Transparent Conductor Patents (Class 204/192.29)
  • Publication number: 20130140066
    Abstract: Provided is a Cu alloy interconnection film for touch-panel sensors, which excels in oxidation resistance and adhesion properties, and is low in electrical resistance. The interconnection film contains at least one alloy element selected from a group consisting of Ni, Zn, and Mn by 0.1 to 40 atom % in total, and the remainder contains Cu and inevitable impurities. Alternatively, the interconnection film is made of a Cu alloy containing at least one element selected from the group consisting of Ni, Zn, and Mn. In this case, if the Cu alloy contains one element, Ni is contained by 0.1 to 6 atom %, or Zn is contained by 0.1 to 6 atom %, or Mn is contained by 0.1 to 1.9 atom %. On the other hand, if two or more alloy elements are contained, the alloy elements are contained by 0.1 to 6 atom % in total (wherein, Mn is contained by [((6?x)×2)/6] atom % or less if Mn is contained; here, x is a total adding amount of Ni and Zn).
    Type: Application
    Filed: October 26, 2012
    Publication date: June 6, 2013
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventor: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
  • Publication number: 20130129945
    Abstract: The subject of the invention is a glazing unit comprising a glass substrate (1) equipped on one of its faces, intended to form face 1 of said glazing unit in the use position, with a thin-film multilayer comprising, from the substrate (1), a film (2) of a transparent electrically conductive oxide, an intermediate film (3) having a refractive index lying in the range from 1.40 to 1.55 and having an optical thickness Y, and a photocatalytic film (4) the optical thickness X of which is at most 50 nm, said optical thicknesses X and Y, expressed in nanometers, being such that: 110·e?0.025X?Y?135·e?0.
    Type: Application
    Filed: July 20, 2011
    Publication date: May 23, 2013
    Applicant: SAINT-GOBAIN GLASS FRANCE
    Inventors: Anne Durandeau, Andriy Kharchenko, Sebastien Roy, Hadia Gerardin, Anne Lorren
  • Publication number: 20130120842
    Abstract: The invention relates to a glass substrate with interference colouration for a facing panel, comprising a glass sheet covered on one of the faces thereof by a stack of coatings including successively at least: a first transparent coating made from a dielectric material having an optical thickness at least greater than or equal to 5 nm and at most less than or equal to 258 nm; a semi-transparent functional coating having a geometric thickness at least greater than or equal to 0.1 nm and at most less than or equal to 50 nm; a second transparent coating made from a dielectric material and having an optical thickness at least greater than or equal to 20 nm and at most less than or equal to 300 nm; and a coating providing opacity or quasi-opacity and having a geometric thickness at least greater than or equal to 30 nm.
    Type: Application
    Filed: July 29, 2011
    Publication date: May 16, 2013
    Applicant: AGC Glass Europe
    Inventors: Vincent Moens, Stijn Mahieu
  • Patent number: 8435604
    Abstract: A sealing method for decreasing the time it takes to hermetically seal a device and the resulting hermetically sealed device (e.g., a hermetically sealed OLED device) are described herein. The sealing method includes the steps of: (1) cooling an un-encapsulated device; (2) depositing a sealing material over at least a portion of the cooled device to form an encapsulated device; and (3) heat treating the encapsulated device to form a hermetically sealed device. In one embodiment, the sealing material is a low liquidus temperature inorganic (LLT) material such as, for example, tin-fluorophosphate glass, tungsten-doped tin fluorophosphate glass, chalcogenide glass, tellurite glass, borate glass and phosphate glass. In another embodiment, the sealing material is a Sn2+-containing inorganic oxide material such as, for example, SnO, SnO+P2O5 and SnO+BPO4.
    Type: Grant
    Filed: April 6, 2010
    Date of Patent: May 7, 2013
    Assignee: Corning Incorporated
    Inventors: Bruce Gardiner Aitken, Chong Pyung An, Mark Alejandro Quesada
  • Publication number: 20130105301
    Abstract: An object of the present invention is to manufacture a long transparent conductive film comprising a transparent film substrate and a crystalline indium composite oxide film formed on the transparent film substrate. The manufacturing method of the present invention includes an amorphous laminate formation step of forming an amorphous film of an indium composite oxide containing indium and a tetravalent metal on the long transparent film substrate with a sputtering method, and a crystallization step of continuously feeding the long transparent film substrate on which the amorphous film is formed into a furnace and crystallizing the amorphous film. The indium composite oxide preferably contains more than 0 parts by weight and 15 parts by weight or less of the tetravalent metal based on 100 parts by weight of the total of indium and the tetravalent metal.
    Type: Application
    Filed: July 6, 2011
    Publication date: May 2, 2013
    Applicant: NITTO DENKO CORPORATION
    Inventors: Yuka Yamazaki, Tomotake Nashiki, Hideo Sugawara
  • Publication number: 20130098754
    Abstract: Disclosed are a transparent conductive composition including a material of the following formula, a target, a transparent conductive thin film using the target, and a method for fabricating the same. The disclosed transparent conductive composition and transparent conductive thin film have superior conductivity (low resistivity) and high light transmittance. Especially, they may be usefully applied for the flexible electronic devices, which may be called the core of the future display industry, because they have low resistivity of not greater than 10?3 ?·cm and a high light transmittance of at least 90% even when deposition is carried out at room temperature. AlxZn1-xO In the above formula, x is within the range of 0.04?x?0.063.
    Type: Application
    Filed: December 3, 2012
    Publication date: April 25, 2013
    Applicant: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventor: Korea Institute of Science and Technology
  • Publication number: 20130101807
    Abstract: A sputtering target including indium, tin, zinc and oxygen, and including a hexagonal layered compound, a spinel structure compound and a bixbyite structure compound.
    Type: Application
    Filed: December 12, 2012
    Publication date: April 25, 2013
    Applicant: IDEMITSU KOSAN CO., LTD.
    Inventor: Idemitsu Kosan Co., Ltd.
  • Publication number: 20130089789
    Abstract: To provide a novel transparent conductive film using low-cost materials that can be stably supplied and have low toxicity, a method of manufacturing the same, a dye-sensitized solar cell, and a solid electrolyte battery. The transparent conductive film is formed by a sputtering method in a nitrogen-containing atmosphere using Li4Ti5O12 as a target. The transparent conductive film is a novel transparent conductive film, which contains Li, Ti, O, and N and has the TiN type crystal structure.
    Type: Application
    Filed: April 25, 2011
    Publication date: April 11, 2013
    Applicant: SONY CORPORATION
    Inventor: Tatsuya Furuya
  • Publication number: 20130048060
    Abstract: A transparent conductive zinc oxide based film according to the present invention contains Ti, Al and Zn in such a proportion that satisfies the following formulae (1), (2) and (3) in terms of atomic ratio, and has a plurality of surface textures different in size on a surface, wherein a center-line average surface roughness Ra of the surface of the transparent conductive film is 30 nm to 200 nm, and an average value of widths of the surface textures is 100 nm to 10 ?m. 0.001?Ti/(Zn+Al+Ti)?0.079.??(1) 0.001?Al/(Zn+Al+Ti)?0.079??(2) 0.010?(Ti+Al)/(Zn+Al+Ti)?0.
    Type: Application
    Filed: April 7, 2011
    Publication date: February 28, 2013
    Applicant: TOSOH CORPORATION
    Inventors: Ryo Akiike, Hideto Kuramochi, Hitoshi Iigusa
  • Publication number: 20130040516
    Abstract: The invention disclosure relates to an electrode comprising a transparent conductive oxide (TCO) and an ultra thin metal film (UTMF) deposited on the TCO. In addition the UTMF is oxidized or covered by an oxide layer. In this way the underlying TCO is protected/compatible to other materials and the loss of transparency is reduced.
    Type: Application
    Filed: February 15, 2011
    Publication date: February 14, 2013
    Inventors: Valerio Pruneri, Dhriti Sundar Ghosh, Tong Lai Chen
  • Patent number: 8367453
    Abstract: When a layered structure of a transparent electrode layer and a metal layer is formed as a back side electrode layer over a surface on a side opposite to a side of incidence of light of a thin film solar battery, a time when formation of the transparent electrode layer is completed and a time when formation of the metal layer is started are made to coincide for one substrate.
    Type: Grant
    Filed: April 9, 2012
    Date of Patent: February 5, 2013
    Assignee: Sanyo Electric Co., Ltd.
    Inventor: Kazushige Kaneko
  • Patent number: 8338002
    Abstract: A sputtering composite target includes: an oxide based component containing indium oxide; and a carbon based component.
    Type: Grant
    Filed: June 4, 2009
    Date of Patent: December 25, 2012
    Assignee: Dexerials Corporation
    Inventors: Hayato Hommura, Kenji Katori, Go Sudo
  • Patent number: 8328999
    Abstract: A material having a low work function is quickly inserted near an interface between an organic layer and a cathode. A sputtering apparatus (Sp) includes a target material formed of silver (Ag), a dispenser formed outside a processing container and evaporating cesium (Cs) having a lower work function than silver (Ag) by heating the cesium (Cs), a first gas supply pipe communicating with the dispenser to transfer evaporated cesium (Cs) to the processing container by using argon gas as a carrier gas, and a high frequency power supply source supplying high frequency power to the processing container. A controller generates plasma by exciting the argon gas by using energy of the high frequency power, and while forming a metal electrode by using an silver (Ag) atom, wherein the Ag atom is generated from a the target material by using the generated plasma, controls a ratio of the cesium (Cs) mixed with the metal electrode.
    Type: Grant
    Filed: September 18, 2008
    Date of Patent: December 11, 2012
    Assignee: Tokyo Electron Limited
    Inventor: Kazuki Moyama
  • Patent number: 8313620
    Abstract: Certain example embodiments of this invention relate to techniques for making a coated article including a transparent conductive indium-tin-oxide (ITO) film supported by a heat treated glass substrate. A substantially sub-oxidized ITO or metallic indium-tin (InSn) film is sputter-deposited onto a glass substrate at room temperature. The glass substrate with the as-deposited film thereon is subjected to elevated temperatures. Thermal tempering or heat strengthening causes the as-deposited film to be transformed into a crystalline transparent conductive ITO film. Advantageously, this may reduce the cost of touch panel assemblies, e.g., because of the higher rates of the ITO deposition in the metallic mode. The cost of touch-panel assemblies may be further reduced through the use of float glass.
    Type: Grant
    Filed: November 22, 2011
    Date of Patent: November 20, 2012
    Assignee: Guardian Industries Corp.
    Inventor: Alexey Krasnov
  • Publication number: 20120285522
    Abstract: Method of depositing a TCO layer on a substrate, of depositing precursors of a solar cell and precursors of a solar cell are described. The methods includes DC sputtering a ZnO-containing transparent conductive oxide layer over the substrate, the substrate having a size of 1.4 m2 or above and texturing the ZnO-containing transparent conductive oxide layer, wherein the textured ZnO-containing transparent conductive oxide layer has a root means square roughness of 60 nm or below.
    Type: Application
    Filed: May 10, 2012
    Publication date: November 15, 2012
    Applicant: Applied Materials, Inc.
    Inventors: Elisabeth Sommer, Philipp Obermeyer, Thomas Zilbauer, Inge Vermeir, Daniel Severin, Niels Kuhr, Markus Kress, Christof Kurthen, Ursula Ingeborg Schmidt, Stefan Klein, Susanne Buschbaum, Konrad Schwanitz, Christian Stoemmer, Tobias Stolley, Martin Rohde, Andreas Rembeck
  • Patent number: 8303779
    Abstract: Methods of depositing a transparent conductive oxide layer on a substrate are generally disclosed. A shield of greater than about 75% by weight molybdenum can be attached to a first surface of a substrate such that the shield contacts at least about 75% of the first surface. The shield can then be heated via an energy source to cause thermal exchange from the shield to the substrate to heat the substrate to a sputtering temperature. A transparent conductive oxide layer can then be sputtered on a second surface of the substrate at the sputtering temperature. Methods are also generally disclosed for manufacturing a cadmium telluride based thin film photovoltaic device.
    Type: Grant
    Filed: December 16, 2009
    Date of Patent: November 6, 2012
    Assignee: PrimeStar Solar, Inc.
    Inventor: Jennifer A. Drayton
  • Patent number: 8303856
    Abstract: Disclosed is a conductive laminated body, and a method for preparing the same, wherein the conductive laminated body including: a substrate; a zinc oxide-based thin film doped with an element M; and an interlayer including an oxide M?2O3, which is interposed between the substrate and the zinc oxide-based thin film. The disclosed conductive laminated body includes a metal oxide interlayer of an oxidation number +3, between a substrate and a zinc oxide layer. Therefore, it is possible to improve electrical properties of a transparent conductive thin film, especially, a resistivity property, and to minimize the unevenness in electrical properties between a middle portion and a circumferential portion on the surface of the thin film in sputtering deposition.
    Type: Grant
    Filed: February 26, 2008
    Date of Patent: November 6, 2012
    Assignee: LG Chem, Ltd.
    Inventors: Hyeon Woo Jang, Jungsik Bang
  • Publication number: 20120273344
    Abstract: There is provided a transparent conductive film having a transparent conductor layer with a high level of pen input durability and high-temperature, high-humidity reliability. The transparent conductive film of the present invention is a transparent conductive film, comprising: a transparent film substrate; a transparent conductor layer that is provided on one side of the transparent film substrate and has a thickness d of 15 nm to 35 nm and an average surface roughness Ra of 0.37 nm to 1 nm; and at least a single layer of an undercoat layer interposed between the transparent film substrate and the transparent conductor layer.
    Type: Application
    Filed: June 29, 2012
    Publication date: November 1, 2012
    Applicant: NITTO DENKO CORPORATION
    Inventors: Tomotake Nashiki, Hideo Sugawara
  • Patent number: 8298380
    Abstract: Example embodiments of this invention relate to a method of making a thermally tempered coated article including a transparent conductive oxide (TCO) film in a color compression configuration supported by a tempered glass substrate. A coated article, that is thermally tempered and made by such a process, is also provided. Coated articles according to certain example non-limiting embodiments of this invention may be used in applications such as solar cells, oven doors, electrostatic discharge glass, solar control windows, defrosting windows, or other types of windows in certain example instances.
    Type: Grant
    Filed: May 23, 2006
    Date of Patent: October 30, 2012
    Assignee: Guardian Industries Corp.
    Inventor: Alexey Krasnov
  • Publication number: 20120260851
    Abstract: A method of manufacturing a zinc oxide-based thin film for a transparent electrode and a zinc oxide-based thin film manufactured using the method, in which both conductivity and transmittance can be improved. The method includes the step of forming a transparent oxide thin film doped with a dopant on a transparent substrate, and the step of rapidly heat-treating the transparent oxide thin film.
    Type: Application
    Filed: April 17, 2012
    Publication date: October 18, 2012
    Applicant: SAMSUNG CORNING PRECISION MATERIALS CO., LTD.
    Inventors: YoungZo Yoo, SeoHyun Kim, JeongWoo Park, Taejung Park, Gun Sang Yoon
  • Patent number: 8257561
    Abstract: Methods are generally provided for forming a conductive oxide layer on a substrate. In one particular embodiment, the method can include sputtering a transparent conductive oxide layer on a substrate at a sputtering temperature from about 10° C. to about 100° C. A cap layer including cadmium sulfide can be deposited directly on the transparent conductive oxide layer. The transparent conductive oxide layer can be annealed at an anneal temperature from about 450° C. to about 650° C. Methods are also generally provided for manufacturing a cadmium telluride based thin film photovoltaic device. An intermediate substrate is also generally provided for use to manufacture a thin film photovoltaic device.
    Type: Grant
    Filed: March 30, 2010
    Date of Patent: September 4, 2012
    Assignee: Primestar Solar, Inc.
    Inventors: Scott Daniel Feldman-Peabody, Jennifer Ann Drayton, Robert Dwayne Gossman, Mehran Sadeghi
  • Publication number: 20120211355
    Abstract: Disclosed are a transparent conductive composition including a material of the following formula, a target, a transparent conductive thin film using the target, and a method for fabricating the same. The disclosed transparent conductive composition and transparent conductive thin film have superior conductivity (low resistivity) and high light transmittance. Especially, they may be usefully applied for the flexible electronic devices, which may be called the core of the future display industry, because they have low resistivity of not greater than 10?3 ?·cm and a high light transmittance of at least 90% even when deposition is carried out at room temperature. AlxZn1-xO In the above formula, x is within the range of 0.04?x?0.063.
    Type: Application
    Filed: April 11, 2011
    Publication date: August 23, 2012
    Applicant: Korea Institute of Science & Technology
    Inventors: Ji Won CHOI, Seok Jin Yoon, Won Kook Choi, Jin Sang Kim, Chong Yun Kang, Ho Won Jang, Keun Jung
  • Publication number: 20120207988
    Abstract: A coated glass includes a substrate, a first conductive layer, a metallic layer and a second conductive layer. The first conductive layer is deposited on the substrate. The metallic layer is deposited on the first conductive layer. The second conductive layer is deposited on the metallic layer. The first conductive layer and the second conductive layer are consisted of tin oxide, antimony oxide and zinc oxide, zinc oxide has a mole percentage in a range from about 30% to about 50%, antimony oxide has a mole percentage in a range from about 1% to about 5%, and the remaining is tin oxide.
    Type: Application
    Filed: June 28, 2011
    Publication date: August 16, 2012
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., HONG FU JIN PRECISION INDUSTRY (ShenZhen) CO., LTD.
    Inventors: HSIN-PEI CHANG, WEN-RONG CHEN, HUANN-WU CHIANG, CHENG-SHI CHEN, JIA HUANG
  • Patent number: 8241467
    Abstract: A method of making a cathode structure for an OLED provided over organic layers includes evaporating a first layer over the organic layers, such layer including a metal or metal alloy whose work function is less that 4.0 eV, or a material including an electron-injecting dopant and a reactive metal; depositing at least one second layer of an inorganic material over the first layer to form a buffer structure with the first layer; and sputtering a protective layer of a metal or metal alloy provided over the buffer structure.
    Type: Grant
    Filed: August 10, 2004
    Date of Patent: August 14, 2012
    Assignee: Global OLED Technology LLC
    Inventors: Pranab K. Raychaudhuri, Joseph K. Madathil
  • Patent number: 8182722
    Abstract: A method for manufacturing a zinc oxide based sputtering target includes the step of producing a zinc oxide based sputtering target by using ?-Al2O3 as a dopant material.
    Type: Grant
    Filed: November 18, 2009
    Date of Patent: May 22, 2012
    Assignee: Sony Corporation
    Inventors: Shina Kirita, Toshitaka Kawashima, Takahiro Nagata, Yuichi Kamori
  • Patent number: 8173474
    Abstract: When a layered structure of a transparent electrode layer and a metal layer is formed as a back side electrode layer over a surface on a side opposite to a side of incidence of light of a thin film solar battery, a time when formation of the transparent electrode layer is completed and a time when formation of the metal layer is started are made to coincide for one substrate.
    Type: Grant
    Filed: March 30, 2010
    Date of Patent: May 8, 2012
    Assignee: Sanyo Electric Co., Ltd.
    Inventor: Kazushige Kaneko
  • Publication number: 20120104616
    Abstract: A method for depositing at least one thin-film electrode onto a transparent conductive oxide film is provided. At first, the transparent conductive oxide film is deposited onto a substrate to be processed. Then, the substrate and the transparent conductive oxide film are subjected to a processing environment containing a processing gas acting as a donor material or an acceptor material with respect to the transparent conductive oxide film. The at least one thin-film electrode is deposited onto at least portions of the transparent conductive oxide film. A partial pressure of the processing gas acting as the donor material or the acceptor material with respect to the transparent conductive oxide film is varied while depositing the at least one thin-film electrode onto at least portions of the transparent conductive oxide film. Thus, a modified transparent conductive oxide film having reduced interface resistance and bulk resistance can be obtained.
    Type: Application
    Filed: November 4, 2010
    Publication date: May 3, 2012
    Applicant: APPLIED MATERIALS, INC.
    Inventor: Fabio PIERALISI
  • Patent number: 8168049
    Abstract: A sputtering apparatus of a continuous system that a first target 17a and a second target 17b are arranged to obliquely face a substrate 6 and other targets to form a film while conveying the substrate 6 along a conveying path 15, wherein shields 19a, 19b facing the conveying direction of at least the substrate 6 are provided between the conveying path 15 and the first and second targets 17a, 17b to have therebetween an extended region toward the conveying path 15 in the space between the first target 17a and the second target 17b to enable to obtain a high quality film and to enable to prevent particles from diffusing in a chamber 3.
    Type: Grant
    Filed: May 19, 2009
    Date of Patent: May 1, 2012
    Assignee: Canon Anelva Corporation
    Inventor: Daisuke Aonuma
  • Patent number: 8153031
    Abstract: An oxide sintered body including an indium element (In), a gallium element (Ga), a zinc element (Zn) and a tin element (Sn), and including a compound shown by Ga2In6Sn2O16 or (Ga,In)2O3.
    Type: Grant
    Filed: November 30, 2007
    Date of Patent: April 10, 2012
    Assignee: Idemitsu Kosan Co., Ltd.
    Inventors: Koki Yano, Kazuyoshi Inoue
  • Publication number: 20120024381
    Abstract: A transparent conductive film, useful in producing a highly efficient silicon-based thin film solar cell, superior in hydrogen reduction resistance and superior in optical confinement effect; a transparent conductive film laminated body using the same; a production method therefor; and a silicon-based thin film solar cell using this transparent conductive film or the transparent conductive film laminated body, as an electrode. It is provided by a transparent conductive film or the like, characterized by containing zinc oxide as a major component and at least one or more kinds of added metal elements selected from aluminum and gallium, whose content being within a range shown by the following expression (1), and having a surface roughness (Ra) of equal to or larger than 35.0 nm, and a surface resistance of equal to or lower than 65 ?/? —[Al]+0.30?[Ga]??2.68×[Al]+1.
    Type: Application
    Filed: March 10, 2010
    Publication date: February 2, 2012
    Applicant: Sumitomo Metal Mining., Ltd.
    Inventors: Yoshiyuki Abe, Tokuyuki Nakayama
  • Publication number: 20120024695
    Abstract: Apparatus and processes for sequential sputtering deposition of a target source material as a thin film on a photovoltaic module substrate are provided. The apparatus includes a first sputtering deposition chamber and a second sputtering deposition chamber that are integrally connected such that the substrates being transported through the apparatus are kept at a system pressure that is less than about 760 Torr. The load vacuum chamber is connected to a load vacuum pump configured to reduce the pressure within the load vacuum chamber to an initial load pressure. The first sputtering deposition chamber includes a first target, and the second sputtering deposition chamber includes a second target. A conveyor system is operably disposed within the apparatus and configured for transporting substrates in a serial arrangement into and through load vacuum chamber, into and through the first sputtering deposition chamber, and into and through the second sputtering deposition chamber at a controlled speed.
    Type: Application
    Filed: March 14, 2011
    Publication date: February 2, 2012
    Applicant: PRIMESTAR SOLAR, INC.
    Inventor: Russell Weldon Black
  • Publication number: 20110318553
    Abstract: A process for manufacturing a transparent body for use in a touch panel is provided. The process includes: depositing a first transparent layer stack over a substrate with a first dielectric film, a second dielectric film, and a third dielectric film. The first and the third dielectric films have a low refractive index and the second dielectric film has a high refractive index. The process further includes depositing a transparent conductive film in a manner such that the first transparent layer stack and the transparent conductive film are disposed over the substrate in this order. At least one of the first dielectric film, the second dielectric film, the third dielectric film, or the transparent conductive film is deposited by sputtering of a rotatable target. Further thereto, a deposition apparatus for manufacturing a transparent body for use in a touch panel and a transparent body for use in a touch panel are provided.
    Type: Application
    Filed: July 2, 2010
    Publication date: December 29, 2011
    Applicant: APPLIED MATERIALS, INC.
    Inventor: Hans-Georg LOTZ
  • Patent number: 8080182
    Abstract: The oxide sintered body mainly consists of gallium, indium, and oxygen, and a content of the gallium is more than 65 at. % and less than 100 at. % with respect to all metallic elements, and the density of the sintered body is 5.0 g/cm3 or more. The oxide film is obtained using the oxide sintered body as a sputtering target, and the shortest wavelength of the light where the light transmittance of the film itself except the substrate becomes 50% is 320 nm or less. The transparent base material is obtained by forming the oxide film on one surface or both surfaces of a glass plate, a quartz plate, a resin plate or resin film where one surface or both surfaces are covered by a gas barrier film, or on one surface or both surfaces of a transparent plate selected from a resin plate or a resin film where the gas barrier film is inserted in the inside.
    Type: Grant
    Filed: September 16, 2009
    Date of Patent: December 20, 2011
    Assignee: Sumitomo Metal Mining Co., Ltd.
    Inventors: Tokuyuki Nakayama, Yoshiyuki Abe
  • Patent number: 8080141
    Abstract: Certain example embodiments of this invention relate to techniques for making a coated article including a transparent conductive indium-tin-oxide (ITO) film supported by a heat treated glass substrate. A substantially sub-oxidized ITO or metallic indium-tin (InSn) film is sputter-deposited onto a glass substrate at room temperature. The glass substrate with the as-deposited film thereon is subjected to elevated temperatures. Thermal tempering or heat strengthening causes the as-deposited film to be transformed into a crystalline transparent conductive ITO film. Advantageously, this may reduce the cost of touch panel assemblies, e.g., because of the higher rates of the ITO deposition in the metallic mode. The cost of touch-panel assemblies may be further reduced through the use of float glass.
    Type: Grant
    Filed: November 18, 2008
    Date of Patent: December 20, 2011
    Assignee: Guardian Industries Corp.
    Inventor: Alexey Krasnov
  • Publication number: 20110266141
    Abstract: Systems and methods for deposition of a thin film layer on photovoltaic (PV) module substrates are generally provided. The system can include a sputtering chamber configured to receive the substrates, at least two targets positioned within the sputtering chamber, and an independent power source connected to each target. Each target can be positioned within the sputtering chamber to face the substrates such that the targets are simultaneously sputtered to supply source material to a plasma field for forming a thin film layer on a surface of the substrates. The multiple targets can also be positioned such that a facing axis extending perpendicularly from a center of each target converges at a point on the surface of the substrate.
    Type: Application
    Filed: April 29, 2010
    Publication date: November 3, 2011
    Applicant: PRIMESTAR SOLAR, INC.
    Inventors: Jennifer Ann Drayton, Robert Dwayne Gossman
  • Publication number: 20110266449
    Abstract: An optical sensor is provided with reduced sensitivity toward external light influences, fluorophores, and radiation, more particularly gamma radiation. The sensor is suitable for determining at least one parameter in a medium. The sensor has a matrix that contains a fluorescent dye. The matrix is supported by a transparent substrate and has a precious metal layer on the side facing the medium. The precious metal layer provides protection against photobleaching and radiation. The optical sensor is suitable for implementation in containers and laboratory products that are sterilized by gamma radiation, such as disposable bioreactors.
    Type: Application
    Filed: December 3, 2009
    Publication date: November 3, 2011
    Applicant: SARTORIUS STEDIM BIOTECH GMBH
    Inventors: Eberhard Wuenn, Reinhard Baumfalk, Daniel Riechers, Julia Lueders
  • Publication number: 20110244251
    Abstract: Methods are generally provided for forming a conductive oxide layer on a substrate. In one particular embodiment, the method can include sputtering a transparent conductive oxide layer on a substrate at a sputtering temperature from about 10° C. to about 100° C. A cap layer including cadmium sulfide can be deposited directly on the transparent conductive oxide layer. The transparent conductive oxide layer can be annealed at an anneal temperature from about 450° C. to about 650° C. Methods are also generally provided for manufacturing a cadmium telluride based thin film photovoltaic device. An intermediate substrate is also generally provided for use to manufacture a thin film photovoltaic device.
    Type: Application
    Filed: March 30, 2010
    Publication date: October 6, 2011
    Applicant: PRIMESTAR SOLAR, INC.
    Inventors: Scott Daniel Feldman-Peabody, Jennifer Ann Drayton, Robert Dwayne Gossman, Mehran Sadeghi
  • Patent number: 8012317
    Abstract: This invention relates to a photovoltaic device including an electrode such as a front electrode/contact. In certain example embodiments, the front electrode of the photovoltaic device includes a multi-layered transparent conductive coating which is sputter-deposited on a textured surface of a patterned glass substrate. In certain example embodiments, a maximum transmission area of the substantially transparent conductive front electrode is located under a peak area of a quantum efficiency (QE) curve of the photovoltaic device and a light source spectrum used to power the photovoltaic device.
    Type: Grant
    Filed: April 26, 2007
    Date of Patent: September 6, 2011
    Assignee: Guardian Industries Corp.
    Inventors: Yiwei Lu, Willem den Boer
  • Publication number: 20110199341
    Abstract: A touch sensor configuration contains an optically transparent substrate, at least one optically transparent touch sensor element formed on the substrate and has at least one electrically conductive, transparent layer, and at least one contacting structure for the electrical contacting of the electrically conductive, transparent layer. The contacting structure has in direct contact with the electrically conductive, transparent layer at least one layer of MoxTay with 0.02?y?0.15.
    Type: Application
    Filed: February 14, 2011
    Publication date: August 18, 2011
    Applicant: PLANSEE METALL GMBH
    Inventors: Nikolaus Reinfried, Bruce Tseng, Jörg Winkler
  • Patent number: 7998603
    Abstract: A transparent conductive film which is amorphous, has a high transmittance of light in the visible region of short wavelengths, and is hard to beak with respect to bending is provided. The transparent conductive film is an amorphous oxide film composed of Ga, In, and O, in which a Ga content ranges from 35 at. % to 45 at. % with respect to all metallic atoms, a resistivity ranges 1.2×10?3?·cm to 8.0×10?3?·cm, a film thickness is 500 nm or less, and a transmittance of light at a wavelength of 380 nm is 45% or more.
    Type: Grant
    Filed: October 14, 2009
    Date of Patent: August 16, 2011
    Assignee: Sumitomo Metal Mining Co., Ltd.
    Inventors: Tokuyuki Nakayama, Yoshiyuki Abe
  • Publication number: 20110195196
    Abstract: The present invention relates to a method for manufacturing a transparent oxide electrode using an electron beam post-treatment. The method for manufacturing a transparent oxide electrode comprises the steps of: (a) forming a thin film for the transparent anode on a substrate; and (b) irradiating an electron beam to the surface of the thin film for the transparent oxide electrode. The method of the present invention is characterized in that no additional heat treatment process is performed after step (a). The method for manufacturing a transparent oxide electrode according to the present invention does not perform a high-temperature heat treatment process but rather performs a low-temperature electron beam irradiation process as a post-treatment, thus obtaining a transparent oxide electrode having excellent characteristics in case where the substrate is made of glass, Pyrex, quartz or even a polymer material which has a low resistance against heat.
    Type: Application
    Filed: October 5, 2009
    Publication date: August 11, 2011
    Inventor: Yong Hwan Kim
  • Publication number: 20110180394
    Abstract: There is provided a sputtering method in which abnormal discharging due to charge-up of a to-be-processed substrate is restrained and in which a good transparent conductive film can be formed on a to-be-processed large-area substrate. Out of a plurality of targets disposed side by side with, and at a predetermined distance from, one another so as to lie opposite to the to-be-processed substrate inside a sputtering chamber, electric power is applied, by alternately changing polarity at a predetermined frequency, to the targets that form respective pairs. Each target is thus alternately switched to anode electrode and cathode electrode. Glow discharge is thus generated between the anode electrode and the cathode electrode to thereby form plasma atmosphere, whereby each target is sputtered. During sputtering, electric power application to each of the targets is intermittently stopped.
    Type: Application
    Filed: August 18, 2008
    Publication date: July 28, 2011
    Inventors: Tatsunori Isobe, Takashi Komatsu, Shigemitsu Satou, Hiroki Oozora, Hideo Taniguchi, Masao Kawaguchi
  • Publication number: 20110174361
    Abstract: Disclosed are a transparent conductive layer and a transparent electrode comprising the same, and in particular, a zinc oxide-based transparent conductive layer having a textured surface, wherein the textured surface has protrusions, each protrusion having a ridge forming an arc in its protruding direction, or having an apex at an edge thereof such that two ridges forms an obtuse angle of 90° or more. The transparent conductive layer is manufactured by sputtering only without wet etching.
    Type: Application
    Filed: September 25, 2009
    Publication date: July 21, 2011
    Inventors: Jung-Sik Bang, Hyeon-Woo Jang, Jin-Hyong Lim
  • Publication number: 20110163448
    Abstract: A zinc oxide transparent electroconductive oxide has been difficult to use as a substrate having a transparent electrode because the oxide, when configured as a thin film, because of increased resistivity due to air and/or moisture exposure. Though doping can inhibit increase of resistance to some extent, there has been difficulty in selecting a type and an amount of a doping substance and because doping causes high initial resistance. A substrate having a transparent electrode with stable resistivity against various environments is produced by a magnetron sputtering method using a target composed of a zinc oxide transparent electroconductive oxide containing 0.50 to 2.75% silicon dioxide by weight relative to the oxide.
    Type: Application
    Filed: August 26, 2009
    Publication date: July 7, 2011
    Applicant: KANEKA CORPORATION
    Inventors: Takashi Kuchiyama, Kenji Yamamoto
  • Publication number: 20110139607
    Abstract: A transparent conductive film comprising: an organic polymer film substrate; an Al2O3 thin film formed on the organic polymer film substrate; and a ZnO-based thin film that is formed on the Al2O3 thin film and comprises ZnO doped with at least one of Ga and Al. The transparent conductive film has a low resistance value, even when the thickness of the ZnO-based thin film is reduced (particularly to about 150 nm or less), and shows a low rate of resistance change even in a hot and humid environment.
    Type: Application
    Filed: December 14, 2010
    Publication date: June 16, 2011
    Applicant: NITTO DENKO CORPORATION
    Inventors: Kazuaki Sasa, Kazunori Kawamura
  • Publication number: 20110139246
    Abstract: Methods of depositing a transparent conductive oxide layer on a substrate are generally disclosed. A shield of greater than about 75% by weight molybdenum can be attached to a first surface of a substrate such that the shield contacts at least about 75% of the first surface. The shield can then be heated via an energy source to cause thermal exchange from the shield to the substrate to heat the substrate to a sputtering temperature. A transparent conductive oxide layer can then be sputtered on a second surface of the substrate at the sputtering temperature. Methods are also generally disclosed for manufacturing a cadmium telluride based thin film photovoltaic device.
    Type: Application
    Filed: December 16, 2009
    Publication date: June 16, 2011
    Applicant: PRIMESTAR SOLAR, INC.
    Inventor: JENNIFER A. DRAYTON
  • Patent number: 7960033
    Abstract: A transparent conductive film which is amorphous, has a high transmittance of light in the visible region of short wavelengths, and is hard to beak with respect to bending is provided. The transparent conductive film is an amorphous oxide film composed of Ga, In, and O, in which a Ga content ranges from 35 at. % to 45 at. % with respect to all metallic atoms, a resistivity ranges 1.2×10?3 ?·cm to 8.0×10?3 ?·cm a film thickness is 500 nm or less, and a transmittance of light at a wavelength of 380 nm is 45% or more.
    Type: Grant
    Filed: September 14, 2009
    Date of Patent: June 14, 2011
    Assignee: Sumitomo Metal Mining Co., Ltd.
    Inventors: Tokuyuki Nakayama, Yoshiyuki Abe
  • Publication number: 20110114475
    Abstract: Disclosed herein is a method for producing a transparent conductive film. The method for producing a transparent conductive film comprises a step of forming a transparent conductive film on a support by a physical film-forming method using a sintered body as a target in a mixed gas atmosphere, wherein the sintered body contains Zn, Sn, and O, and the mixed gas contains an inert gas and oxygen and has an oxygen concentration of 0.01 vol % or higher and 0.4 vol % or less.
    Type: Application
    Filed: June 22, 2009
    Publication date: May 19, 2011
    Inventor: Akira Hasegawa
  • Publication number: 20110102722
    Abstract: An indium tin oxide sputtering target includes indium oxide, tin oxide, and gallium. The content of tin atoms is 5 to 15 atomic percent of the total amount of indium and tin atoms, and the content of gallium atoms is 0.5 to 7 atomic percent of the total amount of indium, tin, and gallium atoms. A method of fabricating an indium tin oxide transparent conductive film includes depositing the transparent conductive film by sputtering the sputtering target. The indium tin oxide transparent conductive film having high durability can be fabricated by depositing an amorphous transparent conductive film by sputtering the sputtering target at a first temperature, patterning the deposited amorphous transparent conductive film by etching it using a weak acid, and crystallizing the patterned amorphous transparent conductive film at a second temperature higher than the first temperature. A crystallization temperature ranges from 150° C. to 210° C., or from 170° C. to 210° C.
    Type: Application
    Filed: October 29, 2010
    Publication date: May 5, 2011
    Inventors: Shin Hyuk KANG, Jun Ho CHOI, Hwang Yong GO, Sang Cheol JUNG
  • Publication number: 20110100801
    Abstract: Disclosed herein are a transparent conductive film and a method for producing the same. The method for producing a transparent conductive film includes a step of forming a transparent conductive film on a support by a physical film-forming method using a sintered body as a target, wherein the sintered body contains Zn, Sn, and O and has a molar ratio of Sn to the sum of Sn and Zn (Sn/(Sn+Zn)) of 0.7 or higher and 0.9 or less.
    Type: Application
    Filed: June 22, 2009
    Publication date: May 5, 2011
    Inventor: Akira Hasegawa