Nine Percent Or More Chromium Containing Patents (Class 148/325)
  • Patent number: 8961717
    Abstract: The present invention provides stainless steel foil for flexible display use which enables fabrication of a TFT substrate for display use which is superior in shape recovery after being rolled up or bent and which is high in surface flatness and is characterized by having a thickness of 20 ?m to 200 ?m, a surface roughness Ra of 50 nm or less, and a shape recovery of a distortion angle of 10° or less after being wound around a 30 mm diameter cylinder.
    Type: Grant
    Filed: February 28, 2014
    Date of Patent: February 24, 2015
    Assignee: Nippon Steel & Sumikin Materials Co., Ltd.
    Inventors: Noriko Yamada, Toyoshi Ogura, Yuji Kubo, Shuji Nagasaki
  • Patent number: 8961713
    Abstract: The present invention provides stainless steel foil for flexible display use which enables fabrication of a TFT substrate for display use which is superior in shape recovery after being rolled up or bent and which is high in surface flatness and is characterized by having a thickness of 20 ?m to 200 ?m, a surface roughness Ra of 50 nm or less, and a shape recovery of a distortion angle of 10° or less after being wound around a 30 mm diameter cylinder.
    Type: Grant
    Filed: May 13, 2009
    Date of Patent: February 24, 2015
    Assignee: Nippon Steel Materials Co, Ltd.
    Inventors: Noriko Yamada, Toyoshi Ogura, Yuji Kubo, Shuji Nagasaki
  • Patent number: 8961869
    Abstract: A hardfacing alloy for use as a surfacing on metal that are subjected to high thermal and mechanical stresses. The hardfacing alloy includes at least about 7 weight percent chromium, at least about 0.02 weight percent nitrogen, metal sensitization inhibitor, and a majority weight percent iron. The hardfacing alloy includes a low percentage of ferrite.
    Type: Grant
    Filed: January 24, 2005
    Date of Patent: February 24, 2015
    Assignee: Lincoln Global, Inc.
    Inventors: Ashish Kapoor, Teresa Melfi
  • Publication number: 20150020933
    Abstract: Provided is a heat-resistant cold rolled ferritic stainless steel sheet containing, in terms of mass %, 0.02% or less of C, 0.1% to 1.0% of Si, greater than 0.6% to 1.5% of Mn, 0.01% to 0.05% of P, 0.0001% to 0.0100% of S, 13.0% to 20.0% of Cr, 0.1% to 3.0% of Mo, 0.005% to 0.20% of Ti, 0.3% to 1.0% of Nb, 0.0002% to 0.0050% of B, 0.005% to 0.50% of Al, and 0.02% or less of N, with the balance being Fe and inevitable impurities, in which {111}-oriented grains are present at an area ratio of 20% or greater in a region from a surface layer to t/4 (t is a sheet thickness), {111}-oriented grains are present at an area ratio of 40% or greater in a region from t/4 to t/2, and {011}-oriented grains are present at an area ratio of 15% or less in the entire region in a thickness direction.
    Type: Application
    Filed: March 26, 2013
    Publication date: January 22, 2015
    Applicant: Nippon Steel & Sumikin Stainless Steel Corporation
    Inventors: Junichi Hamada, Yuji Koyama, Yoshiharu Inoue, Tadashi Komori, Fumio Fudanoki, Toshio Tanoue, Naoto Ono
  • Patent number: 8932416
    Abstract: A high-strength die-quenched part 1 is formed by heating a high-strength steel sheet 11 up to an austenite region, hot stamping and cooling inside a mold, and its microstructure has the martensite wherein carbide particles 2 are finely dispersed over an entire region including prior-austenite grain boundaries. It is desirable that the prior-austenite grain size in the microstructure of the high-strength steel sheet, which is a base material, be 10 ?m or smaller. The high-strength die-quenched part has high-strength and high-ductility thanks to its martensite.
    Type: Grant
    Filed: May 26, 2010
    Date of Patent: January 13, 2015
    Assignees: Nissan Motor Co., Ltd., National Institute for Materials Science, Neturen Co., Ltd
    Inventors: Eizaburou Nakanishi, Masayuki Miyake, Kotobu Nagai, Masao Hayakawa, Takehito Itagaki, Takahiko Kanai, Munehisa Hatta, Kazuhiro Kawasaki
  • Patent number: 8920296
    Abstract: A forged roll for use, inter alia, in the cold rolling industry and a method of producing a forged roll as described. The roll has a steel composition, by weight, with 0.8 to less than 1% C, 0.2 to 0.5% Mn, 0.2 to 2.0% Si, 7.0 to 13.0% Cr, 0.6 to 1.6% Mo, more than 1.0 to 3.0% V, the remainder being Fe and impurities. The steel is tempered martensite with retained austenite at less than 5% per volume with eutectic carbides of less than 5% by volume, a hardness between 780-840 HV, and internal compressive stresses of between ?300 to ?500 MPa.
    Type: Grant
    Filed: March 4, 2011
    Date of Patent: December 30, 2014
    Assignee: Åkers AB
    Inventors: Claude Gaspard, Catherine Vergne, Daniel Batazzi
  • Publication number: 20140373980
    Abstract: This ferritic stainless steel sheet contains, by mass %: C: 0.02% or less, N: 0.02% or less, Si: 0.05% to 0.80%, Mn: 0.05% to 1.00%, P: 0.04% or less, S: 0.01% or less, Cr: 12% to 20%, Cu: 0.80% to 1.50%; Ni: 1.0% or less, Mo: 0.01% to 2.00%, Nb: 0.30% to 1.00%, Ti: 0.01% to less than 0.25%, Al: 0.003% to 0.46%, V: 0.01% to less than 0.15%, and B: 0.0002% to 0.0050%, with a remainder of Fe and inevitable impurities, wherein the following formulae (1) and (2) are satisfied, and an average Cu concentration in an area from a surface to a depth of 200 nm is 3.00% or less, in the case of Mn<0.65%, 1.44×Si—Mn?0.05?0??(1), and in the case of Mn?0.65%, 1.10×Si+Mn?1.19?0??(2).
    Type: Application
    Filed: February 15, 2013
    Publication date: December 25, 2014
    Inventors: Atsutaka Hayashi, Yoshiharu Inoue, Nobuhiko Hiraide
  • Patent number: 8900379
    Abstract: Provided are a stainless steel for a proton-exchange membrane fuel cell separator having high durability and a low contact resistance (i.e., high electrical conductivity) and a proton-exchange membrane fuel cell using the same. More specifically, a stainless steel for a proton-exchange membrane fuel cell separator has a composition comprising 0.03% mass % or less of C, 16-45 mass % of Cr, 0.03 mass % or less of N, 0.1-5.0 mass % of Mo, wherein a total of the C content and the N content satisfies 0.03 mass % or less; a balance portion is comprised of Fe and unavoidable impurities; an atomic ratio of Cr/Fe with respect to Al, Cr, and Fe contained in a passive film on a surface of the stainless steel is 1 or greater.
    Type: Grant
    Filed: June 9, 2004
    Date of Patent: December 2, 2014
    Assignee: JFE Steel Corporation
    Inventors: Shin Ishikawa, Kunio Fukuda, Yasushi Kato, Osamu Furukimi, Kenji Takao
  • Patent number: 8900510
    Abstract: A heat-resistant, ferritic cast steel having excellent room-temperature toughness, which has a composition comprising by mass 0.32-0.48% of C, 0.85% or less of Si, 2% or less of Mn, 1.5% or less of Ni, 16-19.8% of Cr, 3.2-5% of Nb, Nb/C being 9-11.5, 0.15% or less of N, 0.002-0.2% of S, and 0.8% or less in total of W and/or Mo, the balance being Fe and inevitable impurities, and a structure in which a eutectic (?+NbC) phase formed from a ? phase and Nb carbide (NbC) has an area ratio of 60-90%, and an exhaust member made thereof.
    Type: Grant
    Filed: March 31, 2011
    Date of Patent: December 2, 2014
    Assignee: Hitachi Metals, Ltd.
    Inventor: Masahide Kawabata
  • Patent number: 8900380
    Abstract: The present invention provides an optimum low-chromium stainless steel which prevents corrosion resistance degradation of a weld in the case of welding a low-chromium stainless steel utilizing martensite transformation in multiple passes (multipass), is excellent in weld intergranular corrosion resistance even in a severe corrosion environment, simultaneously avoids occurrence of preferential corrosion at the bond-bordering region of the weld heat-affected zone, and is also excellent in productivity, which low-chromium stainless steel comprises, in mass %, C: 0.015 to 0.025%, N: 0.008 to 0.014%, Si: 0.2 to 1.0%, Mn: 1.0 to 1.5%, P: 0.04% or less, S: 0.03% or less, Cr: 10 to 13%, Ni 0.2 to 1.5%, and Al: 0.005 to 0.1% or less, and further comprises Ti: 6×(C %+N %) or greater and 0.25% or less, the balance being Fe and unavoidable impurities, and the contents of the elements satisfy specified expressions.
    Type: Grant
    Filed: February 21, 2011
    Date of Patent: December 2, 2014
    Assignee: Nippon Steel & Sumikin Stainless Steel Corporation
    Inventors: Shinichi Teraoka, Shunji Sakamoto, Masuhiro Fukaya
  • Publication number: 20140338796
    Abstract: Provided is a ferrite-based stainless steel having superior moldability when molding a fuel cell divider sheet from a material by controlling yield point elongation in accordance with alloy components. The ferrite-based stainless steel comprises, in weight percentages: no more than 0.02% of C; no more than 0.02% of N; no more than 0.4% of Si; no more than 0.2% of Mn; no more than 0.04% of P; no more than 0.02% of S; 25.0-32.0% of Cr; 0-1.0% of Cu; no more than 0.8% of Ni; no more than 0.01-0.5% of Ti; no more than 0.01-0.5% of Nb; no more than 0.01-1.5% of V; and residual Fe and inevitable elements, wherein the content of Ti, Nb, V, C, and N in terms of weight % of steel uses Formula (1) to render a yield point elongation of the material of no more than 1.1%, and wherein a steel material has superior moldability. 9.1C?1.76V+5.37(C+N)/Ti?1.22Nb?0.7.
    Type: Application
    Filed: December 26, 2012
    Publication date: November 20, 2014
    Inventors: Jong Hee Kim, Ki-Hoon Jo, Yang Jin Chung, Yun Yong Lee, Sang Woo Lee
  • Publication number: 20140332117
    Abstract: High-Mn austenitic stainless steels having a chemical composition comprising C: 0.02-0.12 mass %, Si: 0.05-1.5 mass %, Mn: 10.0-22.0 mass %, S: not more than 0.0028 mass %, Ni: 4.0-12.0 mass %, Cr: 14.0-25.0 mass % and N: 0.07-0.17 mass % with the balance being Fe and inevitable impurities, provided that these components are contained so that ? cal represented by the following equation is not more than 5.5%: ? cal (mass %)=(Cr+0.48Si)?(Ni+0.11Mn?0.0101Mn2+26.4C+20.1N)?4.7, wherein each element symbol in the equation is a content of the respective element (mass %), and having a magnetic permeability of not more than 1.003 under a magnetic field of 200 kA/m.
    Type: Application
    Filed: February 21, 2014
    Publication date: November 13, 2014
    Applicant: NIPPON YAKIN KOGYO CO., LTD.
    Inventors: Shigeru HIRATA, Yuji IKEGAMI, Kazuhiro YAMAKAWA
  • Patent number: 8858872
    Abstract: An austenitic stainless steel having low nickel and molybdenum and exhibiting comparable corrosion resistance and formability properties to higher nickel and molybdenum alloys comprises, in weight %, up to 0.20 C, 2.0-9.0 Mn, up to 2.0 Si, 16.0-23.0 Cr, 1.0-5.0 Ni, up to 3.0 Mo, up to 3.0 Cu, 0.1-0.35 N, up to 4.0 W, up to 0.01 B, up to 1.0 Co, iron and impurities, the steel having a ferrite number of less than 10 and a MD30 value of less than 20° C.
    Type: Grant
    Filed: October 15, 2012
    Date of Patent: October 14, 2014
    Assignee: ATI Properties, Inc.
    Inventors: David S. Bergstrom, James M. Rakowski, Charles P Stinner, John J. Dunn, John F. Grubb
  • Publication number: 20140299239
    Abstract: Martensitic mixed phase stainless steel, which has in well balance between excellent strength and formability and excellent fatigue properties, and is inexpensive, and suitable for spring members, has: a chemical composition comprising C: 0.1-0.4%, Si: at most 2.0%, Mn: 0.1-6.0%, Cr: 10.0-28.0%, N: at most 0.17%, the remainder of Fe and impurities, and a metallurgical structure which includes a ferrite phase and a martensitic phase, and also a retained austenite phase of 5 volume % or less if necessary, and which satisfies a relationship of CM/CF?5.0 where an average value CF of C content existing in the ferrite phase, and an average value CM of C content existing in the martensite.
    Type: Application
    Filed: October 22, 2012
    Publication date: October 9, 2014
    Inventors: Kazuhiko Adachi, Takashi Maeda, Masayuki Shibuya, Kazuyoshi Fujisawa, Yuuichi Fukumura
  • Patent number: 8852362
    Abstract: There is provided an austenitic stainless steel pipe excellent in steam oxidation resistance. The austenitic stainless steel pipe excellent in steam oxidation resistance contains, by mass percent, 14 to 28% of Cr and 6 to 30% of Ni, and is configured so that a region satisfying the following Formula exists in a metal structure at a depth of 5 to 20 ?m from the inner surface of the steel pipe: (?/?)×?/?×100?0.3 where the meanings of symbols in the above Formula are as follows: ?: sum total of the number of pixels of digital image in region in which orientation difference of adjacent crystals detected by electron backscattering pattern is 5 to 50 degrees ?: the number of total pixels of digital image in region of measurement using electron backscattering pattern ?: analysis pitch width of electron backscattering pattern (?m) ?: grain boundary width (?m).
    Type: Grant
    Filed: June 1, 2012
    Date of Patent: October 7, 2014
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Yoshitaka Nishiyama, Mitsuru Yoshizawa, Masahiro Seto, Katsuki Tanaka
  • Patent number: 8852361
    Abstract: A stainless steel sheet with excellent heat and corrosion resistances for a brake disk is provided. Specifically, in mass %, C: less than 0.10%, Si: 1.0% or less, Mn: 1.0 to 2.5%, P: 0.04% or less, S: 0.01% or less, Cr: more than 11.5% but not more than 15.0%, Ni: 0.1 to 1.0%, Al: 0.10% or less, Nb: more than 0.08% but not more than 0.6%, V: 0.02 to 0.3%, and N: more than 0.03% but not more than 0.10% are contained so that 0.03?{C+N?(13/93)Nb}?0.10, (5Cr+10Si+15Mo+30Nb+50V?9Ni?5Mn?3Cu?225N?270C)?45, and {(14/50)V+(14/90)Nb}<N (wherein Cr, Si, Mo, Nb, Ni, Mn, Cu, V, N, and C represent the contents (mass %) of the corresponding elements) are satisfied. With such a composition, the stainless steel sheet for a brake disk can be provided with both excellent heat resistance and excellent corrosion resistance after tempering.
    Type: Grant
    Filed: October 20, 2005
    Date of Patent: October 7, 2014
    Assignee: JFE Steel Corporation
    Inventors: Junichiro Hirasawa, Takumi Ujiro, Osamu Furukimi
  • Patent number: 8845824
    Abstract: An austenitic heat-resisting cast steel is disclosed which is composed mainly of Fe and including 0.4˜0.6 wt % of C, 0.5˜1.0 wt % of Si, 2.1˜2.9 wt % of Mn, 2.1˜2.9 wt % of Ni, 18˜22 wt % of Cr, 1.0˜2.0 wt % of Nb, 2.0˜3.0 wt % of W, 0.25˜0.35 wt % of N and other inevitable impurities. More specifically, this austenitic heat-resisting cast steel can beneficially be applied to an exhaust manifold of an automobile to realize a maximum allowable exhaust gas temperature of the exhaust manifold is 950° C.˜1050° C.
    Type: Grant
    Filed: December 12, 2011
    Date of Patent: September 30, 2014
    Assignees: Hyundai Motor Company, Kia Motors Corporation
    Inventor: Jung Suk Lee
  • Patent number: 8840735
    Abstract: Fatigue damage resistant metal or metal alloy wires have a submicron-scale or nanograin microstructure that demonstrates improved fatigue damage resistance properties, and methods for manufacturing such wires. The present method may be used to form a wire having a nanograin microstructure characterized by a mean grain size that is 500 nm or less, in which the wire demonstrates improved fatigue damage resistance. Wire manufactured in accordance with the present process may show improvement in one or more other material properties, such as ultimate strength, unloading plateau strength, permanent set, ductility, and recoverable strain, for example. Wire manufactured in accordance with the present process is suitable for use in a medical device, or other high end application.
    Type: Grant
    Filed: September 18, 2009
    Date of Patent: September 23, 2014
    Assignee: Fort Wayne Metals Research Products Corp
    Inventor: Jeremy E. Schaffer
  • Publication number: 20140261918
    Abstract: Improved steel compositions and methods of making the same are provided. The present disclosure provides advantageous wear resistant steel. More particularly, the present disclosure provides high manganese (Mn) steel having enhanced wear resistance, and methods for fabricating high manganese steel compositions having enhanced wear resistance. The advantageous steel compositions/components of the present disclosure improve one or more of the following properties: wear resistance, ductility, crack resistance, erosion resistance, fatigue life, surface hardness, stress corrosion resistance, fatigue resistance, and/or environmental cracking resistance. In general, the present disclosure provides high manganese steels tailored to resist wear and/or erosion.
    Type: Application
    Filed: March 4, 2014
    Publication date: September 18, 2014
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: HyunWoo Jin, Ning Ma, Raghavan Ayer, Russell Robert Mueller, Hak-Cheol Lee, Jong-Kyo Choi, In-Shik Suh
  • Publication number: 20140254736
    Abstract: A method for producing a wear-resistant and corrosion-resistant stainless steel part for a nuclear reactor is provided. This method includes steps of providing a tubular blank in austenitic stainless steel whose carbon content is equal to or lower than 0.03% by weight; shaping the blank; finishing the blank to form the cladding; hardening the outer surface of the cladding by diffusing one or more atomic species; the blank, before the providing step or during the shaping or finishing step, being subjected to at least one solution annealing with sub-steps of: heating the blank to a sufficient temperature and for a sufficient time to solubilise any precipitates present; quenching the blank at a rate allowing the austenitic structure to be maintained in a metastable state at ambient temperature and free of precipitates.
    Type: Application
    Filed: September 28, 2012
    Publication date: September 11, 2014
    Inventor: Dominique Hertz
  • Patent number: 8808472
    Abstract: A steel alloy suitable for holders and holder details for plastic molding tools contains in weight-%: 0.06-0.15 C, 0.07-0.22 N, wherein the total amount of C+N shall satisfy the condition, 0.16?C+N?0.26, 0.1-1.0 Si, 0.1-2.0 Mn, 12.5-14.5 Cr, 0.8-2.5 Ni, 0.1 1.5 Mo, optionally vanadium up to max. 0.7 V, optionally, in order to improve the machinability of the steel, one or more of the elements S, Ca and O in amounts up to max. 0.25 S, max. 0.01 (100 ppm) Ca, max. 0.01 (100 ppm) O, balance iron and unavoidable impurities.
    Type: Grant
    Filed: September 13, 2006
    Date of Patent: August 19, 2014
    Assignee: Uddeholms AB
    Inventors: Odd Sandberg, Magnus Tidesten
  • Patent number: 8808471
    Abstract: A martensitic stainless steel alloy is strengthened by copper-nucleated nitride precipitates. The alloy includes, in combination by weight percent, about 10.0 to about 12.5 Cr, about 2.0 to about 7.5 Ni, up to about 17.0 Co, about 0.6 to about 1.5 Mo, about 0.5 to about 2.3 Cu, up to about 0.6 Mn, up to about 0.4 Si, about 0.05 to about 0.15 V, up to about 0.10 N, up to about 0.035 C, up to about 0.01 W, and the balance Fe and incidental elements and impurities. The nitride precipitates may be enriched by one or more transition metals.
    Type: Grant
    Filed: April 13, 2009
    Date of Patent: August 19, 2014
    Assignee: QuesTek Innovations LLC
    Inventors: James A. Wright, Gregory B. Olson, Weijia Tang
  • Publication number: 20140216614
    Abstract: The present invention focuses on Sn and has as its problem to not only improve the corrosion resistance and rust resistance of Cr-containing ferritic stainless steel but also improve the ridging resistance. The present invention derives the relationship between Ap, which shows the ?-phase rate at 1100° C. due to a predetermined ingredient, and Sn in ferritic stainless steel which becomes a dual phase structure of ?+? in the hot rolling temperature region, applies and adds Sn, and hot rolls the steel to give a total rolling rate of 15% or more in 1100° C. or higher hot rolling to thereby obtain ferritic stainless steel sheet which has good ridging resistance, which also has excellent corrosion resistance and rust resistance, and which can be applied to general durable consumer goods: 0.060?Sn?0.634?0.
    Type: Application
    Filed: June 18, 2012
    Publication date: August 7, 2014
    Inventors: Masaharu Hatano, Eiichiro Ishimaru, Akihiko Takahashi, Ken Kimura, Shinichi Teraoka
  • Patent number: 8790573
    Abstract: A ferritic Cr-contained steel having a reduced thermal expansion coefficient is provided. The ferritic Cr-contained steel contains C of 0.03% or less, Mn of 5.0% or less, Cr of 6 to 40%, N of 0.03% or less, Si of 5% or less, and W of 2.0% to 6.0% in percent by mass, and Fe and inevitable impurities as the remainder, wherein precipitated W is 0.1% or less in percent by mass, and an average thermal expansion coefficient between 20° C. and 800° C. is less than 12.6×10-6/° C.
    Type: Grant
    Filed: December 22, 2004
    Date of Patent: July 29, 2014
    Assignee: JFE Steel Corporation
    Inventors: Atsushi Miyazaki, Yasushi Kato, Osamu Furukimi
  • Publication number: 20140190594
    Abstract: The present disclosure is directed and formulations and methods to provide alloys having relative high strength and ductility. The alloys may be provided in seamless tubular form and characterized by their particular alloy chemistries and identifiable crystalline grain size morphology. The alloys are such that they include boride pinning phases. In what is termed a Class 1 Steel the alloys indicate tensile strengths of 700 MPa to 1400 MPa and elongations of 10-70%. Class 2 Steel indicates tensile strengths of 800 MPa to 1800 MPa and elongations of 5-65%. Class 3 Steel indicates tensile strengths of 1000 MPa to 2000 MPa and elongations of 0.5-15%.
    Type: Application
    Filed: January 9, 2014
    Publication date: July 10, 2014
    Inventors: Daniel James BRANAGAN, Sheng CHENG, Longzhou MA, Jason K. WALLESER, Grant G. JUSTICE, Andrew T. BALL, Kurtis CLARK, Scott LARISH, Alissa PETERSON, Patrick E. MACK, Brian D. MERKLE, Brian E. MEACHAM, Alla V. SERGUEEVA
  • Patent number: 8765052
    Abstract: Weld deposit compositions with improved abrasion and corrosion resistance are provided by balancing percent weights of Chromium (Cr), Titanium (Ti), Niobium (Nb), and Boron (B) to allow the Chromium content of the weld matrix to be minimally reduced during carbide formation. The result is an enriched Chromium matrix that has excellent corrosion resistance in combination with highly abrasion resistant dispersed carbides.
    Type: Grant
    Filed: March 27, 2012
    Date of Patent: July 1, 2014
    Assignee: Stoody Company
    Inventors: Jack Wallin, Ravi Menon, Tim Barnhart
  • Publication number: 20140166158
    Abstract: High-Mn austenitic stainless steels having a chemical composition comprising C: 0.02-0.12 mass %, Si: 0.05-1.5 mass %, Mn: 10.0-22.0 mass %, S: not more than 0.0028 mass %, Ni: 4.0-12.0 mass %, Cr: 14.0-25.0 mass % and N: 0.07-0.17 mass % with the balance being Fe and inevitable impurities, provided that these components are contained so that ? cal represented by the following equation is not more than 5.5%: ? cal (mass %)=(Cr+0.48Si)?(Ni+0.11Mn?0.0101Mn2+26.4C+20.1N)?4.7, wherein each element symbol in the equation is a content of the respective element (mass %), and having a magnetic permeability of not more than 1.003 under a magnetic field of 200 kA/m.
    Type: Application
    Filed: February 21, 2014
    Publication date: June 19, 2014
    Applicant: NIPPON YAKIN KOGYO CO., LTD.
    Inventors: Shigeru HIRATA, Yuji IKEGAMI, Kazuhiro YAMAKAWA
  • Patent number: 8747575
    Abstract: A martensitic stainless steel for inexpensive seamless pipe having 655 MPa yield strength, high toughness and excellent corrosion resistance in high CO2 environments, and a method for manufacturing thereof is provided. The steel comprises C: 0.005-0.05%, Si: 0.1-0.5%, Mn: 0.1-2.0%, P: ?0.05%, S: ?0.005%, Cr: 10.0-12.5%, Mo: 0.1-0.5%, Ni: 1.5-3.0%, N: ?0.02%, Al: 0.01-0.1%, by weight, while FI value defined by the formula [FI=Cr+Mo?Ni?30(C+N)] being 5.00 to 8.49, and balance of substantially Fe. The method comprises the steps of reheating the cooled steel at temperatures from 780° C. to 960° C., quenching the reheated steel, and then tempering the quenched steel at temperatures from 550° C. to 650° C.
    Type: Grant
    Filed: December 30, 2009
    Date of Patent: June 10, 2014
    Assignee: NKKTUBES
    Inventors: Shuji Hashizume, Yusuke Minami, Tatsuo Ono
  • Publication number: 20140140883
    Abstract: A quench and temper steel alloy is disclosed having the following composition in weight percent. C 0.2-0.5 Mn 0.1-1.0 Si 0.1-1.2 Cr ??9-14.5 Ni 3.0-5.5 Mo 1-2 Cu ??0-1.0 Co 1-4 W 0.2 max. V 0.1-1.0 Ti up to 0.5 Nb ??0-0.5 Ta ??0-0.5 Al ??0-0.25 Ce ??0-0.01 La ??0-0.01 The balance of the alloy is iron and the usual impurities including not more than about 0.01% phosphorus, not more than about 0.010% sulfur, and not more than about 0.10% nitrogen. A quenched and tempered steel article made from this alloy is also disclosed. The steel article is characterized by a tensile strength of at least about 290 ksi, a fracture toughness (KIc) of at least about 65 ksi, good resistance to general corrosion, and good resistance to pitting corrosion.
    Type: Application
    Filed: October 24, 2013
    Publication date: May 22, 2014
    Applicant: CRS HOLDINGS, INC.
    Inventor: David E. Wert
  • Patent number: 8721808
    Abstract: The ferrite system heat-resistant cast steel and the exhaust system component are provided, which are inexpensive and are able to improve the reliability by largely improving the toughness under normal temperature and thermal fatigue performance. The ferrite system heat-resistant cast steel includes composition structure comprised, percent by mass, of 0.1% to 0.4% carbon, 0.5% to 2.0% silicon, 0.2% to 1.2% manganese, 0.3% or less phosphorus, 0.01% to 0.4% sulfur, 14.0% to 21.0% chrome, 0.05% to 0.6% niobium, 0.01% to 0.8% aluminum, 0.15% to 2.3% nickel, residual iron and inevitable impurities.
    Type: Grant
    Filed: February 8, 2010
    Date of Patent: May 13, 2014
    Assignee: Aisin Takaoka Co., Ltd.
    Inventors: Daisuke Yamanaka, Zhong-zhi Zhang
  • Patent number: 8721960
    Abstract: The present invention provides a ferritic stainless steel comprised of, by mass %, C: 0.001 to 0.02%, Si: 0.01 to 0.6%, Mn: 0.01 to 0.6%, P: 0.005 to 0.04%, S: 0.0001 to 0.01%, Cr: 13 to 22%, N: 0.001 to 0.02%, Al: 0.005 to 0.05%, Sn: 0.001 to 1%, and a balance of Fe and unavoidable impurities, which steel satisfies the following formulae: 0<I(Fe)/I(Cr)<5 and 0<I(O)/I(Sn)<3, where I(Fe), I(Cr), I(Sn), and I(O) are the X-ray intensities of the Fe oxides, Cr oxides, Sn oxides, and the sum of X-ray intensities other detected oxides at the steel surface measured by an X-ray photoelectron spectrometer. The present invention also provides a method of producing the ferritic stainless steel.
    Type: Grant
    Filed: December 7, 2009
    Date of Patent: May 13, 2014
    Assignee: Nippon Steel & Sumikin Stainless Steel Corporation
    Inventors: Masaharu Hatano, Akihiko Takahashi, Eiichiro Ishimaru, Shigenori Takahata
  • Publication number: 20140056751
    Abstract: An austenitic stainless cast steel having a volume fraction of a ferrite phase of 0.1-5.0%.
    Type: Application
    Filed: February 24, 2012
    Publication date: February 27, 2014
    Applicant: Kubota Corporation
    Inventors: Nobuyuki Sakamoto, Makoto Hineno
  • Patent number: 8657971
    Abstract: A brake disk excellent in temper softening resistance and toughness comprising, by mass, 0.1% or less of C, 1.0% or less of Si, 2.0% or less of Mn, 10.5% to 15.0% of Cr, and 0.1% or less of N, the remainder being Fe and unavoidable impurities, such that the following inequalities are satisfied: 5Cr+10Si+15Mo+30Nb?9Ni?5Mn?3Cu?225N?270C<45 (1) and 0.03?{C+N?(13/92)Nb}?0.09 (2) wherein Cr, Si, Mo, Nb, Ni, Mn, Cu, N, and C each represent the content of the corresponding elements on a mass percent basis, and having a martensitic structure having prior-austenite grains with an average diameter of 8 to less than 15 ?m.
    Type: Grant
    Filed: October 5, 2006
    Date of Patent: February 25, 2014
    Assignee: JFE Steel Corporation
    Inventors: Junichiro Hirasawa, Takumi Ujiro, Osamu Furukimi
  • Publication number: 20140041770
    Abstract: A purpose of the present invention is to provide a martensitic stainless steel tube exhibiting excellent performance even in severe corrosive environments in which a partial pressure of hydrogen sulfide exceeds 0.03 bar. Provided is a low C-high Cr alloy steel tube for OCTG (Oil Country Tubular Goods) having minimum yield strength of 862 MPa and excellent corrosion resistance, wherein the steel tube contains, in percent by mass, 0.005 to 0.05% C, 12 to 16% Cr, 1.0% or less Si, 2.0% or less Mn, 3.5 to 7.5% Ni, 1.5 to 3.5% Mo, 0.01 to 0.05% V, 0.02% or less N, and 0.01 to 0.06% Ta and satisfies the relationship in the following formula (1), and the rest comprises Fe and unavoidable impurities.
    Type: Application
    Filed: March 3, 2011
    Publication date: February 13, 2014
    Applicant: NKK TUBES
    Inventors: Shuji Hashizume, Yusuke Minami, Tomomi Taniguchi
  • Patent number: 8647448
    Abstract: A steel piston ring and a steel cylinder liner are described which comprise as the main body a steel composition which has good nitridability. The steel composition consists of the following elements: 0-0.5 weight % B, 0.5-1.2 weight % C, 4.0-20.0 weight % Cr, 0-2.0 weight % Cu, 45.30-91.25 weight % Fe, 0.1-3.0 weight % Mn, 0.1-3.0 weight % Mo, 0-0.05 weight % Nb, 2.0-12.0 weight % Ni, 0-0.1 weight % P, 0-0.05 weight % Pb, 0-0.05 weight % S, 2.0-10.0 weight % Si, 0-0.05 weight % Sn, 0.05-2.0 weight % V, 0-0.2 weight % Ti and 0-0.5 weight % W. The steel piston ring and the steel cylinder liner can be manufactured in a casting process using the machinery and technology employed for the manufacture of cast iron parts.
    Type: Grant
    Filed: March 25, 2010
    Date of Patent: February 11, 2014
    Assignee: Federal-Mogul Burscheid GmbH
    Inventor: Laszlo Pelsoeczy
  • Publication number: 20140023550
    Abstract: The present invention provides ferritic stainless steel sheet which is excellent in heat resistance at 950° C. and workability at ordinary temperature, that is, ferritic stainless steel sheet excellent in heat resistance and workability which is characterized by containing, by mass %, C: 0.02% or less, N: 0.02% or less, Si: over 0.1 to 1.0%, Mn: 0.5% or less, P: 0.020 to 0.10%, Cr: 13.0 to 20.0%, Nb: 0.5 to 1.0%, Cu: 1.0 to 3.0%, Mo: 1.5 to 3.5%, W: 2.0% or less, B: 0.0001 to 0.0010%, and Al: 0.01 to 1.0% and having a balance of Fe and unavoidable impurities, where Mo+W is made 2.0 to 3.5%.
    Type: Application
    Filed: March 28, 2012
    Publication date: January 23, 2014
    Inventors: Junichi Hamada, Norihiro Kanno, Yoshiharu Inoue
  • Patent number: 8613808
    Abstract: Metal aluminides are formed by an initial thermal deposition process which forms an intermediary material comprising elemental aluminum and another elemental metal, as well as an oxide of the other metal. The thermally formed intermediary material is subsequently heated to initiate an exothermic reaction which forms the metal aluminide material. The reaction may be initiated by localized or bulk heating of the intermediary material, and may involve reaction between the aluminum and elemental metal as well as a thermite reaction between the aluminum and the metal oxide. The resultant metal aluminide material may be substantially fully dense and may contain oxide strengthening precipitates such as aluminum oxide.
    Type: Grant
    Filed: February 14, 2007
    Date of Patent: December 24, 2013
    Assignee: Surface Treatment Technologies, Inc.
    Inventors: Timothy Langan, W. Mark Buchta, David M. Otterson, Michael A. Riley
  • Patent number: 8608873
    Abstract: A stainless steel and a flat cold product produced therefrom, which can be easily produced in an economical manner. A steel according to the invention, in the cold-rolled state, has a microstructure with 5-15% by volume ?-ferrite and austenite as the remainder. It contains (in % by weight): C: 0.05-0.14%, Si: 0.1-1.0%, Mn: 4.0-12.0%, Cr: >17.5-22.0%, Ni: 1.0-4.0%, Cu: 1.0-3.0%, N: 0.03-0.2%, P: max. 0.07%, S: max. 0.01%, Mo: max. 0.5%, optionally one or more elements from the group consisting of Ti, Nb, B, V, Al, Ca, As, Sn, Sb, Pb, Bi, and H wherein Ti: max. 0.02%, Nb: max. 0.1%, B: max. 0.004%, V: max. 0.1%, Al: 0.001-0.03%, Ca: 0.0005-0.003%, As: 0.003-0.015%, Sn: 0.003-0.01%, Pb: max. 0.01%, Bi: max. 0.01%, H: max. 0.0025%, and remainder Fe and unavoidable impurities.
    Type: Grant
    Filed: September 3, 2009
    Date of Patent: December 17, 2013
    Assignee: Outokumpu Nirosta GmbH
    Inventors: Cornel Abratis, Lutz Ernenputsch, Wilfried Klos, Hans-Joachim Krautschick, Michael Sachtleber
  • Patent number: 8608872
    Abstract: The problem to be solved is the provision of a high-strength stainless steel pipe having a sufficient corrosion resistance in a high-temperature carbonic acid gas environment and having an excellent sulfide stress cracking resistance at normal temperature. A high-strength stainless steel pipe consist of, by mass %, C: 0.05% or less, Si: 1.0% or less, P: 0.05% or less, S: less than 0.002%, Cr: more than 16% and 18% or less, Mo: more than 2% and 3% or less, Cu: 1% to 3.5%, Ni: 3% or more and less than 5%, Al: 0.001% to 0.1% and O: 0.01% or less, Mn: 1% or less and N: 0.05% or less, and Mn and N in the above ranges satisfy formula (1), and the balance being Fe and impurities; and the metal micro-structure of the stainless steel pipe mainly includes a martensitic phase and comprises 10 to 40% of a ferritic phase by volume fraction and 10% or less of a retained ?-phase by volume fraction. [Mn]×([N]?0.0045)?0.
    Type: Grant
    Filed: April 8, 2011
    Date of Patent: December 17, 2013
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Kunio Kondo, Hisashi Amaya, Hideki Takabe, Taro Ohe
  • Patent number: 8607941
    Abstract: A steel sheet for a brake disc contains, on a mass percent basis, 0.02% or more and less than 0.10% C, 0.6% or less Si, more than 0.5% and 2.0% or less Mn, 0.06% or less P, 0.01% or less S, 0.05% or less Al, 11.0% to 13.5% Cr, 0.01% to 0.30% Ni, 0.10% to 0.60% Nb, 0.03% or more and less than 0.10% N, more than 0.0010% and 0.0060% or less B, and the balance being Fe and incidental impurities, and the steel sheet after quenching has a hardness of 32 HRC to 40 HRC on a Rockwell hardness scale C (HRC).
    Type: Grant
    Filed: May 31, 2010
    Date of Patent: December 17, 2013
    Assignee: JFE Steel Corporation
    Inventors: Katsuhisa Yamauchi, Mitsuyuki Fujisawa, Yasushi Kato, Hiroki Ota, Hideya Furusawa, Takumi Ujiro
  • Patent number: 8603213
    Abstract: A method of making dispersion-strengthened alloy particles involves melting an alloy having a corrosion and/or oxidation resistance-imparting alloying element, a dispersoid-forming element, and a matrix metal wherein the dispersoid-forming element exhibits a greater tendency to react with an introduced reactive species than does the alloying element and wherein one or more atomizing parameters is/are modified to controllably reduce the amount of the reactive species, such as oxygen, introduced into the atomized particles so as to reduce anneal times and improve reaction (conversion) to the desired strengthening dispersoids in the matrix. The atomized alloy particles are solidified as solidified alloy particles or as a solidified deposit of alloy particles.
    Type: Grant
    Filed: February 25, 2008
    Date of Patent: December 10, 2013
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Iver E. Anderson, Joel Rieken
  • Patent number: 8603263
    Abstract: The present invention provides a duplex stainless steel having excellent resistance to alkalis and particularly corrosion resistance against high-temperature concentrated alkali solutions and excellent weldability. The duplex stainless steel has a chemical composition comprising, in mass %, C: at most 0.03%, Si: at most 0.5%, Mn: at most 2.0%, P: at most 0.04%, S: at most 0.003%, Cr: at least 25.0% to less than 28.0%, Ni: at least 6.0% to at most 10.0%, Mo: at least 0.2% to at most 3.5%, N: less than 0.5%, W: at most 3.0%, and a remainder of Fe and impurities.
    Type: Grant
    Filed: May 1, 2012
    Date of Patent: December 10, 2013
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Hideya Kaminaka, Junichi Higuchi, Yoshiaki Yamade, Shuuji Yoshida, Junko Imamura
  • Publication number: 20130319583
    Abstract: The present invention provides a low-alloy high-purity ferritic stainless steel sheet provided with improved oxidation resistance and high-temperature strength by utilizing Sn addition in trace amounts without relying on excessive alloying of Al and Si which reduces fabricability and weldability or addition of rare elements such as Nb, Mo, W, and rare earths, and a process for producing the same. The high-purity ferritic stainless steel sheet includes C: 0.001 to 0.03%, Si: 0.01 to 2%, Mn: 0.01 to 1.5%, P: 0.005 to 0.05%, S: 0.0001 to 0.01%, Cr: 16 to 30%, N: 0.001 to 0.03%, Al: 0.05 to 3%, and Sn: 0.01 to 1% (% by mass), with the remainder being Fe and unavoidable impurities. A stainless steel slab having such steel components is heated, wherein an extraction temperature is 1100 to 1250° C., and a winding temperature after hot rolling is 650° C. or lower. A hot-rolled sheet is annealed at 900 to 1050° C., and cooled at 10° C./sec or less over a temperature range of 550 to 850° C.
    Type: Application
    Filed: January 23, 2012
    Publication date: December 5, 2013
    Applicant: NIPPON STEEL & SUMIKIN STAINLESS STEEL CORPORATION
    Inventors: Masaharu Hatano, Eiichiro Ishimaru, Akihiko Takahashi
  • Patent number: 8591672
    Abstract: The invention provides medical devices comprising high-strength alloys which degrade over time in the body of a human or animal, at controlled degradation rates, without generating emboli. In one embodiment the alloy is formed into a bone fixation device such as an anchor, screw, plate, support or rod. In another embodiment the alloy is formed into a tissue fastening device such as staple. In yet another embodiment, the alloy is formed into a dental implant or a stent.
    Type: Grant
    Filed: July 19, 2012
    Date of Patent: November 26, 2013
    Assignee: Bio DG, Inc.
    Inventors: Gordon F. Janko, Herbert R. Radisch, Thomas A. Trozera
  • Patent number: 8591673
    Abstract: A martensitic stainless steel with high hardness and high corrosion resistance consists of, by weight %, 0.35 to 0.45% of C, not more than 0.2% of Si, not more than 0.3% of Mn, not more than 0.02% of P, not more than 0.02% of S, 15 to 17% of Cr, 1.5 to 2.5% of Mo, 0.001 to 0.003% of B, 0.15 to 0.25% of N, and the balance of Fe and inevitable impurities.
    Type: Grant
    Filed: August 28, 2009
    Date of Patent: November 26, 2013
    Assignee: Minebea Co., Ltd.
    Inventor: Hiroshi Yamada
  • Publication number: 20130306204
    Abstract: This hot-rolled ferritic stainless steel sheet has a steel composition containing, in terms of % by mass: 0.02% or less of C; 0.02% or less of N; 0.1% to 1.5% of Si; 1.5% or less of Mn; 0.035% or less of P; 0.010% or less of S; 1.5% or less of Ni; 10% to 20% of Cr; 1.0% to 3.0% of Cu; 0.08% to 0.30% of Ti; and 0.3% or less of Al, with the balance being Fe and unavoidable impurities, and the hot-rolled ferritic stainless steel sheet has a Vickers hardness of less than 235 Hv.
    Type: Application
    Filed: February 8, 2012
    Publication date: November 21, 2013
    Applicant: Nippon Steel & Sumikin Stainless Steel Corporation
    Inventors: Shinichi Teraoka, Masaaki Kobayashi, Yuuji Koyama, Junichi Hamada, Norihiro Kanno, Yoshiharu Inoue, Ken Kimura, Jun Takahashi, Shigeyuki Gotoh
  • Patent number: 8580190
    Abstract: An iron-chromium-aluminum alloy having a long service life and exhibiting little change in heat resistance, comprising (as percentages by weight) 4.5 to 6.5% Al, 16 to 24% Cr, 1.0 to 4.0% W, 0.05 to 0.7% Si, 0.001 to 0.5% Mn, 0.02 to 0.1% Y, 0.02 to 0.1% Zr, 0.02 to 0.1% Hf, 0.003 to 0.030% C, 0.002 to 0.03% N, a maximum of 0.01% S, and a maximum of 0.5% Cu, the remainder being iron and the usual steel production-related impurities.
    Type: Grant
    Filed: April 2, 2009
    Date of Patent: November 12, 2013
    Assignee: Outokumpu VDM GmbH
    Inventor: Heike Hattendorf
  • Patent number: 8562758
    Abstract: A low Ni and high N austenitic-ferritic stainless steel is disclosed. It includes an austenitic-ferritic stainless steel having high formability and punch stretchability, crevice corrosion resistance, corrosion resistance at welded part, or excellent intergranular corrosion resistance, from a stainless steel structured by mainly austenite phase and ferrite phase, and consisting essentially of 0.2% or less C, 4% or less Si, 12% or less Mn, 0.1% or less P, 0.03% or less S, 15 to 35% Cr, 3% or less Ni, and 0.05 to 0.6% N, by mass, by adjusting the percentage of the austenite phase in a range from 10 to 85%, by volume. Furthermore, it includes an austenitic-ferritic stainless steel having higher formability by adjusting the amount of (C+N) in the austenite phase to a range from 0.16 to 2% by mass.
    Type: Grant
    Filed: January 27, 2005
    Date of Patent: October 22, 2013
    Assignee: JFE Steel Corporation
    Inventors: Mitsuyuki Fujisawa, Yoshihiro Yazawa, Yasushi Kato, Osamu Furukimi
  • Patent number: 8557059
    Abstract: A mold plate having a mold cavity configured for plastic injection molding one or more articles such as a panel or frame of an electronic display screen such as a flat screen TV is formed from a low carbon martensitic stainless steel alloy comprising: about 0.05%-0.07% by weight C, about 1.15%-1.45% by weight Mn, a maximum of 0.025% by weight P, a maximum of 0.008% by weight S, about 0.3%-0.6% by weight Si, about 12.15%-12.65% by weight Cr, about 0%-0.5% by weight Ni, about 0.45%-0.65% by weight Cu, about 0.02%-0.08% by weight V, about 0.04%-0.08% by weight N, with the balance being Fe with trace amounts of ordinarily present elements.
    Type: Grant
    Filed: June 5, 2009
    Date of Patent: October 15, 2013
    Assignee: Edro Specialty Steels, Inc.
    Inventors: Kristopher D Welch, Robert J. Friedrich, Eric D. Henn, Michael A. Guscott
  • Patent number: RE44709
    Abstract: The soft Cr-containing steel includes, on a % by mass basis, C: from about 0.001% to about 0.020%, Si: more than about 0.10% and less than about 0.50%, Mn: less than about 2.00%, P: less than about 0.060%, S: less than about 0.008%, Cr: from about 12.0% to about 16.0%, Ni: from about 0.05% to about 1.00%, N: less than about 0.020%, Nb: from about 10×(C+N) to about 1.00%, Mo: more than about 0.80% and less than about 3.00%, wherein the contents of alloying elements, represented by Si and Mo, respectively, on a % by mass, satisfy the formula Si?1.2-0.4 Mo, so as to prevent precipitation of the Laves phase and to stably secure an effect of increasing high-temperature strength due to solid solution Mo.
    Type: Grant
    Filed: May 13, 2009
    Date of Patent: January 21, 2014
    Assignee: JFE Steel Corporation
    Inventors: Atsushi Miyazaki, Junichiro Hirasawa, Mineo Muraki, Yoshihiro Yazawa, Osamu Furukimi