, Vincent W. Ku, Hua Chung, Christophe Marcadal, Seshadri Ganguli, Jenny Lin, Dien-Yeh Wu, Alan Ouye, Mei Chang
  • Patent number: 6893965
    Abstract: A method of producing a semiconductor device in which a film is formed on a substrate by a chemical vapor deposition (CVD) process, the method comprising purifying a source gas for a film to be formed by selectively removing at least one of components contained in the source gas, which does not pertain to reactions for the deposition of the film, based on the difference in molecular size between the component to be removed and other components.
    Type: Grant
    Filed: November 13, 2002
    Date of Patent: May 17, 2005
    Assignee: Fujitsu Limited
    Inventors: Yoshiaki Sakamoto, Kenji Maruyama
  • Patent number: 6884291
    Abstract: An optical semiconductor device operable in a 0.6 ?m band includes an active layer of GaInNP sandwiched by a pair of GaInP layers each having a thickness of about 2 molecular layers or less.
    Type: Grant
    Filed: September 8, 1999
    Date of Patent: April 26, 2005
    Assignee: Ricoh Company, Ltd.
    Inventors: Naoto Jikutani, Shunichi Sato, Takashi Takahashi
  • Patent number: 6881260
    Abstract: The present invention provides methods of performing atomic layer deposition to form conductive, oxidation-resistant rhodium oxide films and films comprising metals, such as platinum, alloyed with rhodium oxide. The present invention also provides memory devices and processors comprising films deposited by the above methods.
    Type: Grant
    Filed: June 25, 2002
    Date of Patent: April 19, 2005
    Assignee: Micron Technology, Inc.
    Inventors: Eugene P. Marsh, Stefan Uhlenbrock
  • Patent number: 6875272
    Abstract: In a method for growing a GaN based compound semiconductor on a front surface of a substrate to obtain the GaN based compound semiconductor crystal in one body, because the gas for reducing and decomposing the substrate is supplied to the rear surface of the substrate and a heat treatment is carried out in a gas atmosphere in which the nitrogen partial pressure is not less than a predetermined value, in order to remove the substrate, it can be prevented that cracks are caused in the crystal, or fracture or warp is caused by causing strain of the GaN based compound semiconductor crystal in a cooling step.
    Type: Grant
    Filed: June 14, 2002
    Date of Patent: April 5, 2005
    Assignee: Nikko Materials Co., Ltd.
    Inventors: Keiji Kainosho, Shinichi Sasaki
  • Patent number: 6858080
    Abstract: Monocrystalline diamond, adapted for use as in applications such as semiconductor devices, optical waveguides, and industrial applications, in the form of a single crystalline diamond structure having one or more diamond layers, at least one of which is formed by a CVD process. The diamond layers are “lattice-matched” or “lattice-mismatched” to each other to provide a desired level of strain.
    Type: Grant
    Filed: December 24, 2002
    Date of Patent: February 22, 2005
    Assignee: Apollo Diamond, Inc.
    Inventors: Robert C. Linares, Patrick J. Doering
  • Patent number: 6858081
    Abstract: In a selective growth method, growth interruption is performed at the time of selective growth of a crystal layer on a substrate. Even if the thickness distribution of the crystal layer becomes non-uniform at the time of growth of the crystal layer, the non-uniformity of the thickness distribution of the crystal layer can be corrected by inserting the growth interruption. As a result of growth interruption, an etching rate at a thick portion becomes higher than that at a thin portion, to eliminate the difference in thickness between the thick portion and the thin portion, thereby solving the problem associated with degradation of characteristics due to a variation in thickness of the crystal layer, for example, an active layer. The selective growth method is applied to fabrication of a semiconductor light emitting device including an active layer as a crystal layer formed on a crystal layer having a three-dimensional shape by selective growth.
    Type: Grant
    Filed: January 16, 2003
    Date of Patent: February 22, 2005
    Assignee: Sony Corporation
    Inventors: Goshi Biwa, Hiroyuki Okuyama
  • Patent number: 6852161
    Abstract: A method of fabricating a film of group-III nitride semiconductor crystal includes a step of using metal material to deposit particles of a group III metal on a substrate surface in an atmosphere containing no nitrogen source, a step of nitriding the particles in an atmosphere containing a nitrogen source and no metal material, and a step of growing group-III nitride semiconductor crystal on the substrate surface on which the particles have been deposited.
    Type: Grant
    Filed: August 17, 2001
    Date of Patent: February 8, 2005
    Assignee: Showa Denko K.K.
    Inventors: Yasuhito Urashima, Mineo Okuyama, Tetsuo Sakurai, Hisayuki Miki
  • Patent number: 6849122
    Abstract: A CVD method deposits conformal metal layers on small features of a substrate surface. The method includes three principal operations: depositing a thin conformal layer of precursor over some or all of the substrate surface; oxidizing the precursor to convert it to a conformal layer of metal oxide; and reducing some or all of the metal oxide to convert it to a conformal layer of the metal itself. The conformal layer of precursor may form a “monolayer” on the substrate surface. Examples of metals for deposition include copper, cobalt, ruthenium, indium, and rhodium.
    Type: Grant
    Filed: March 7, 2002
    Date of Patent: February 1, 2005
    Assignee: Novellus Systems, Inc.
    Inventor: James A. Fair
  • Patent number: 6849123
    Abstract: To plasma-process a substrate having a large area uniformly at a high process speed to form a deposition film with uniform thickness and quality and favorable characteristics. A first high frequency power (with a frequency f1 and a power P1) and a second high frequency power (with a frequency f2 and a power P2) supplied to an electrode from a first high frequency power supply and a second high frequency power supply, respectively, are set so that the frequencies are equal to or higher than 10 MHz and equal to or lower than 250 MHz, a ratio of the frequency f2 to the frequency f1 (f2/f1) is equal to or higher than 0.1 and equal to or lower than 0.9, and a ratio of the power P2 to a total power (P1+P2) is equal to or higher than 0.1 and equal to or lower than 0.9. The frequency f2 is changed during processing the substrate.
    Type: Grant
    Filed: July 16, 2002
    Date of Patent: February 1, 2005
    Assignee: Canon Kabushiki Kaisha
    Inventors: Hiroaki Niino, Toshiyasu Shirasuna, Hitoshi Murayama, Makoto Aoki