With Means To Centrifuge Work Patents (Class 118/52)
  • Publication number: 20150004311
    Abstract: A coating film forming apparatus includes: a substrate holding unit to horizontally hold a substrate; a rotating mechanism to rotate the substrate held by the substrate holding unit; a coating liquid supplying mechanism to supply coating liquid to form a coating film on the substrate; an annular member to rectify a gas stream above a periphery of the substrate when liquid film of the coating liquid is dried by rotation of the substrate, the annular member being provided above the periphery of the substrate and along a circumferential direction of the substrate so as to cover the periphery of the substrate; and a protrusion provided on an inner periphery of the annular member along circumferential direction of the annular member so as to protrude upward to reduce component of the gas stream flowing directly downward near an inner peripheral edge of the annular member.
    Type: Application
    Filed: June 19, 2014
    Publication date: January 1, 2015
    Inventors: Katsunori ICHINO, Kousuke YOSHIHARA, Yuichi TERASHITA
  • Patent number: 8924118
    Abstract: A transfer system according to an embodiment includes a transfer room, a robot, a trajectory generator, a determination unit, and an output unit. The transfer room has an exclusive area defined by a predetermined distance. The robot has an arm unit that is equipped with a robot hand transferring a thin plate-like workpiece and that operates in horizontal directions. The robot is installed in the transfer room so that a minimum turning area of the arm unit overlaps with a part of the exclusive area. The transfer system generates a trajectory of the robot hand, then determines, based on the generated trajectory, whether a part of the arm unit is included in the exclusive area, and outputs a predetermined signal.
    Type: Grant
    Filed: January 16, 2013
    Date of Patent: December 30, 2014
    Assignee: Kabushiki Kaisha Yaskawa Denki
    Inventors: Daisuke Shin, Yoshiki Kimura
  • Patent number: 8919277
    Abstract: A cylindrical coating nozzle having a flattened end is placed above a coating object being rotated. A coating solution is applied to a surface of the coating object by discharging the coating solution form a nozzle orifice at an end of the coating nozzle while moving the coating nozzle relative to the coating object in a direction intersecting a rotational direction of the coating object. The coating nozzle is formed with an angled notch at a part of the end thereof. A rotation control unit controls the rotation of the coating nozzle in a manner that the notch of the coating nozzle is positioned upstream from a position to feed the coating solution to the coating object being rotated.
    Type: Grant
    Filed: October 7, 2011
    Date of Patent: December 30, 2014
    Assignees: Chugai Ro Co., Ltd, Kabushiki Kaisha Toshiba
    Inventors: Takao Tokumoto, Sadao Natsu, Mitsuhiro Hida, Souichirou Iwasaki, Tsuyoshi Sato, Kenichi Ooshiro
  • Patent number: 8905051
    Abstract: Disclosed are a liquid processing apparatus and a liquid processing method that can prevent a substrate in a processing chamber from being contaminated due to contaminants attached to a nozzle supporting arm. The liquid processing apparatus includes a processing chamber in which a substrate holder holding a substrate and a cup disposed around the substrate holder are provided; a nozzle configured to supply a fluid to the substrate held by the substrate holder; and a nozzle supporting arm configured to support the nozzle. A gas ejection mechanism is installed at the nozzle supporting arm to eject a gas toward a front end surface of the nozzle supporting arm.
    Type: Grant
    Filed: June 13, 2012
    Date of Patent: December 9, 2014
    Assignee: Tokyo Electron Limited
    Inventor: Jiro Higashijima
  • Patent number: 8906452
    Abstract: An improved technique achieves a uniform photoresist film on a wafer by controlling the volatility of the solvent in a photoresist solution during the bake process step. Because film formation takes place in the bake rather than the spin steps of the process, the improved technique involves using less viscous and therefore less costly and easier to use resists to cast relatively thick photoresist films. Such control is achieved in an enclosed chamber into which a carrier gas is introduced; the carrier gas mixes with gaseous solvent to create a saturating atmosphere in which the rate of evaporation of solvent decreases. This enables the heating of the wafer without the reduction of solvent in the film so that the photoresist can self-level. When the film has self-leveled, the solvent is then baked off as usual.
    Type: Grant
    Filed: May 24, 2012
    Date of Patent: December 9, 2014
    Inventor: Gary Hillman
  • Publication number: 20140356531
    Abstract: According to one embodiment, a film formation apparatus is configured to coat a processing fluid on a surface of a substrate by supplying the fluid to the surface of the substrate from a nozzle while rotating the substrate and moving the nozzle and configured to form a film from the coated fluid by rotating the substrate. The apparatus includes: a holder configured to hold the substrate; a drive unit configured to rotate the holder; a processing fluid supply unit configured to supply the processing fluid onto the surface of the substrate held by the holder; and a controller configured to control at least the drive unit. The controller is configured to form the film from the coated processing fluid by rotating the holder at a second rotational speed, the second rotational speed being slower than a first rotational speed of the coating of the processing fluid.
    Type: Application
    Filed: March 5, 2014
    Publication date: December 4, 2014
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Tsuyoshi SATO, Toshiyuki Kishi
  • Publication number: 20140352608
    Abstract: A substrate processing apparatus capable of preventing corrosion of metal interconnects of a substrate formed thereon is disclosed. The substrate processing apparatus includes a substrate holder configured to hold a substrate horizontally and rotate the substrate, and a slit nozzle configured to supply a processing liquid onto a surface of the substrate. The slit nozzle is adjacent to the surface of the substrate and extends in approximately a radial direction of the substrate.
    Type: Application
    Filed: April 16, 2014
    Publication date: December 4, 2014
    Applicant: EBARA CORPORATION
    Inventor: Tomoatsu ISHIBASHI
  • Patent number: 8887657
    Abstract: According to one embodiment, a film forming system includes: a stage including a placement surface on which an object to be coated is placed; a rotating mechanism rotating the stage in a rotational direction along the placement surface; an application nozzle discharging a material onto the object placed on the stage for application; a moving mechanism relatively moving the stage and the application nozzle along the placement surface in a cross direction crossing the rotational direction; a controller performing a control to rotate the stage on which the object is placed through the rotating mechanism while relatively moving the stage and application nozzle along the placement surface in the cross direction through the moving mechanism and applying the material to the object on the stage through the application nozzle; and a cleaning apparatus cleaning the application nozzle.
    Type: Grant
    Filed: June 7, 2010
    Date of Patent: November 18, 2014
    Assignees: Kabushiki Kaisha Toshiba, Chugai Ro Co., Ltd.
    Inventors: Kenichi Ooshiro, Tsuyoshi Sato, Takao Tokumoto, Sadao Natsu, Souichirou Iwasaki
  • Patent number: 8871301
    Abstract: A coating treatment apparatus includes: a rotating and holding part; a nozzle supplying a coating solution; a moving mechanism moving the nozzle; and a control unit that controls the rotating and holding part, the nozzle, and the moving mechanism to supply the coating solution onto a central portion of the substrate and rotate the substrate at a first rotation speed, then move a supply position of the coating solution from a central position toward an eccentric position of the substrate with the substrate being rotated at a second rotation speed lower than the first rotation speed while continuing supply of the coating solution, then stop the supply of the coating solution with the rotation speed of the substrate decreased to a third rotation speed lower than the second rotation speed, and then increase the rotation speed of the substrate to be higher than the third rotation speed.
    Type: Grant
    Filed: January 6, 2012
    Date of Patent: October 28, 2014
    Assignee: Tokyo Electron Limited
    Inventors: Kouzou Tachibana, Takahisa Otsuka, Akira Nishiya
  • Patent number: 8845815
    Abstract: Disclosed is a liquid processing apparatus including first and second cups installed so as to surround a rotation holding unit of a substrate and guide a processing liquid scattered from the rotating substrate downwards. A first driving unit and a second driving unit elevate the first cup and the second cup between a position receiving the processing liquid and the lower position thereof. A controller controls that the first cup and the second cup are ascended at the same time by transferring the driving force of the first driving unit while the first cup or a first elevating member thereof is overlapped with the second cup or a second elevating member thereof from the lower side by setting the ascending speed of the first cup to be higher than the ascending speed of the second cup when the first and second cups are ascended at the same time.
    Type: Grant
    Filed: April 17, 2012
    Date of Patent: September 30, 2014
    Assignee: Tokyo Electron Limited
    Inventors: Nobuhiro Ogata, Terufumi Wakiyama
  • Patent number: 8846145
    Abstract: A liquid processing method forms a coating film by supplying and pouring a coating solution from a coating solution nozzle onto a surface of a substrate held substantially horizontally by a substrate holder. In the liquid processing method, a process for photographing a leading end portion of a coating solution nozzle is provided. When performing a process for anti-drying of the coating solution for a long period of time in advance, a position of the coating solution and a position of an anti-drying liquid are set by using a soft scale displayed on a screen where the photographed image is displayed. Therefore, a dispense control is performed based on a set value without depending on the naked eyes and a control for suppressing the drying of the coating solution in the leading end portion of the coating solution nozzle is performed.
    Type: Grant
    Filed: October 22, 2012
    Date of Patent: September 30, 2014
    Assignee: Tokyo Electron Limited
    Inventor: Michio Kinoshita
  • Publication number: 20140261163
    Abstract: In one embodiment, a cleaning member has an annular part and an opening positioned radially inside the annular part, and can be moved up and down between a first position and a second position relative to a cleaning nozzle. For cleaning of the back surface of the wafer, the cleaning member is placed at its first position that allows a cleaning liquid to reach the back surface of the substrate through the opening of the cleaning member. For cleaning of the cup structure, the cleaning member placed at its second position higher than the first position is being rotated, and a cleaning liquid discharged from the cleaning nozzle collides with an annular part of the cleaning member and is guided to the inner surface of a cup structure.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 18, 2014
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Naofumi KISHITA, Yuji SAKAI
  • Publication number: 20140266992
    Abstract: A method of manufacturing a support plate for an electrowetting device includes providing a first hydrophobic layer on a substrate, reducing the hydrophobicity of a surface of the first hydrophobic layer and providing a second hydrophobic layer on at least part of the surface with reduced hydrophobicity.
    Type: Application
    Filed: June 2, 2014
    Publication date: September 18, 2014
    Applicant: Liquavista B.V.
    Inventors: Ivar Schram, Chiara Cometti
  • Publication number: 20140261162
    Abstract: A substrate processing apparatus for processing a substrate comprises: a plurality of chuck pins each having an accommodating groove for accommodating a portion of peripheral part of the substrate, holding the substrate at a hold position in a horizontal posture by pressing inner faces of the accommodating grooves toward portions of peripheral part of the substrate; and a plurality of guide members, being disposed on or above the respective plurality of chuck pins, guiding process liquid discharged from the substrate to a surrounding area of the substrate; wherein each of the plurality of guide member includes: an inner-edge guide disposed at a position inward and above the accommodating groove; and an outer-edge guide disposed at a position level with or below the inner-edge guide and outward the chuck pin.
    Type: Application
    Filed: January 9, 2014
    Publication date: September 18, 2014
    Applicant: DAINIPPON SCREEN MFG. CO., LTD.
    Inventor: Takahiro YAMAGUCHI
  • Patent number: 8817225
    Abstract: In one embodiment, a coating and developing apparatus is provided with transfer units, provided between a stack of early-stage processing unit blocks and a stack of later-stage processing unit blocks to transfer a substrate between the transport mechanisms of laterally-adjacent unit blocks, and a vertically-movable auxiliary transfer mechanism for transporting a substrate between the transfer units. A stack of first developing unit blocks is stacked on the stack of early-stage processing unit blocks, and a stack of second developing unit blocks is stacked on the stack of later-stage processing unit blocks.
    Type: Grant
    Filed: July 14, 2011
    Date of Patent: August 26, 2014
    Assignee: Tokyo Electron Limited
    Inventors: Nobuaki Matsuoka, Akira Miyata, Shinichi Hayashi, Suguru Enokida
  • Patent number: 8813677
    Abstract: A composite particulate preparing apparatus is provided that includes a rotating body receiving particulates to which an adhering material is allowed to adhere and having a bottom surface, a side wall and a flange part; a centrifugal machine rotating the rotating machine to apply centrifugal force to the particulates in the rotating body; an inclination varying device shifting the rotating body at an arbitrary inclination angle so that the bottom surface of the rotating body forms a vertical plane parallel to a gravitational direction from a horizontal plane perpendicular to the gravitational direction; and a stirring device disposed closer to a horizontal line perpendicular to a vertical line drawn from a rotational center of the rotating body in a gravitational direction on a rotational side where the particulates drop from an uppermost point, than to the vertical line.
    Type: Grant
    Filed: September 2, 2010
    Date of Patent: August 26, 2014
    Assignee: Sony Corporation
    Inventors: Go Sudo, Kenji Katori, Hayato Hommura
  • Patent number: 8813678
    Abstract: A substrate processing apparatus including a holder for rotatably holding a substrate; a coating solution supply nozzle for supplying a coating solution onto a front surface of the substrate to be processed held by the holder; a treatment chamber housing the holder and the coating solution supply nozzle; a cooling device which cools the substrate before the coating solution is supplied to the substrate, to a predetermined temperature; a heating devices which heats the substrate coated with the coating solution to a predetermined temperature; and a transferer that transfers the substrate between the treatment chamber, the cooling device and the heating device, wherein the treatment chamber, the cooling device and the heating device are partitioned from ambient air, and wherein at least the treatment chamber is connected to a gas supply mechanism having a supply source of a gas having a kinematic viscosity coefficient higher than that of air.
    Type: Grant
    Filed: August 15, 2012
    Date of Patent: August 26, 2014
    Assignee: Tokyo Electron Limited
    Inventor: Kazuo Sakamoto
  • Publication number: 20140234773
    Abstract: An aspect of the present embodiment, there is provided a method of coating resist, including providing solvent on a substrate to be processed being set to be nearly still, and rotating the substrate to be processed to provide resist solution on the substrate to be processed from a resist supply nozzle in a state that a top edge of the resist supply nozzle is inserted into the solvent.
    Type: Application
    Filed: February 14, 2014
    Publication date: August 21, 2014
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Katsunori SUZUKI, Seiji Nakagawa, Hiroharu Fujise
  • Publication number: 20140235070
    Abstract: Techniques disclosed herein provide an apparatus and method of spin coating that inhibits the formation of wind marks and other defects from turbulent fluid-flow, thereby enabling higher rotational velocities and decreased drying times, while maintaining film uniformity. Techniques disclosed herein include a fluid-flow member, such as a ring or cover, positioned or suspended above the surface of a wafer or other substrate. The fluid-flow member has a radial curvature that prevents wind marks during rotation of a wafer during a coating and spin drying process.
    Type: Application
    Filed: February 19, 2013
    Publication date: August 21, 2014
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Derek W. Bassett, Wallace P. Printz, Joshua S. Hooge, Katsunori Ichino, Yuichi Terashita, Kousuke Yoshihara
  • Patent number: 8808798
    Abstract: A coating method includes supplying a coating liquid from a coating nozzle onto a front side central portion of a substrate held on a substrate holding member, rotating the substrate holding member about a vertical axis to spread the coating liquid toward a peripheral portion of the substrate by a centrifugal force and thereby form a film of the coating liquid, forming a liquid film of a process liquid for preventing a contaminant derived from the coating liquid from being deposited or left on a back side peripheral portion of the substrate, and damping a vertical wobble of the peripheral portion of the substrate being rotated, by a posture regulating mechanism, while delivering a gas from delivery holes onto a back side region of the substrate on an inner side of the peripheral portion on which the liquid film is formed.
    Type: Grant
    Filed: August 8, 2012
    Date of Patent: August 19, 2014
    Assignee: Tokyo Electron Limited
    Inventors: Takahiro Kitano, Koichi Obata, Hiroichi Inada, Nobuhiro Ogata
  • Publication number: 20140227440
    Abstract: A device and corresponding method for coating of an inner circular surface of a coating surface of a carrier wafer with a coating material. The device includes an application means for applying a coating material intended for coating of the inner circular surface to the inner circular surface, a rotating means for accommodating and rotating the carrier wafer around an axis of rotation and for distribution of the coating material on the coating surface, and a second application means for applying a coating inhibitor to an outer circular ring surface which surrounds the inner circular surface, said coating inhibitor at least inhibits the coating of the outer circular ring surface during the distribution of the coating material.
    Type: Application
    Filed: September 20, 2011
    Publication date: August 14, 2014
    Inventor: Jürgen Burggraf
  • Patent number: 8770138
    Abstract: A plated film having a uniform film thickness is formed on a surface of a substrate. A semiconductor manufacturing apparatus includes: a holding mechanism for holding a substrate rotatably; a nozzle for supplying a processing solution for performing a plating process on a processing target surface of the substrate; a substrate rotating mechanism for rotating the substrate held by the holding mechanism in a direction along the processing target surface; a nozzle driving mechanism for moving the nozzle in a direction along the processing target surface at a position facing the processing target surface of the substrate held by the holding mechanism; and a control unit for controlling the supply of the processing solution by the nozzle and the movement of the nozzle by the nozzle driving mechanism.
    Type: Grant
    Filed: July 12, 2011
    Date of Patent: July 8, 2014
    Assignee: Tokyo Electron Limited
    Inventors: Kenichi Hara, Mitsuaki Iwashita, Takashi Tanaka, Takayuki Toshima, Takehiko Orii
  • Patent number: 8758855
    Abstract: A coating film forming apparatus that holds a substrate upon a spin chuck and forms a coating film by supplying a chemical liquid upon a top surface of said substrate comprises: an outer cup provided detachably to surround the spin chuck; an inner cup provided detachably to surround a region underneath the substrate held upon the chuck; a cleaning nozzle configured to supply a cleaning liquid for cleaning a peripheral edge part of the substrate, such that the cleaning liquid is supplied to a peripheral part of a bottom surface of the substrate; a cutout part for nozzle mounting, the cutout part being provided to the inner cup to engage with the cleaning nozzle; and a cleaning liquid supply tube connected to the cleaning nozzle, the cleaning nozzle being detachable to the cutout part in a state in which the cleaning liquid supply tube is connected.
    Type: Grant
    Filed: March 19, 2012
    Date of Patent: June 24, 2014
    Assignee: Tokyo Electron Limited
    Inventors: Nobuhiro Ogata, Hiroichi Inada, Taro Yamamoto, Akihiro Fujimoto
  • Patent number: 8747611
    Abstract: Provided are an injection head, and a substrate treatment apparatus and method using the same. The substrate treatment apparatus includes a rotatable spin head supporting a substrate, an injection head installed on the spin head to supply a fluid to a bottom surface of the substrate supported on the spin head, and a fluid supply unit supplying the fluid to the injection head.
    Type: Grant
    Filed: May 24, 2007
    Date of Patent: June 10, 2014
    Assignee: Semes Co. Ltd
    Inventors: Hyun-Jong Kim, Young-Ki Ahn
  • Patent number: 8741182
    Abstract: This invention relates to methods for materials using compounds, polymeric compounds, and compositions used to prepare semiconductor and optoelectronic materials and devices including thin film and band gap materials. This invention provides a range of compounds, polymeric compounds, compositions, materials and methods directed ultimately toward photovoltaic applications, transparent conductive materials, as well as devices and systems for energy conversion, including solar cells. This invention further relates to thin film AIGS, AIS, and AGS materials made by a process of providing one or more polymeric precursor compounds or inks thereof, providing a substrate, depositing the compounds or inks onto the substrate; and heating the substrate at a temperature of from about 20° C. to about 650° C.
    Type: Grant
    Filed: August 26, 2010
    Date of Patent: June 3, 2014
    Assignee: Precursor Energetics, Inc.
    Inventors: Kyle L. Fujdala, Wayne A. Chomitz, Zhongliang Zhu, Matthew C. Kuchta, Qinglan Huang
  • Patent number: 8740481
    Abstract: A coating and developing apparatus includes a processing block having at least one coating film-forming unit block stack and a vertically stacked developing unit block stack. Each unit block stack includes vertically stacked unit blocks, and each unit block includes processing modules containing liquid processing modules and heating modules. Each unit block includes a transport mechanism moveable along a transport passage from a carrier block side to an interface block side, to transport a substrate between the processing modules belonging to the unit block. Transfer units are provided on the carrier block sides of the coating film-forming unit blocks and the developing unit blocks respectively, for transferring a substrate to and from the transport mechanism of the associated coating film-forming or developing unit blocks. A first transfer mechanism transfers a substrate removed from a carrier to one of the transfer units associated with the coating film-forming unit blocks.
    Type: Grant
    Filed: August 15, 2013
    Date of Patent: June 3, 2014
    Assignee: Tokyo Electron Limited
    Inventors: Nobuaki Matsuoka, Akira Miyata, Shinichi Hayashi, Suguru Enokida
  • Publication number: 20140147587
    Abstract: A spin deposition apparatus includes a deposition mask configured to be arranged proximate a target substrate. The deposition mask includes at least one fluid reservoir offset from a rotational axis of the deposition mask and configured to hold fluid for dispersal on a portion of a surface of the target substrate.
    Type: Application
    Filed: November 27, 2012
    Publication date: May 29, 2014
    Applicant: INTERMOLECULAR, INC.
    Inventors: Richard R. Endo, Rajesh Kelekar
  • Publication number: 20140137796
    Abstract: A spin coating apparatus that supplies a coating liquid to a substrate and rotating the substrate to form a coating film, has a holding part that holds the substrate mounted thereon in a horizontal position; a rotationally driving source that rotationally drives the holding part about a rotational axis parallel with the vertical direction, thereby rotating the substrate; and a coating liquid supplying part that supplies the coating liquid to the substrate held by the holding part.
    Type: Application
    Filed: January 24, 2014
    Publication date: May 22, 2014
    Applicant: Kabushiki Kaisha Toshiba
    Inventor: Keisuke Nakazawa
  • Patent number: 8726828
    Abstract: Disclosed is a coating apparatus having a coater chuck capable of improving a photoresist coating uniformity by preventing the coater chuck for performing a photoresist coating process from being sunk, in a manner of employing a different type of a material for making the coater chuck, wherein the coater chuck is made of stone and connected to a a servo motor via a drive shaft, the driving shaft being movable up and down, and a glass substrate coated with photoresist through a slit nozzle is placed on the coater chuck.
    Type: Grant
    Filed: July 23, 2010
    Date of Patent: May 20, 2014
    Assignee: LG Display Co., Ltd.
    Inventors: Dong-Young Joo, Tae-Jung Kan
  • Patent number: 8722152
    Abstract: A wet processing apparatus for wet-processing substrates can suppress the reduction of throughput when some component part thereof becomes unserviceable. The wet processing apparatus includes a first nozzle unit and a second nozzle unit. When the wet processing apparatus operates in a normal mode, a substrate carrying mechanism is controlled so as to deliver substrates alternately to processing units of a first group and those of a second group so that the substrates are processed sequentially in order. When the processing units of the first group (the second group) are unserviceable due to the inoperativeness of the substrate holders, a processing liquid supply system or a nozzle support mechanism, the nozzle unit for the processing units of the second group (the first group) is moved to process substrates by the serviceable ones of the first group (the second group).
    Type: Grant
    Filed: June 11, 2013
    Date of Patent: May 13, 2014
    Assignee: Tokyo Electron Limited
    Inventors: Naofumi Kishita, Kouji Fujimura, Yoshitaka Hara
  • Patent number: 8703230
    Abstract: Systems and methods for molding shells for fluid-filled prosthetic implants, including spinning and rotating dip- or spray-mandrels during a devolatilization step to ensure an even covering. The mandrels may be spun during the dipping or spraying step, and/or afterward while a solvent evaporates until a gum state is formed. The techniques are particularly useful for forming hollow shells from silicone dispersions for soft implants, such as breast implants.
    Type: Grant
    Filed: April 22, 2013
    Date of Patent: April 22, 2014
    Assignee: Allergan, Inc.
    Inventors: Feargal Judge, Kevin J. Dempsey
  • Patent number: 8691336
    Abstract: A coating treatment method includes: a first step of discharging a coating solution from a nozzle to a central portion of a substrate while acceleratingly rotating the substrate, to apply the coating solution over the substrate; a second step of then decelerating the rotation of the substrate and continuously rotating the substrate; and a third step of then accelerating the rotation of the substrate to dry the coating solution on the substrate. In the first step, the acceleration of the rotation of the substrate is changed in the order of a first acceleration, a second acceleration higher than the first acceleration, and a third acceleration lower than the second acceleration to acceleratingly rotate the substrate at all times.
    Type: Grant
    Filed: March 23, 2011
    Date of Patent: April 8, 2014
    Assignee: Tokyo Electron Limited
    Inventors: Kousuke Yoshihara, Katsunori Ichino
  • Publication number: 20140093644
    Abstract: A substrate treatment method includes a rinsing step of supplying a rinse liquid to a front surface of a substrate while rotating the substrate at a first rotation speed, a liquid mixture film forming step of forming a liquid film of a liquid mixture of water and an organic solvent having a smaller surface tension than the water on the front surface after the rinsing step by supplying the water and the organic solvent to the front surface while reducing the rotation speed of the substrate from the first rotation speed to a second rotation speed lower than the first rotation speed, and an organic solvent replacing step of replacing the liquid mixture supplied to the front surface with the organic solvent after the liquid mixture film forming step by supplying the organic solvent to the front surface.
    Type: Application
    Filed: September 27, 2013
    Publication date: April 3, 2014
    Applicant: DAINIPPON SCREEN MFG. CO., LTD.
    Inventor: Tatsuya FUJII
  • Publication number: 20140072709
    Abstract: In one embodiment, a spin coating apparatus includes a coating liquid feeding module to drop a coating liquid onto a substrate, and a motor to rotate the substrate. The module drops a first drop amount of the coating liquid onto the substrate at a first discharge rate, while the motor rotates the substrate at a first number of rotations. The module drops a second drop amount of the coating liquid onto the substrate at a second discharge rate larger than the first discharge rate, while the motor rotates the substrate at a second number of rotations smaller than the first number of rotations, after the first drop amount of the coating liquid is dropped. The module discharges the coating liquid onto the substrate at a third discharge rate smaller than the second discharge rate, after the coating liquid is discharged onto the substrate at the second discharge rate.
    Type: Application
    Filed: September 4, 2013
    Publication date: March 13, 2014
    Applicant: Kabushiki Kaisha Toshiba
    Inventor: Keisuke NAKAZAWA
  • Patent number: 8667924
    Abstract: A coating device including a coating mechanism which includes nozzles for ejecting a liquid material onto front and rear surfaces of the substrate while rotating a substrate in an upright state, and a nozzle managing mechanism which manages the state of the nozzles, in which the nozzle managing mechanism includes a soaking portion which dips the front end of the nozzle in a soak solution, and a discharging portion which discharges at least the soak solution, and a nozzle managing method.
    Type: Grant
    Filed: June 25, 2010
    Date of Patent: March 11, 2014
    Assignee: Tokyo Ohka Kogyo Co., Ltd.
    Inventors: Tsutomu Sahoda, Futoshi Shimai, Akihiko Sato
  • Publication number: 20140060424
    Abstract: A substrate is surrounded by an inner cup and an outer cup. A distance between an upper surface of an inner cup lower portion and a lower surface of an inner cup upper portion of the inner cup is gradually reduced outward from an outer periphery of the substrate. A clearance is formed between the upper surface of the inner cup lower portion and the lower surface of the inner cup upper portion at outer peripheries of the inner cup lower portion and the inner cup upper portion. A collection space is formed between the upper surface of the inner cup lower portion and the lower surface of the inner cup upper portion. A scatter capturing space that allows a processing liquid that has passed through the clearance to scatter and captures the scattering processing liquid is formed by an outer cup. An upper portion and an outer periphery of the scatter capturing space are covered by a lower surface and an inner side surface of the outer cup, respectively.
    Type: Application
    Filed: June 18, 2013
    Publication date: March 6, 2014
    Inventor: Minoru SUGIYAMA
  • Publication number: 20140065295
    Abstract: A substrate treatment method is provided, which includes: a liquid film forming step of forming a liquid film of a treatment liquid on a front surface of a substrate; a hydrophobization liquid supplying step of supplying a hydrophobization liquid to a center portion of the front surface of the substrate for hydrophobizing the front surface of the substrate, while rotating the substrate; an inactivation suppressing step of suppressing inactivation of the supplied hydrophobization liquid on a peripheral edge portion of the front surface of the substrate simultaneously with the hydrophobization liquid supplying step; and a drying step of drying the substrate to which the hydrophobization liquid has been supplied.
    Type: Application
    Filed: August 27, 2013
    Publication date: March 6, 2014
    Applicant: DAINIPPON SCREEN MFG. CO., LTD
    Inventors: Tetsuya EMOTO, Manabu OKUTANI
  • Patent number: 8663534
    Abstract: Method of manufacturing a large-scale shell construction, wherein a form is sprayed with a setting construction material, such as concrete. The method comprises rotating the form about a rotation axis while applying said construction material. Preferably it also comprises suspending the form from above in a point through which the rotation axis runs. Furthermore, the method can comprise floating the form on a body of water.
    Type: Grant
    Filed: September 8, 2010
    Date of Patent: March 4, 2014
    Assignee: Hogskolen i Vestfold
    Inventor: Jan Capjon
  • Patent number: 8656936
    Abstract: Apparatuses, and related methods, for processing a workpiece that include a particular barrier structure that can overlie and cover a workpiece. Apparatuses, and related methods, for processing a workpiece that include a particular movable member that can be positioned over and moved relative to a workpiece. Apparatuses, and related methods, for processing a workpiece that include a particular ceiling structure that can overlie a processing chamber. Nozzle devices, and related methods, that include a particular annular body. Nozzle devices, and related methods, that include a particular first, second, and third nozzle structure.
    Type: Grant
    Filed: July 9, 2008
    Date of Patent: February 25, 2014
    Assignee: Tel FSI, Inc.
    Inventors: Jimmy D. Collins, Samuel A. Cooper, James M. Eppes, Alan D. Rose, Kader Mekias
  • Patent number: 8652571
    Abstract: A spin coating apparatus that supplies a coating liquid to a substrate and rotating the substrate to form a coating film, has a holding part that holds the substrate mounted thereon in a horizontal position; a rotationally driving source that rotationally drives the holding part about a rotational axis parallel with the vertical direction, thereby rotating the substrate; and a coating liquid supplying part that supplies the coating liquid to the substrate held by the holding part.
    Type: Grant
    Filed: March 3, 2009
    Date of Patent: February 18, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Keisuke Nakazawa
  • Patent number: 8622019
    Abstract: A coating device includes an autoclave and a spray member. The autoclave includes an autoclave body and a cover sealing the autoclave body. The autoclave body defines a plurality of holding grooves in an inner surface thereof for holding substrates. The spray member is positioned on the cover and received in the autoclave body. The spray member defines openings in a side surface thereof. The spray member includes a container and an ultrasonic atomization unit. The container defines a cavity in communication with the openings. The ultrasonic atomization unit is received in the cavity.
    Type: Grant
    Filed: August 24, 2010
    Date of Patent: January 7, 2014
    Assignee: Hon Hai Precision Co., Ltd.
    Inventor: Shao-Kai Pei
  • Patent number: 8617655
    Abstract: A coating device includes a coating mechanism which includes nozzles for ejecting a liquid material onto front and rear surfaces of a substrate while rotating the substrate; and an adjusting mechanism which adjusts the coating state of the liquid material at the outer periphery of the substrate; wherein the adjusting mechanism includes a dip portion which dips the outer periphery of the substrate in a solution while rotating the substrate and dissolves; and a suction portion which suctions the vicinity of the outer periphery of the substrate after dipping in the solution.
    Type: Grant
    Filed: May 10, 2010
    Date of Patent: December 31, 2013
    Assignee: Tokyo Ohka Kogyo Co., Ltd.
    Inventors: Tsutomu Sahoda, Futoshi Shimai, Akihiko Sato
  • Patent number: 8586138
    Abstract: A method of coating a first porous substrate with a thermoplastic material comprises the steps of: rotating the substrate about an axis of the substrate; and applying the material in a liquefied state onto the substrate, wherein the step of applying is performed from the outside of the substrate. According to another embodiment, a method of coating a porous substrate with a thermoplastic material comprises the steps of: connecting a first porous substrate to a rotator; rotating the substrate about an axis of the substrate; pumping the material in a liquefied state from a receptacle to an application head; and applying the material in a liquefied state onto the substrate, wherein the step of applying is performed from the outside of the substrate. In certain embodiments, the material coated on the substrate is used to help remove at least a portion of a filtercake.
    Type: Grant
    Filed: January 19, 2011
    Date of Patent: November 19, 2013
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Luke W. Holderman, Jacob R. Shoemate
  • Patent number: 8585932
    Abstract: This invention relates to methods and articles using compounds, polymeric compounds, and compositions used to prepare semiconductor and optoelectronic materials and devices including thin film and band gap materials. This invention provides a range of compounds, polymeric compounds, compositions, materials and methods directed ultimately toward photovoltaic applications, transparent conductive materials, as well as devices and systems for energy conversion, including solar cells. In particular, this invention relates to polymeric precursor compounds and precursor materials for preparing photovoltaic layers. A compound may contain repeating units {MB(ER)(ER)} and {MA(ER)(ER)}, wherein MA is Ag, each MB is In or Ga, each E is S, Se, or Te, and each R is independently selected, for each occurrence, from alkyl, aryl, heteroaryl, alkenyl, amido, silyl, and inorganic and organic ligands.
    Type: Grant
    Filed: August 20, 2010
    Date of Patent: November 19, 2013
    Assignee: Precursor Energetics, Inc.
    Inventors: Kyle L. Fujdala, Wayne A. Chomitz, Zhongliang Zhu, Matthew C. Kuchta, Qinglan Huang
  • Patent number: 8585933
    Abstract: This invention relates to methods for making materials using compounds, polymeric compounds, and compositions used to prepare semiconductor and optoelectronic materials and devices including thin film and band gap materials. This invention provides a range of compounds, polymeric compounds, compositions, materials and methods directed ultimately toward photovoltaic applications, transparent conductive materials, as well as devices and systems for energy conversion, including solar cells. This invention further relates to methods for making AIGS, AIS or AGS materials by providing one or more polymeric precursor compounds or inks thereof, providing a substrate, depositing the compounds or inks onto the substrate; and heating the substrate at a temperature of from about 20° C. to about 650° C.
    Type: Grant
    Filed: August 26, 2010
    Date of Patent: November 19, 2013
    Assignee: Precursor Energetics, Inc.
    Inventors: Kyle L. Fujdala, Wayne A. Chomitz, Zhongliang Zhu, Matthew C. Kuchta, Qinglan Huang
  • Patent number: 8578876
    Abstract: An apparatus for application of liquids to a continuously conveyed outer layer having a rotating plate which is horizontal and parallel to the outer layer or with a deviation of up to 15° from horizontal, wherein a liquid applied to the rotating plate is ejected centrifugally from the rotating plate via rotation and then, via gravity, passed onto the outer layer below the rotating plate, is provided.
    Type: Grant
    Filed: September 20, 2010
    Date of Patent: November 12, 2013
    Assignee: BASF Aktiengesellschaft
    Inventors: Erwin Calgua, Bernd Schaper, Lars Schoen, Peter von Malotki, Pit Lehmann, Michael Thater
  • Patent number: 8578877
    Abstract: The present invention provides a spin coater including a rotation table that rotatably holds the disc substrate, a spin-cup that surrounds the outer circumference of a disc substrate held on the rotation table, a dripping unit configured to drip an ultraviolet-curable resin composition onto the surface of the disc substrate, a rotating unit configured to rotate the disc substrate via the rotation table to spread the ultraviolet-curable resin composition over the surface of the disc substrate, a heating unit configured to heat the ultraviolet-curable resin composition on the disc substrate, and a temperature controlling unit configured to control a reaching temperature of the spin cup which is increased by the heating unit each time the ultraviolet-curable resin composition is spread, so as to be constant over multiple spin coating processes.
    Type: Grant
    Filed: April 1, 2008
    Date of Patent: November 12, 2013
    Assignee: Ricoh Company, Ltd.
    Inventor: Yukitoshi Tajima
  • Patent number: 8580340
    Abstract: After a solvent is discharged onto a substrate in a period from a time point t0 to a time point t1, rotation of the substrate is started at a time point t2. A resist liquid is discharged onto a center portion of a target surface of the substrate at a time point t3. A rotation speed of the substrate starts to decrease at a time point t4, and attains a first speed after a certain period of time. The discharge of the resist liquid is stopped at a time point t5. The rotation of the substrate is accelerated in a period from a time point t6 to a time point t7, and the rotation speed of the substrate attains a second speed at the time point t7. The rotation of the substrate is decelerated in a period from the time point t7 to a time point t8, and the rotation speed of the substrate attains a third speed at the time point t8.
    Type: Grant
    Filed: October 6, 2010
    Date of Patent: November 12, 2013
    Assignee: Sokudo Co., Ltd.
    Inventors: Masanori Imamura, Akihiro Hisai, Hidetoshi Sagawa
  • Patent number: 8574674
    Abstract: A substrate is first rotated at a first rotation speed, and a resist solution is applied. Rotation of the substrate is decelerated to a second rotation speed lower than the first rotation speed so that the substrate is rotated at the low speed to smooth the resist solution on the substrate. Rotation of the substrate is then accelerated to a third rotation speed higher than the second rotation speed, and a solvent for the coating solution and/or a dry gas are/is supplied to the resist solution on the substrate. The solvent gas is supplied to a portion of the resist solution on the substrate thicker than a set thickness, and the dry gas is supplied to a portion of the coating solution on the substrate thinner than the set thickness. This thins the thicker portion of the resist solution and thickens the thinner portion to uniform the resist solution.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: November 5, 2013
    Assignee: Tokyo Electron Limited
    Inventor: Takashi Tanaka
  • Patent number: 8567339
    Abstract: There is provided a liquid processing apparatus capable of preventing an atmospheric air of a lower surface side of a substrate, to which a processing liquid is supplied, from circulating and being introduced into an upper surface side of the substrate, to which the processing liquid is not supplied, and capable of decreasing a fuzzy gas consumption supplied to separate the atmospheres between the lower and upper surface sides from each other. An upper plate 5 is disposed at an opposite side to the upper surface of the substrate maintained horizontally and a gas supplier 53, 531 supplies a pressurized gas into a space formed between the upper plate and the substrate. Also, due to a negative pressure built in a space formed between the upper plate and the substrate, an atmospheric gas outside the space is introduced into the space via a gas inlet port.
    Type: Grant
    Filed: June 18, 2010
    Date of Patent: October 29, 2013
    Assignee: Tokyo Electron Limited
    Inventors: Jiro Higashijima, Hiromitsu Namba