With Means To Centrifuge Work Patents (Class 118/52)
  • Patent number: 8567342
    Abstract: A coating device includes a coating mechanism which includes nozzles for ejecting a liquid material onto front and rear surfaces of a substrate while rotating the substrate; and an adjusting mechanism which adjusts the coating state of the liquid material at the outer periphery of the substrate; wherein the adjusting mechanism includes a dip portion which dips the outer periphery of the substrate in a solution while rotating the substrate and dissolves and removes a thin film formed on the outer periphery of the substrate; and a suction portion which suctions the vicinity of the outer periphery of the substrate after dipping in the solution.
    Type: Grant
    Filed: July 30, 2010
    Date of Patent: October 29, 2013
    Assignee: Tokyo Ohka Kogyo Co., Ltd.
    Inventors: Tsutomu Sahoda, Futoshi Shimai, Akihiko Sato
  • Patent number: 8555520
    Abstract: A covered sample plate with wells holding samples to be dried. The cover has through holes that communicate with only a portion of each well. The covered plate is inserted into a cradle of an assembly of cradles that is rotated. The cradle assembly fits into a tub and when rotated the cradles present a sold wall that functions as a centrifugal fan that drives air out through an opening in the tub. The air is dried of solvent and re-circulated back through the through holes in the cover to the sample wells.
    Type: Grant
    Filed: June 25, 2010
    Date of Patent: October 15, 2013
    Assignee: Harvard Bioscience, Inc.
    Inventor: Herbert J. Hedberg
  • Patent number: 8551563
    Abstract: A coating method includes holding a substrate in a horizontal state on a substrate holding member; supplying a coating liquid onto a front side central portion of the substrate held on the substrate holding member; rotating the substrate holding member about a vertical axis to spread the coating liquid supplied on the front side central portion of the substrate toward a front side peripheral portion of the substrate by a centrifugal force; and damping a wobble of the substrate being rotated, by a wobble damping mechanism including a gas delivery port and a suction port both disposed to face a back side of the substrate, while delivering a gas from the delivery port and sucking the gas into the suction port.
    Type: Grant
    Filed: May 3, 2012
    Date of Patent: October 8, 2013
    Assignee: Tokyo Electron Limited
    Inventors: Takahiro Kitano, Koichi Obata, Hiroichi Inada, Nobuhiro Ogata
  • Publication number: 20130260574
    Abstract: In a substrate processing apparatus, with an internal space of a chamber brought into a reduced pressure atmosphere, a first processing liquid is supplied onto an upper surface of a substrate while the substrate is rotated, and the first processing liquid is thereby quickly spread from a center portion toward a peripheral portion on the upper surface of the substrate. It is thereby possible to coat the upper surface of the substrate with the first processing liquid in a shorter time as compared with under normal pressure. Further, by sucking the first processing liquid from the vicinity of an edge of the substrate, it is possible to coat the upper surface of the substrate with the first processing liquid in a still shorter time. As a result, it is possible to shorten the time required for the processing of the substrate.
    Type: Application
    Filed: March 28, 2013
    Publication date: October 3, 2013
    Applicant: DAINIPPON SCREEN MFG. CO., LTD
    Inventors: Hirofumi MASUHARA, Kenichiro ARAI, Masahiro MIYAGI, Toru ENDO
  • Patent number: 8545934
    Abstract: A method of preparing composite materials by (a) containing particulates to which an adhering material is to be made to adhere, in a rotary body having a bottom surface and a side wall; (b) rotating the rotary body so as to apply centrifugal forces to the particulates in the rotary body; and (c) varying the inclination of the rotary body to an arbitrary inclination angle in the range from an angle at which the bottom surface of the rotary body forms a horizontal surface perpendicular to the direction of gravity to an angle at which the bottom surface forms a vertical surface parallel to the direction of gravity, and supporting the rotary body at the arbitrary inclination angle.
    Type: Grant
    Filed: January 7, 2010
    Date of Patent: October 1, 2013
    Assignee: Sony Corporation
    Inventors: Go Sudo, Kenji Katori, Hayato Hommura, Hiroshi Matsuki, Akio Kayanuma
  • Patent number: 8539906
    Abstract: A substrate liquid processing apparatus of the present invention includes a guide rotary cup configured to guide a process-liquid scattering from a substrate rotating and being held by a substrate holding table and a guide cup configured to guide downward the process-liquid guided by the guide rotary cup. The guide cup includes a downward extension portion extending downward from an inner peripheral end portion of a guide cup body and an inner peripheral extension portion extending inward from the inner peripheral end portion more than the downward extension portion. The inner peripheral extension portion is configured to form a gas guide space together with the guide rotary cup and the downward extension portion so that a gas turning by the rotation of the guide rotary cup can be guided downward.
    Type: Grant
    Filed: June 2, 2011
    Date of Patent: September 24, 2013
    Assignee: Tokyo Electron Limited
    Inventors: Nobuhiro Ogata, Shuichi Nagamine
  • Publication number: 20130239883
    Abstract: An arrangement for producing structured substrates is provided, which includes a device for applying layer systems including a device for applying liquid materials to rotating substrates, a housing, a rotating holder for the substrate to be coated, a feeder for liquid materials to be applied, and a collection device having multiple removal contraptions for liquid materials that do not remain on the substrate. The housing of the device is filled with an inert gas, in particular dried, molecular nitrogen, noble gas, or a mixture thereof. The additional receptacles and conduits of the arrangement for producing structured substrates are gas-tight and are designed such that an inert molecular nitrogen or noble gas atmosphere is created above the liquid contents thereof. The collection device has various collection zones in which different liquid materials can be selectively collected and selectively removed via the associated removal contraption.
    Type: Application
    Filed: May 7, 2013
    Publication date: September 19, 2013
    Applicant: Centofex Lda & Comandita
    Inventors: Hans BOHNET, Klaus-Peter THIEL
  • Patent number: 8534936
    Abstract: A coating and developing apparatus includes a processing block having at least one coating film-forming unit block stack and a vertically stacked developing unit block stack. Each unit block stack includes vertically stacked unit blocks, and each unit block includes processing modules containing liquid processing modules and heating modules. Each unit block includes a transport mechanism moveable along a transport passage from a carrier block side to an interface block side, to transport a substrate between the processing modules belonging to the unit block. Transfer units are provided on the carrier block sides of the coating film-forming unit blocks and the developing unit blocks respectively, for transferring a substrate to and from the transport mechanism of the associated coating film-forming or developing unit blocks. A first transfer mechanism transfers a substrate removed from a carrier to one of the transfer units associated with the coating film-forming unit blocks.
    Type: Grant
    Filed: July 7, 2011
    Date of Patent: September 17, 2013
    Assignee: Tokyo Electron Limited
    Inventors: Nobuaki Matsuoka, Akira Miyata, Shinichi Hayashi, Suguru Enokida
  • Publication number: 20130236990
    Abstract: According to one embodiment, a coating apparatus includes a stage having a mounting surface on which a coating target is mounted, a rotating mechanism that rotates the stage, a coating nozzle that discharges a coating material, a moving mechanism that moves the coating nozzle, a supply device that supplies a material to the coating nozzle, an ejection device that ejects the material, a communication tube that allows the supply device, and a valve device. Further, the coating apparatus includes a control unit which rotates the stage by the rotating mechanism, switches the valve device to achieve the continuity of the supply unit and the coating nozzle, drives the moving mechanism to move the coating nozzle, and applies the coating material to the coating target on the stage.
    Type: Application
    Filed: March 8, 2013
    Publication date: September 12, 2013
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Tsuyoshi SATO, Kenichi Ooshiro
  • Patent number: 8529993
    Abstract: This invention relates to materials and processes for the preparation of high quality layers, for example for the fabrication of optical devices such as waveguides. In particular, the invention relates to the use of low volatility polymer materials for the deposition of high quality layers on large area substrates via a two-stage process, for example extrude-and-spin.
    Type: Grant
    Filed: April 30, 2007
    Date of Patent: September 10, 2013
    Assignee: Zetta Research andDevelopment LLC—RPO Series
    Inventors: Robert Bruce Charters, Dax Kukulj
  • Patent number: 8522712
    Abstract: In a template treatment of forming a film of a release agent on a treatment surface of a template, the treatment surface of the template is first cleaned. Thereafter, in a coating unit, the release agent is applied to the treatment surface of the template. The release agent on the template is then dried. Then, alcohol is applied to the release agent on the template to make the release agent adhere to the treatment surface of the template and to remove an unreacted portion of the release agent. Thereafter, the alcohol on the template is dried and removed. In this manner, a film of the release agent is formed in a predetermined film thickness on the treatment surface of the template.
    Type: Grant
    Filed: November 10, 2010
    Date of Patent: September 3, 2013
    Assignee: Tokyo Electron Limited
    Inventors: Koukichi Hiroshiro, Takanori Nishi, Takahiro Kitano, Shoichi Terada
  • Patent number: 8522714
    Abstract: A wet processing apparatus for wet-processing substrates can suppress the reduction of throughput when some component part thereof becomes unserviceable. The wet processing apparatus includes a first nozzle unit and a second nozzle unit. When the wet processing apparatus operates in a normal mode, a substrate carrying mechanism is controlled so as to deliver substrates alternately to processing units of a first group and those of a second group so that the substrates are processed sequentially in order. When the processing units of the first group (the second group) are unserviceable due to the inoperativeness of the substrate holders, a processing liquid supply system or a nozzle support mechanism, the nozzle unit for the processing units of the second group (the first group) is moved to process substrates by the serviceable ones of the first group (the second group).
    Type: Grant
    Filed: March 1, 2011
    Date of Patent: September 3, 2013
    Assignee: Tokyo Electron Limited
    Inventors: Naofumi Kishita, Kouji Fujimura, Yoshitaka Hara
  • Patent number: 8518480
    Abstract: The present invention is a method of developing a resist film on a substrate using a developing solution at a predetermined temperature lower than room temperature, including a first cooling step of mounting and cooling the substrate on a cooling plate at a temperature lower than room temperature and higher than the predetermined temperature in a cooling apparatus; a second cooling step of then carrying the substrate into a developing apparatus and supplying a rinse solution at the predetermined temperature or lower onto the substrate to cool the substrate in the developing apparatus; a developing step of then supplying the developing solution onto the substrate and developing the resist film on the substrate to form a resist pattern in the resist film; and a cleaning step of then supplying a rinse solution at the predetermined temperature onto the substrate to clean a front surface of the substrate.
    Type: Grant
    Filed: January 11, 2011
    Date of Patent: August 27, 2013
    Assignee: Tokyo Electron Limited
    Inventors: Norifumi Sato, Yukio Kiba, Tetsushi Miyamoto, Kazuhisa Hasebe
  • Publication number: 20130217217
    Abstract: According to one embodiment, a pattern forming method is disclosed. A resist pattern having a top surface is formed pattern on a substrate. A coating film having a first thickness distribution is formed on the substrate. The coating film covers the resist pattern. The coating film is thinned to expose the top surface of the resist pattern. The first thickness distribution is changed into a second thickness distribution which is more uniform than the first thickness distribution. The resist pattern is removed without removing the coating film. A pattern is formed in the substrate by processing the substrate by using the coating film as a mask.
    Type: Application
    Filed: September 5, 2012
    Publication date: August 22, 2013
    Inventors: Katsutoshi Kobayashi, Daisuke Kawamura
  • Patent number: 8505479
    Abstract: A resist coating apparatus supplies a resist solution to substantially the center of a target substrate to be processed while rotating the target substrate at a first rotational speed, then decelerates the rotation of the substrate to a second rotational speed lower than the first rotational speed, or until rotational halt, makes the deceleration smaller in the deceleration step as the rotational speed becomes closer to the second rotational speed or the rotational halt, and accelerates the rotation of the substrate to a third rotational speed higher than the second rotational speed to spin off a residue of the resist solution.
    Type: Grant
    Filed: September 8, 2010
    Date of Patent: August 13, 2013
    Assignee: Tokyo Electron Limited
    Inventors: Kousuke Yoshihara, Tomohiro Iseki
  • Patent number: 8501025
    Abstract: A substrate treatment apparatus is provided, which includes: a seal chamber including a chamber body having an opening, a lid member provided rotatably with respect to the chamber body and configured to close the opening, and a first liquid seal structure which liquid-seals between the lid member and the chamber body, the seal chamber having an internal space sealed from outside; a lid member rotating unit which rotates the lid member; a substrate holding/rotating unit which holds and rotates a substrate in the internal space of the seal chamber; and a treatment liquid supplying unit which supplies a treatment liquid to the substrate rotated by the substrate holding/rotating unit.
    Type: Grant
    Filed: March 10, 2011
    Date of Patent: August 6, 2013
    Assignee: Dainippon Screen Mfg. Co., Ltd.
    Inventors: Akio Hashizume, Yuya Akanishi, Kenji Kawaguchi, Manabu Yamamoto
  • Patent number: 8501274
    Abstract: A substrate is rotated at a first rotation number (first step). The rotation of the substrate is decelerated to 1500 rpm that is a second rotation number and the substrate is rotated at the second rotation number for 0.5 seconds (second step). The rotation of the substrate is further decelerated to a third rotation number and the substrate is rotated at the third rotation number (third step). The rotation of the substrate is accelerated to a fourth rotation number and the substrate is rotated at the fourth rotation number (fourth step). A resist solution is continuously supplied to a center portion of the substrate from a middle of the first step to a middle of the third step.
    Type: Grant
    Filed: August 12, 2010
    Date of Patent: August 6, 2013
    Assignee: Tokyo Electron Limited
    Inventors: Katsunori Ichino, Koji Takayanagi, Tomohiro Noda
  • Patent number: 8496991
    Abstract: The present invention supplies a solvent to a front surface of a substrate while rotating the substrate. The substrate is acceleratingly rotated to a first number of rotations, and a resist solution is supplied to a central portion of the substrate during the accelerating rotation and the rotation at a first number of rotations. The substrate is deceleratingly rotated to a second number of rotations, and after the number of rotations of the substrate reaches the second number of rotations, the resist solution is discharged to the substrate. The substrate is then acceleratingly rotated to a third number of rotations higher than the second number of rotations so that the substrate is rotated at the third number of rotations. According to the present invention, consumption of the resist solution can be suppressed and a high in-plane uniformity can be obtained for the film thickness of the resist film.
    Type: Grant
    Filed: September 20, 2011
    Date of Patent: July 30, 2013
    Assignee: Tokyo Electron Limited
    Inventors: Kousuke Yoshihara, Tomohiro Iseki
  • Patent number: 8485124
    Abstract: Disclosed is a silver thin film spread apparatus by means of deposition of nano metallic silver, the apparatus comprising: a treatment booth formed at one side with an inlet for inputting a substrate, and formed at the other side with an outlet for discharging the substrate; a transfer device formed at a lower side of the treatment booth for transferring the substrate; a spray device formed at an upper side of the treatment booth for spraying silver solution on a surface of the substrate; a moving device for linearly reciprocating the spray device; and a rotation device formed at the lower side of the treatment booth for rotating the substrate, whereby reflectivity can be enhanced by increasing film compactness and coating uniformity of thin film, where the substrate is rotated at a predetermined constant speed to allow the spray guns to linearly reciprocate and to allow the nano silver thin film to be uniformly spread and deposited on the surface of the substrate at a predetermined constant frequency.
    Type: Grant
    Filed: November 30, 2010
    Date of Patent: July 16, 2013
    Assignee: NANO CMS Co., Ltd.
    Inventors: Shi Surk Kim, Seong Uk Lee, Si Doo Kim
  • Patent number: 8479753
    Abstract: A liquid processing apparatus includes a substrate holding member configured to rotate along with a substrate held thereon in a horizontal state; an annular rotary cup configured to surround the substrate held on the substrate holding member and to rotate along with the substrate; a rotation mechanism configured to integrally rotate the rotary cup and the substrate holding member; and a liquid supply mechanism configured to supply a process liquid onto the substrate. The apparatus further includes an annular drain cup configured to receive the process liquid discharged from the rotary cup, and provided with a drain port; and a circular flow generation element configured to generate a circular flow within the drain cup when the rotary cup and the substrate holding member are rotated, such that the circular flow serves to lead the process liquid within the drain cup to the drain port.
    Type: Grant
    Filed: June 13, 2007
    Date of Patent: July 9, 2013
    Assignee: Tokyo Electron Limited
    Inventors: Hiromitsu Nanba, Norihiro Ito
  • Patent number: 8475870
    Abstract: A resin layer formation method and device for making a resin layer uniform on a substrate before lamination or on a substrate is provided. Adhesive is coated at an inner circumference side while rotating a substrate at low speed. A first adhesive layer is formed on the surface of the substrate by rotating at high speed. A step difference section is formed around a rotation center of the substrate by irradiating ultraviolet on an area in the inner circumference side of the first adhesive layer to hardening the area. Adhesive is coated at the rotation center side from the step difference section on the substrate, and a second adhesive layer is formed on the first adhesive layer by rotating the substrate at high speed. The first adhesive layer and the second adhesive layer are integrated to form a uniform adhesive layer.
    Type: Grant
    Filed: December 2, 2011
    Date of Patent: July 2, 2013
    Assignee: Shibaura Mechatronics Corporation
    Inventors: Tomokazu Ito, Hisashi Nishigaki, Tsukasa Kawakami, Haruka Narita, Yoji Takizawa, Takumi Hanada, Munenori Iwami
  • Publication number: 20130156948
    Abstract: A substrate processing apparatus includes substrate holding unit that holds wafer W horizontally, rotation driving unit that rotates the substrate holding unit, first chemical liquid nozzle that discharges first chemical liquid toward the peripheral portion of wafer W, second chemical liquid nozzle that discharges second chemical liquid, which is different from the first chemical liquid, toward the peripheral portion of wafer, and first nozzle driving unit and second nozzle driving unit each moves the first chemical liquid nozzle and the second chemical liquid nozzle, respectively. Each chemical liquid nozzle is moved by each nozzle driving unit between processing position disposed when a chemical liquid is discharged toward the peripheral portion of wafer W, and stand-by position disposed when the chemical liquid is not discharged. Each stand-by position is disposed in the center side of wafer W compared to the processing position.
    Type: Application
    Filed: December 12, 2012
    Publication date: June 20, 2013
    Applicant: TOKYO ELECTRON LIMITED
    Inventor: Tokyo Electron Limited
  • Publication number: 20130142940
    Abstract: A method for removing excess coating from a stent involves simultaneously applying a coating substance to the stent, rotating the stent about a first axis of rotation, and rotating the stent about a second axis of rotation parallel to the first axis of rotation. An apparatus for removing excess coating from a stent includes a first system configured to rotate the stent about an axis of rotation, a fixture configured to support the stent such that a longitudinal axis of the stent is generally parallel to the axis of rotation, and a second system configured to rotate the stent about the longitudinal axis of the stent while the stent is supported by the fixture.
    Type: Application
    Filed: December 19, 2012
    Publication date: June 6, 2013
    Applicant: ABBOTT CARDIOVASCULAR SYSTEMS INC.
    Inventor: ABBOTT CARDIOVASCULAR SYSTEMS INC.
  • Patent number: 8453599
    Abstract: A resist solution supply apparatus of the present invention includes: a resist solution supply source storing a resist solution therein; a supply tube for supplying the resist solution from the resist solution supply source to a coating nozzle; a filter provided in the supply tube for removing foreign matter in the resist solution; and a heating unit provided along the supply tube at a position closer to the resist solution supply source than the filter, for heating the resist solution in the supply tube to a predetermined temperature higher than room temperature to make a resist gel to aggregate to become coarse so that the coarse resist gel can be collected and removed by the filter.
    Type: Grant
    Filed: August 5, 2010
    Date of Patent: June 4, 2013
    Assignee: Tokyo Electron Limited
    Inventors: Kosuke Yoshihara, Yusuke Yamamoto
  • Publication number: 20130136858
    Abstract: A spin coating apparatus for applying adhesive to a substrate includes: a rotatable chuck configured to receive and hold a substrate thereon; a nozzle positioned above the rotatable chuck and configured to dispense the adhesive onto a surface of the substrate; a containment pan surrounding the rotatable chuck and configured to contain excess adhesive; a collection container in fluid communication with the containment pan; and a removal device positioned within the containment pan configured to direct the excess adhesive into the collection container.
    Type: Application
    Filed: November 29, 2011
    Publication date: May 30, 2013
    Applicant: Henkel Corporation
    Inventors: Gyanendra DUTT, Dung PHAN, YounSang KIM, Elizabeth HOANG
  • Patent number: 8448600
    Abstract: A substrate processing apparatus is disclosed equipped with a transfer mechanism that transfers a substrate processed at a processing block to a carrier so that the increase of the number of transfer process is suppressed, improving the processing efficiency. The substrate processing apparatus is configured in such a way that, when a second-transfer module houses at least one substrate and a carrier that can house the at least one substrate is not placed in a carrier-placement unit, the at least one substrate is transferred to a buffer module. When the second transfer module houses at least one substrate and the carrier that can house the at least one substrate is placed in the carrier-placement unit, the at least one substrate is transferred to the carrier, regardless of whether or not a substrate is being transferred from the buffer module to the carrier.
    Type: Grant
    Filed: June 8, 2010
    Date of Patent: May 28, 2013
    Assignee: Tokyo Electron Limited
    Inventors: Kenichirou Matsuyama, Tomohiro Kaneko
  • Patent number: 8440266
    Abstract: A developer nozzle supplies a developer onto the surface of a substrate rotating around a vertical axis, while a pure water nozzle supplies pure water onto the surface of the rotating substrate. The pure water nozzle is spaced apart from the developer nozzle and located on an outer side of the substrate with respect to the developer nozzle. The pure water restricts flow of the developer on the substrate and causes the developer to spread toward a clockwise side of the substrate when the substrate rotates in a clockwise direction. A liquid film containing the developer and the pure water is formed on the substrate. The developer nozzle and the pure water nozzle are spaced apart from each other to suppress splattering of the developer and the pure water due to collision of the developer with the pure water.
    Type: Grant
    Filed: February 3, 2010
    Date of Patent: May 14, 2013
    Assignee: Tokyo Electron Limited
    Inventors: Norikatsu Sato, Hirofumi Takeguchi
  • Patent number: 8431179
    Abstract: Systems and methods for molding shells for fluid-filled prosthetic implants, including spinning and rotating dip- or spray-mandrels during a devolatilization step to ensure an even covering. The mandrels may be spun during the dipping or spraying step, and/or afterward while a solvent evaporates until a gum state is formed. The techniques are particularly useful for forming hollow shells from silicone dispersions for soft implants, such as breast implants.
    Type: Grant
    Filed: November 19, 2009
    Date of Patent: April 30, 2013
    Assignee: Allergan, Inc.
    Inventors: Feargal D. Judge, Kevin J. Dempsey
  • Publication number: 20130089664
    Abstract: A coating method includes a step of forming a film of a coating solution having a larger thickness in a central region of a substrate than in an edge region of the substrate by discharging droplets of the coating solution from a plurality of nozzles formed on an inkjet head to the substrate, and a step of moving the coating solution in the film from the central region toward the edge region of the substrate by rotating the substrate. This reduces a difference in thickness of the film between the central region and the edge region of the substrate, thereby to make the film thickness substantially uniform. At the same time, the movement of the coating solution in the film can make the surface of the film smoother.
    Type: Application
    Filed: October 2, 2012
    Publication date: April 11, 2013
    Inventors: Yukihiko INAGAKI, Tomohiro GOTO
  • Patent number: 8414972
    Abstract: In a coating step, a substrate is rotated at a high speed, and in that state a resist solution is discharged from a first nozzle to a central portion of the substrate to apply the resist solution over the substrate. Subsequently, in a flattening step, the rotation of the substrate is decelerated and the substrate is rotated at a low speed to flatten the resist solution on the substrate. In this event, the discharge of the resist solution by the first nozzle in the coating step is performed until a middle of the flattening step, and when the discharge of the resist solution is finished in the flattening step, the first nozzle is moved to move a discharge position of the resist solution from the central portion of the substrate. According to the present invention, the resist solution can be applied uniformly within the substrate.
    Type: Grant
    Filed: February 28, 2008
    Date of Patent: April 9, 2013
    Assignee: Tokyo Electron Limited
    Inventors: Kousuke Yoshihara, Tomohiro Iseki, Koji Takayanagi
  • Patent number: 8408222
    Abstract: New baffles and methods of using these baffles are provided. The baffles comprise a body having an edge wall configured to direct the flow of a composition against a substrate (e.g., silicon wafer) edge. The edge wall comprises a vertical surface, a curved sidewall coupled to the vertical surface, and a lip coupled to the curved sidewall. A preferred baffle is annular in shape and formed from a synthetic resinous composition. Even more preferably, the baffle is not formed of a metal. The inventive methods comprise positioning the baffle adjacent a substrate during a spin coating process so that the edge wall causes the composition to cover the edges of the substrate and preferably a portion of the back side of the substrate.
    Type: Grant
    Filed: July 20, 2009
    Date of Patent: April 2, 2013
    Assignee: Brewer Science Inc.
    Inventors: Gary J. Brand, Philip H. Allen, Ramachandran K. Trichur
  • Publication number: 20130059076
    Abstract: To provide a substrate treatment apparatus capable of suppressing adherence of dust to a film coated on a substrate. As an aspect of the present invention is a substrate treatment apparatus provided with a spin-coating treatment chamber 4a for coating a film on the substrate by spin-coating, a first air-conditioning mechanism that regulates an amount of dust in the air in the spin-coating treatment chamber, an annealing treatment chamber 7a for performing lamp annealing treatment on the film coated on the substrate, a conveying chamber 2a that is connected to each of the spin-coating treatment chamber and the annealing treatment chamber and is for conveying the substrate between the spin-coating treatment chamber and the annealing treatment chamber each other, and a second air-conditioning mechanism that regulate an amount of dust in the air in the conveying chamber.
    Type: Application
    Filed: April 28, 2010
    Publication date: March 7, 2013
    Inventors: Mitsuhiro Suzuki, Takeshi Kijima, Yuuji Honda
  • Patent number: 8387556
    Abstract: A coating device includes a coating mechanism which includes nozzles for ejecting a liquid material onto front and rear surfaces of the substrate while rotating a substrate in an upright state at a predetermined coating position, a carrying mechanism which carries the substrate between a substrate loading position, the coating position, and a substrate unloading position, and a dummy substrate holding mechanism which holds a dummy substrate at a holding position which is a position different from the substrate loading position, the coating position, and the substrate unloading position, and at which the carrying mechanism is allowed to connect with the dummy substrate.
    Type: Grant
    Filed: June 25, 2010
    Date of Patent: March 5, 2013
    Assignee: Tokyo Ohka Kogyo Co., Ltd.
    Inventors: Tsutomu Sahoda, Futoshi Shimai, Akihiko Sato
  • Patent number: 8375884
    Abstract: A substrate processing apparatus including: a heating part for heating a wafer; a transport part through which a wafer is transported; a first transfer arm that receives a wafer from the heating part and places the wafer on the transport part; and a second transfer arm including a pair of plate-like tweezers that receives the wafer placed on the transport part from the transport part and transfers the wafer. The transport part includes a cooling plate having a cooling surface on which a wafer is placed. The cooling plate includes a temperature-adjusting channel through which a temperature-adjusting water is circulated for cooling the cooling plate to a temperature lower than a temperature of the heating process of the heating part. The cooling surface is provided with a recess that is similar in shape to and slightly larger than a planar shape of the pair of tweezers.
    Type: Grant
    Filed: January 6, 2010
    Date of Patent: February 19, 2013
    Assignee: Tokyo Electron Limited
    Inventor: Kouichi Mizunaga
  • Patent number: 8375887
    Abstract: The invention includes a lower guide unit which obliquely extends downward to an outside from a position closely opposed to a peripheral edge portion of a rear surface of the substrate held on the substrate holding unit, and is formed in an annular shape in a circumferential direction of the substrate; and an upper guide unit which has an upper end surface located at a substantially same height as a front surface of the substrate held on the substrate holding unit, forms a lower annular flow path between the upper guide unit and the lower guide unit for guiding downward together with a gas flow a treatment solution scattering from the substrate, is formed in an annular shape opposed to the lower guide unit to surround an outside lower region of the substrate, and has an inner peripheral surface having a longitudinal-sectional shape curved to bulge outward and extending downward.
    Type: Grant
    Filed: February 23, 2010
    Date of Patent: February 19, 2013
    Assignee: Tokyo Electron Limited
    Inventors: Koji Takayanagi, Naofumi Kishita
  • Patent number: 8372480
    Abstract: A transfer flow is produced in accordance with a process recipe of a process to be carried out. In the transfer flow, a type of modules listed in accordance with a substrate transfer order is associated with a necessary staying time from when the substrate is transferred into a module by a substrate transfer unit to when the substrate is ready to be transferred back to the substrate transfer unit after the corresponding process is finished. A cycle limiting time is determined to be the longest necessary transfer cycle time among those obtained by dividing the necessary staying time by the number of the modules mounted in the coater/developer. The number of the modules to be used is determined to be a value obtained by dividing the necessary staying time by the cycle limiting time or a nearest integer to which the value is raised.
    Type: Grant
    Filed: July 7, 2011
    Date of Patent: February 12, 2013
    Assignee: Tokyo Electron Limited
    Inventors: Akira Miyata, Masanori Tateyama
  • Patent number: 8354141
    Abstract: A liquid treatment apparatus treating a surface of a substrate held generally horizontally on a stage in a housing by supplying a treating liquid to said surface from a supply nozzle. The liquid treatment apparatus includes a cup body provided so as to surround the substrate held in the substrate holding part laterally, the cup body being mounted detachably to a base inside the housing from an upward direction thereof; a cup body holding part holding the cup body detachably; and an elevating mechanism moving the cup body holding part up and down between a first position at which the cup body is mounted upon the base body and a second position located above the first position.
    Type: Grant
    Filed: May 24, 2011
    Date of Patent: January 15, 2013
    Assignee: Tokyo Electron Limited
    Inventors: Tsunenaga Nakashima, Gouichi Iwao, Naofumi Kishita, Nobuhiro Ogata
  • Patent number: 8353255
    Abstract: By means of the device for coating a substrate (2; 102) according to the present invention, a homogeneous coating of the substrate (2; 102) can be achieved. The device comprises a holding and rotating means for holding and rotating the substrate (2; 102) about an axis (A). A disk (3) is provided below the substrate (2; 102). Said disk (3) is arranged coaxially with respect to the substrate (2; 102), has at least the same diameter as the substrate (2; 102) and is able to rotate synchronously with the substrate (2; 102). By means of the disk (3), air swirls at the edge of and below the substrate (2; 102) are avoided during coating of the substrate (2; 102). Thus, it is possible to obtain a homogeneous coating. For being able to load and unload a substrate (2; 102) into and out of the device by means of a conventional gripper system (6), the distance between substrate (2; 102) and disk (3) is increased during loading and unloading.
    Type: Grant
    Filed: February 2, 2010
    Date of Patent: January 15, 2013
    Assignee: Süss MicroTec Lithography GmbH
    Inventors: Ralph Beyer, Stefan Lutter, Rainer Targus
  • Publication number: 20130010368
    Abstract: Techniques related to miniature lenses and lens arrays are generally described herein. The described techniques may be embodied in apparatuses, systems, methods and/or processes for making and using such lenses. In some examples, the various techniques may be utilized for miniature lenses such as nanometer to micron sized spherical lenses or lens arrays. An example process may include dewetting polymer films to form such lenses. The resulting lens-size may be tunable from about 200 nm to a few tens of microns, and more particularly in a range from about 200 nm to about 10 ?m with spherical shapes of contact angles ranging from about 30° to about 150°. The resulting lenses may be tunable polymeric structures formed generally by self-organized room temperature dewetting of ultrathin polymer films by reducing the surface tension.
    Type: Application
    Filed: July 5, 2011
    Publication date: January 10, 2013
    Applicant: INDIAN INSTITUTE OF TECHNOLOGY KANPUR
    Inventors: Ashutosh Sharma, Ankur Verma
  • Patent number: 8336485
    Abstract: A coating apparatus includes a first vessel, a revolving unit, and a motor having a drive shaft. The first vessel has a receiving space defined therein for receiving substrates and a first solution. The revolving unit is received in the receiving space and rotatable relative to the first vessel to impart a centrifugal force to the first solution. The drive shaft is coupled to the revolving unit. The motor is configured for rotating the revolving unit.
    Type: Grant
    Filed: August 1, 2010
    Date of Patent: December 25, 2012
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventor: Shao-Kai Pei
  • Patent number: 8337937
    Abstract: A method is disclosed for spin coating a stent. The method comprises conducting the following acts at the same time: applying a coating substance to the stent; rotating the stent about a first axis of rotation; and rotating the stent about a second axis of rotation.
    Type: Grant
    Filed: June 6, 2008
    Date of Patent: December 25, 2012
    Assignee: Abbott Cardiovascular Systems Inc.
    Inventor: Stephen D. Pacetti
  • Publication number: 20120315578
    Abstract: Disclosed herein are an apparatus and a method for spin coating, and a method for manufacturing a substrate having a structure. The spin-coating apparatus includes a support to support a substrate having a structure, a motor to rotate the support to perform spin-coating with respect to the structure, and a heat source to heat a coating material which is subjected to the spin-coating to perform pre-baking. The method for spin-coating a substrate having a structure includes preparing the substrate having the structure of a predetermined height formed on an upper portion thereof, coating the structure of the substrate with photoresist, and performing spin-coating of the photoresist in a place in which a heat source is provided, while performing pre-baking of the photoresist.
    Type: Application
    Filed: May 1, 2012
    Publication date: December 13, 2012
    Inventors: Seung Seoup LEE, Dong Chul Shin
  • Patent number: 8318247
    Abstract: The present invention includes: a first step of discharging a coating solution from a nozzle to a center portion of the substrate to apply the coating solution on a surface of the substrate while rotating the substrate; a second step of decelerating, after the first step, the rotation of the substrate and continuously rotating the substrate; and a third step of accelerating, after the second step, the rotation of the substrate to dry the coating solution on the substrate, wherein: the substrate is rotated at a fixed speed of a first speed immediately before the first step; and in the first step, the rotation of the substrate which is at the first speed before start of the first step is gradually accelerated after the start of the first step so as to make the speed continuously change, and the acceleration of the rotation of the substrate is gradually decreased so as to make the speed of the rotation of the substrate converge in a second speed higher than the first speed at end of the first step.
    Type: Grant
    Filed: September 8, 2008
    Date of Patent: November 27, 2012
    Assignee: Tokyo Electron Limited
    Inventors: Kousuke Yoshihara, Tomohiro Iseki, Koji Takayanagi
  • Patent number: 8313803
    Abstract: Spin coating method for a recording medium having a hole in the center, including moving a tip of a feeding nozzle to an initial position at a distance X above a recording surface and a distance A radially apart from a periphery of the hole, feeding a coating liquid onto the recording surface for a predetermined period of time while rotating the recording medium at a predetermined speed, and moving the tip from the initial position along a radial direction towards an outer periphery of the recording medium while keeping the tip above the recording surface at the distance X. X satisfies X?2 [3 r ?/(2 g C)]1/3, where ? and C respectively are surface tension and density of the coating liquid, r is the outer radius of the feeding nozzle, and g is the acceleration of gravity. A satisfies A?r+X/3.
    Type: Grant
    Filed: November 6, 2009
    Date of Patent: November 20, 2012
    Assignee: Fuji Electric Co., Ltd.
    Inventor: Shinji Uchida
  • Publication number: 20120281275
    Abstract: Systems and methods for determining one or more characteristics of a specimen using radiation in the terahertz range are provided. One system includes an illumination subsystem configured to illuminate the specimen with radiation. The system also includes a detection subsystem configured to detect radiation propagating from the specimen in response to illumination of the specimen and to generate output responsive to the detected radiation. The detected radiation includes radiation in the terahertz range. In addition, the system includes a processor configured to determine the one or more characteristics of the specimen using the output.
    Type: Application
    Filed: July 19, 2012
    Publication date: November 8, 2012
    Applicant: KLA-TENCOR CORPORATION
    Inventors: Ady Levy, Samuel Ngai, Christopher F. Bevis, Stefano Concina, John Fielden, Walter Mieher, Dieter Mueller, Neil Richardson, Dan Wack, Larry Wagner
  • Patent number: 8304018
    Abstract: There is provided a coating method which can efficiently apply a coating liquid, such as a liquid resist, to the entire surface of a wafer even when the coating liquid is supplied in a smaller amount than a conventional one, and can therefore reduce the consumption of the coating liquid. The coating method includes: a first step of rotating the substrate at a first rotating speed while supplying the coating liquid onto approximately the center of the rotating substrate; a second step of rotating the substrate at a second rotating speed which is lower than the first rotating speed; a third step of rotating the substrate at a third rotating speed which is higher than the second rotating speed; and a fourth step of rotating the substrate at a fourth rotating speed which is higher than the second rotating speed and lower than the third rotating speed.
    Type: Grant
    Filed: February 10, 2010
    Date of Patent: November 6, 2012
    Assignee: Tokyo Electron Limited
    Inventors: Koji Takayanagi, Tomohiro Iseki, Katsunori Ichino, Kousuke Yoshihara
  • Patent number: 8302556
    Abstract: Provided is a coating and developing apparatus composed of an assembly of plural unit blocks. A first unit-block stack and a second unit-block stack are arranged at different positions with respect to front-and-rear direction. Unit blocks for development, each of which comprises plural processing units including a developing unit that performs developing process after exposure and a transfer device that transfers a substrate among the processing units, are arranged at the lowermost level. Unit blocks for application, or coating, each of which comprises plural processing units including a coating unit that performs application process before exposure and a transfer device that transfers a substrate among the processing units, are arranged above the unit blocks for development. Unit blocks for application are arranged in both the first and second unit-block stacks.
    Type: Grant
    Filed: August 12, 2010
    Date of Patent: November 6, 2012
    Assignee: Tokyo Electron Limited
    Inventors: Masami Akimoto, Shinichi Hayashi, Yasushi Hayashida, Nobuaki Matsuoka, Yoshio Kimura, Issei Ueda, Hikaru Ito
  • Publication number: 20120276753
    Abstract: A coating treatment apparatus supplying a coating solution to a front surface of a rotated substrate and diffusing the supplied coating solution to an outer periphery side of the substrate to thereby apply the coating solution on the front surface of the substrate includes: a substrate holding part holding a substrate; a rotation part rotating the substrate held on the substrate holding part; a supply part supplying a coating solution to a front surface of the substrate held on the substrate holding part; and an airflow control plate provided at a predetermined position above the substrate held on the substrate holding part for locally changing an airflow above the substrate rotated by the rotation part at an arbitrary position.
    Type: Application
    Filed: April 17, 2012
    Publication date: November 1, 2012
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Kousuke YOSHIHARA, Koji Takayanagi, Shinichi Hatakeyama
  • Patent number: 8286580
    Abstract: The present invention provides a method that can maintain the temperature of a wafer at a process temperature before a coating process is performed by supplying a photoresist. According to the present invention, a thinner which helps a diffusion of the photoresist is supplied onto the wafer before the photoresist is supplied. The thinner is supplied in a temperature-controlled state such that the wafer has the process temperature by the thinner.
    Type: Grant
    Filed: September 26, 2006
    Date of Patent: October 16, 2012
    Assignee: Semes Co., Ltd.
    Inventors: Jong-Su Choi, Young-Kweon Choi
  • Patent number: 8286576
    Abstract: A thermal processing unit of a thermal processor for anti-reflection films includes: a covering nozzle for covering a substrate from above supported by a thermal processing plate and discharging an adhesion enhancing agent to a periphery of a substrate supported by the thermal processing plate; and a vaporization processor for supplying an adhesion enhancing agent in the vapor phase to the covering nozzle. While a substrate placed over the thermal processing plate is being subjected to thermal process, a control part causes the covering nozzle to discharge an adhesion enhancing agent in the vapor phase onto a periphery of a substrate to realize adhesion enhancement process. Thus, the adhesion between a resist coating film and a substrate surface in the periphery of a substrate is enhanced. Further, parallel implementation of thermal process and adhesion enhancement process exerts no influence on throughput.
    Type: Grant
    Filed: September 30, 2008
    Date of Patent: October 16, 2012
    Assignee: Sokudo Co., Ltd.
    Inventors: Osamu Tamada, Masakazu Sanada, Tadashi Miyagi