Capillary Electrophoresis Patents (Class 204/451)
  • Patent number: 10768150
    Abstract: The present disclosure provides a method for conducting comprehensive chromatography analysis. Broadly, the method comprises separating a sample in a first chromatographic column to generate a primary stream, which is directed toward a non-modulator switching system comprising at least one micro-switch and at least one valve. The non-modulator switching system is continuously operated to: (a) selectively direct a portion of the primary stream to one of a plurality of thermal injectors and accumulating the portion of the primary stream for a predetermined amount of time; (b) inject the portion of the primary stream into one of a plurality of secondary chromatographic columns; (c) detect one or more analytes in a secondary stream exiting the secondary chromatographic column; and repeat (a)-(c) to selectively direct other portions of the primary stream to other thermal injectors and secondary chromatographic columns until all of the analytes in the sample are detected.
    Type: Grant
    Filed: October 4, 2017
    Date of Patent: September 8, 2020
    Inventors: Xudong Fan, Jiwon Lee, Menglian Zhou, Hongbo Zhu, Katsuo Kurabayashi
  • Patent number: 10750928
    Abstract: Devices and methods for preparing RNA and DNA from single cells are disclosed. In particular, the invention relates to a method of simultaneously extracting RNA and DNA from single cells and separating the nucleic acids electrophoretically. An electric field is used to lyse a single target cell, such that the plasma membrane is selectively disrupted without lysing the nuclear membrane. Cytoplasmic RNA is separated from the nucleus by performing isotachophoresis (ITP) in the presence of a sieving matrix that preferentially reduces the mobility of the nucleus. During ITP, the cytoplasmic RNA accumulates at an ITP interface between leading and trailing electrolytes and can later be extracted free of nuclear DNA. The method can be performed in a microfluidic device that fully automates all steps of the process.
    Type: Grant
    Filed: January 9, 2015
    Date of Patent: August 25, 2020
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Juan G Santiago, Hirofumi Shintaku
  • Patent number: 10716887
    Abstract: Provided is a filtration module for separating plasma from blood comprising a feeder channel lid, a feeder channel defined by a feeder channel laminating layer having a thickness of less than 5 mil, a filter element in fluid communication with the feeder channel and having a pore size of less than 2 microns and low surface area, and a filtrate take-off port having a dead volume of less than 10 ?L. Also provided are methods for filtering a blood sample comprising supplying the blood sample to a feeder channel of a filtration module and drawing the blood sample over a filter element of the filtration module in a single pass process configuration to provide a retentate and a plasma filtrate.
    Type: Grant
    Filed: July 1, 2018
    Date of Patent: July 21, 2020
    Assignee: PDL BioPharma, Inc.
    Inventor: Jonathan Leland
  • Patent number: 10712354
    Abstract: There is provided a method of analyzing a biological sample component that allows easy and accurate quantification and counting of any of a plasma component and a blood cell component in a trace and unknown amount of a whole blood sample collected from a finger, for example. The method of the present invention is a method of analyzing a biological sample component in a trace amount of blood, comprising analyzing a diluent buffer into which the blood has been mixed and an internal standard substance and/or an external standard substance contained in the diluent buffer, calculating a dilution ratio, and analyzing a biological component in a plasma or serum component in the blood.
    Type: Grant
    Filed: July 6, 2015
    Date of Patent: July 14, 2020
    Assignee: Leisure, Inc.
    Inventors: Susumu Osawa, Shinya Sugimoto, Isao Yonekubo
  • Patent number: 10684253
    Abstract: The present invention relates to methods for the identification of compounds in carbohydrate mixture compositions as well as the determination of carbohydrate mixture composition patterns, based on e.g. orthogonal cross determining migration time (indices) using capillary gel electrophoresis-laser induced fluorescence and identifying said carbohydrate components based on comparing said migration time (indices) with standard migration time (indices) from a database which data are preferably also orthogonal cross determined. In a further aspect, the present invention relates to a method for carbohydrate mixture composition pattern profiling, like glycosylation pattern profiling using capillary gel electrophoresis-laser induced fluorescence (CGE-LIF). In another aspect, the present invention refers to a system for an automated determination and/or identification of carbohydrates and/or carbohydrate mixture composition patterns (e.g.: glycosylation patterns).
    Type: Grant
    Filed: September 20, 2012
    Date of Patent: June 16, 2020
    Assignee: Max-Planck-Gesellschaft zur Foerderung der Wissenschaften e.V.
    Inventors: Erdmann Rapp, Jana Schwarzer, Udo Reichl, Christian Bohne
  • Patent number: 10676679
    Abstract: A device includes a channel having an inlet and an outlet, a first electrode disposed within the channel, and a second electrode disposed within the channel so as to define a gap between the second electrode and the first electrode. The device further includes a power source connected to at least one of the electrodes. The second electrode includes a lumen from a first end of the second electrode to a second end of the second electrode. The lumen is configured to introduce a carrier gas to the gap. The inlet is configured to introduce a process stream to the channel. The process stream comprises a viscous petroleum feed material. The power source is configured to produce a spark within the gap, thereby generating a plasma configured to reduce a viscosity of the viscous petroleum feed material and to form a processed petroleum material.
    Type: Grant
    Filed: March 30, 2017
    Date of Patent: June 9, 2020
    Assignee: LTEOIL LLC
    Inventor: Yury Novoselov
  • Patent number: 10639630
    Abstract: A device includes a microfluidic channel structure on a substrate and a first resistive structure on the substrate to control the temperature of at least the substrate. The first resistive structure is separate from, and independent of the, microfluidic channel structure. In some instances, the device includes a second resistive structure.
    Type: Grant
    Filed: January 30, 2015
    Date of Patent: May 5, 2020
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Chantelle Domingue, Manish Giri, Sadiq Bengali
  • Patent number: 10620157
    Abstract: The present invention relates to a single point detection type microfluidic chip isoelectric focusing. The single point detection type microfluidic chip isoelectric focusing uses a microfluidic chip including first and second electrode portions storing each electrode solution at both ends and a microfluidic channel between the first and second electrode portions and includes a focusing step of respectively connecting each electrode to the first electrode portion and the second electrode portion and applying an electric field thereto to separate a biomolecule to an isoelectric point, a mobilization step of moving the focused biomolecule toward a detection point by removing the electrode solution in the first electrode portion or the second electrode portion, and a detection step of the biomolecule moved toward the detection point.
    Type: Grant
    Filed: October 11, 2017
    Date of Patent: April 14, 2020
    Inventors: Dohyun Kim, Jin Song, Nebiyu Getachew Arega
  • Patent number: 10597702
    Abstract: Provided are polymeric scaffold compositions and methods for detecting or quantitating diols such as carbohydrates or carbohydrate containing molecules (e.g., glycosylated protein). Provided herein are capture probes configured to bind to a scaffold. Also provided herein are capture probes linked to one or more reactive organoboronic moiety for binding diol-containing compounds in a solution. Methods of detecting complexes comprising diol-containing compounds for detecting or quantifying the presence of diol-containing compounds in solution using a nanopore device are also provided herein.
    Type: Grant
    Filed: August 26, 2014
    Date of Patent: March 24, 2020
    Assignee: Ontera Inc.
    Inventor: Trevor J. Morin
  • Patent number: 10598631
    Abstract: Method for electrophoretic separation using a separation gel arrangement with a gel member and one or more sample wells for receiving sample liquid to be separated, the sample wells being in fluidic contact with the gel member, the method comprising the steps: adding a sample liquid to be separated in one or more of the sample wells, applying an electric field over the gel member to drive an electrophoretic separation process, whereby sample constituents are drawn from the sample liquid in the sample well(s) into the gel member for separation, and when a removal criteria is met: discontinuing loading of sample constituents into the separation gel.
    Type: Grant
    Filed: March 23, 2015
    Date of Patent: March 24, 2020
    Assignee: GE Healthcare Bio-Sciences AB
    Inventor: Kjell Larsson
  • Patent number: 10598673
    Abstract: The present invention relates to a container comprising haemoglobin fractions, wherein said container comprising at least two compartments, wherein a first compartment comprises O2Hb (oxyhaemoglobin) and a second compartment comprises MetHb (methaemoglobin), optionally wherein O2Hb is stabilized. The invention also relates to a kit for determining the reliability of a CO-oximetry device, wherein said kit comprises said container and to a method for determining the reliability of a CO-oximetry device using said container.
    Type: Grant
    Filed: December 10, 2015
    Date of Patent: March 24, 2020
    Assignee: EUROTROL B.V.
    Inventors: Bartholomeus Henricus Antonius Maas, Carolina Johanna Huizing
  • Patent number: 10562028
    Abstract: The present invention provides microfabricated substrates and methods of conducting reactions within these substrates. The reactions occur in plugs transported in the flow of a carrier-fluid.
    Type: Grant
    Filed: January 3, 2018
    Date of Patent: February 18, 2020
    Assignee: The University of Chicago
    Inventors: Rustem F. Ismagilov, Joshua David Tice, Helen Song Baca, Lewis Spencer Roach
  • Patent number: 10564122
    Abstract: An electrophoresis chip-based setup for detection of different ions in buffer solution. The device is able to differentiate ions in, e.g., real soil or other solutions, and to detect concentration of a specific ion in the solution. Fabrication of the electrophoresis chip can use a soft lithography based molding process. The chip can be made out of PDMS on a glass substrate where on-chip valves were used to control timing of injecting sample and buffer solutions. Detection electrodes are used to detect the presence of ions over a period of several minutes. A controllable high voltage power supply system and related signal acquisition, processing and detection setup can be implemented with the sensor in a system. A microfluidic system for automated collection of soil sample through a porous ceramic and using vacuum suction can be used.
    Type: Grant
    Filed: October 20, 2017
    Date of Patent: February 18, 2020
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Zhen Xu, Liang Dong, Ratnesh Kumar
  • Patent number: 10551358
    Abstract: This disclosure provides a single reactor that accommodates an affinity selector to separate analytes of interest, and an enzyme reactor that digest the analyte to suitable peptides for mass spectrometry. The single reactor formats described herein accommodate workflows wherein separation precedes digestion as well as workflows wherein digestion precedes separation selection.
    Type: Grant
    Filed: December 1, 2014
    Date of Patent: February 4, 2020
    Assignee: Perfinity Bioscices, Inc.
    Inventors: Kevin Wayne Meyer, John Patrick O'Grady, Bob Harold Ellis, Derrick Nathaniel Poe, Nicholas Brian Herold
  • Patent number: 10488322
    Abstract: A biological particle capturing and retrieving system includes a capturing device including a substrate, an isolating layer and a driving unit, and a retrieving device including a micropipette. The isolating layer includes a top surface, multiple pores, and multiple fluidic grooves indented from the top surface, arranged in a herringbone pattern, and each having a bottom surface. The pores are formed in the bottom surfaces of the fluidic grooves, and each capture a biological particle in a liquid sample. The driving unit drives the liquid sample to flow by electrowetting through the pores. The micropipette has a carrier coated with a biological particle-binding material binding with the biological particle received in a corresponding pore.
    Type: Grant
    Filed: March 24, 2017
    Date of Patent: November 26, 2019
    Inventors: Chung-Er Huang, Sheng-Wen Chen, Hsin-Cheng Ho, Ming Chen
  • Patent number: 10401324
    Abstract: Devices and methods for characterization of analyte mixtures are provided. Some methods described herein include performing enrichment steps on a device before expelling enriched analyte fractions from the device for subsequent analysis. Also included are devices for performing these enrichment steps.
    Type: Grant
    Filed: December 18, 2018
    Date of Patent: September 3, 2019
    Assignee: INTABIO, INC.
    Inventor: Erik Gentalen
  • Patent number: 10393699
    Abstract: The present invention relates to a microfluidic analysis device (1) including: a substrate (20) wherein a separation channel (10) is arranged, in which an electrolyte flows, a portion of the separation channel (10) being covered with a polarizable surface (11); two longitudinal field electrodes (8a, 8b) arranged on either side of the separation channel (10); at least one control electrode (6a, 6b) positioned in the separation channel (10), the control electrode (6a, 6b) being suitable for polarizing the polarizable surface (11) so as to control the speed of the electro-osmotic flow in the separation channel (10); the microfluidic analysis device (1) being characterised in that the polarizable surface (11) includes an insulating sub-layer (12) made of amorphous silicon carbide (SiC) and an upper polarizable layer (13) in direct contact with the electrolyte, the control electrodes (6a, 6b) being positioned between the insulating sub-layer (12) and the upper polarizable layer (13).
    Type: Grant
    Filed: September 4, 2015
    Date of Patent: August 27, 2019
    Inventors: Anne-Marie Haghiri-Gosnet, Antoine Pallandre, Jean Gamby, Daniel Rose, Sebastien Meance
  • Patent number: 10376890
    Abstract: The disclosed apparatus, systems and methods relate to a modular microfluidic device, the component comprising a channel comprising an apex opening, wherein the apex opening that is at least partially surrounded by a collar configured to pin a liquid within the channel. The modular microfluidic device may also have a structural tip in or near the apex opening which is configured to allow for the flow of the liquid into the channel from a second component for a modular microfluidic device when the component is engaged with the second component.
    Type: Grant
    Filed: February 6, 2017
    Date of Patent: August 13, 2019
    Assignee: Stacks to the Future LLC
    Inventors: Erwin Berthier, Theodorus de Groot, Jiaquan Yu, Ashleigh Theberge, David Beebe
  • Patent number: 10357770
    Abstract: A microfluidic probe is disclosed. The microfluidic probe includes a probe head, a liquid spacer supply and a spacer modulation unit. The probe head may include a processing liquid channel in fluid communication with a processing liquid aperture provided on a face of the probe head. The probe head is configured to transport, circulate, recirculate, or move some processing liquid in (or via) the processing liquid channel toward and/or from the processing liquid aperture. The spacer supply is fluidly connected, via a spacer insertion junction, to the processing liquid channel. The spacer supply is configured for inserting liquid spacers into the processing liquid channel, via the spacer insertion junction. Liquid volumes can be obtained, which are separated by inserted liquid spacers. The spacer modulation unit is configured to control the spacer supply, to modulate the insertion of spacers via the spacer supply. Related devices and methods of operation are disclosed.
    Type: Grant
    Filed: October 9, 2015
    Date of Patent: July 23, 2019
    Assignee: International Business Machines Corporation
    Inventors: Julien Autebert, Julien Cors, Emmanuel Delamarche, Govind Kaigala, Xander Frank Van Kooten
  • Patent number: 10351901
    Abstract: A microfluidic processing device includes a substrate defining a microfluidic network. The substrate is in thermal communication with a plurality of N independently controllable components and a plurality of input output contacts for connecting the substrate to an external controller. Each component has at least two terminals. Each terminal is in electrical communication with at least one contact. The number of contacts required to independently control the N components is substantially less than the total number of terminals. Upon actuation, the components typically heat a portion of the microfluidic network and/or sense a temperature thereof.
    Type: Grant
    Filed: June 12, 2017
    Date of Patent: July 16, 2019
    Assignee: HandyLab, Inc.
    Inventors: Karthik Ganesan, Kalyan Handique
  • Patent number: 10295545
    Abstract: Flow apparatuses comprising a separation channel, a downstream flow separator, a detection zone, an observation zone, and a waste channel. The separation channel has first and second flows in contact and allows lateral movement of components between contacting first and second flows. The downstream flow separator is in communication with the separation channel and diverts a part of the first fluid flow, the second fluid flow, or both, from the separation channel. The detection zone comprises a detection channel downstream of and in communication with the flow separator and configured to receive a plurality of diverted flows from the flow separator and a label channel configured to label the diverted flows from the flow separator. The observation zone is configured to record an analytical signal indicative of the quantity and the electrical properties of the component. The waste channel is at the downstream end of the observation zone.
    Type: Grant
    Filed: March 15, 2018
    Date of Patent: May 21, 2019
    Assignee: Cambridge Enterprise Limited
    Inventors: Emma Yates, Christopher Dobson, Therese Herling, Tuomas Knowles
  • Patent number: 10274460
    Abstract: The present disclosure relates, in some embodiments, to an apparatus for conducting a capillary electrophoresis assay. The apparatus can comprise a capillary array comprising an anode end and a cathode end, the capillary array provided in a housing further comprising a reservoir configured to house a separation medium and an anode buffer. The system can also comprise an injection mechanism configured to deliver sample to the cathode end of the capillary array, and a temperature control zone, wherein the temperature control zone is configured to control the temperature of the interior of the housing.
    Type: Grant
    Filed: March 6, 2015
    Date of Patent: April 30, 2019
    Inventors: Ian Walton, Achim Karger, Alexander Khorlin, Michael Simon, Adam Sannicandro, Alexander Dukhovny, Robert Cobene, Dan Kline, John Dixon
  • Patent number: 10258982
    Abstract: A combined-blade open flow path device is a fluid flow path device where flow paths are adjacent to each other. The combined-blade open flow path device comprises a substrate configured to constitute a bottom portion of the flow paths; and blades erected on a surface of the substrate, the blades being configured to constitute side walls of the flow paths, wherein the blades are erected in groups, each of the groups extending from an upstream side to a downstream side in a flow direction of a fluid with a space between each of the blades in the flow direction of the fluid in each of the groups for making conduction of the fluid between the adjacent flow paths possible, and wherein one end of one of the flow paths is configured to be in contact with the fluid and is configured to make a flow of the fluid possible.
    Type: Grant
    Filed: April 22, 2015
    Date of Patent: April 16, 2019
    Inventors: Takahiko Hariyama, Daisuke Ishii, Masatsugu Shimomura, Ko Okumura, Marie Tani
  • Patent number: 10247710
    Abstract: Certain embodiments described herein are directed to chromatography systems that include a microfluidic device and that implement one or more methods to direct sample to a desired fluid flow path. The methods can be used to backflush a sample to a desired fluid flow path to select certain analytes within a sample.
    Type: Grant
    Filed: October 21, 2013
    Date of Patent: April 2, 2019
    Assignee: PerkinElmer Health Sciences, Inc.
    Inventor: Andrew Tipler
  • Patent number: 10206663
    Abstract: A sample holder that enables mid-infrared spectroscopy of a test sample using mid-infrared light is disclosed. The sample holder includes an inlet port and a sample chamber that comprises a sample region and a capillary channel that fluidically couples the inlet port and the sample region. The capillary channel is characterized by a higher capillary force than the sample region. As a result, when the inlet port is put in contact with a liquid containing the test sample, the liquid is drawn into the sample region without the formation of bubbles that could obscure the optical analysis. In some embodiments, the inlet port is the free end of a draw tube having an outer diameter that is smaller than the minimum spacing between pain receptors at a draw site on a patient, which mitigates pain felt by the patient due to insertion of the draw tube at the draw site.
    Type: Grant
    Filed: January 14, 2016
    Date of Patent: February 19, 2019
    Assignee: Roc8Sci Co.
    Inventor: Frank Thomas Hartley
  • Patent number: 10208289
    Abstract: A fiber includes one or more layers of polymer surrounding a central lumen, and living animal cells disposed within the lumen and/or within at least one of the one or more layers, wherein the fiber has an outer diameter of between 5 and 8000 microns and wherein each individual layer of polymer has a thickness of between 0.1 and 250 microns. Also disclosed are model tissues including such fibers, and method of making such fibers. The fibers can serve as synthetic blood vessels, ducts, or nerves.
    Type: Grant
    Filed: July 1, 2015
    Date of Patent: February 19, 2019
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: André A. Adams, Michael Daniele, Frances S. Ligler
  • Patent number: 10156487
    Abstract: A tactile sensor includes a first insulating layer having a first array of electrically conductive strips embedded therein and extending in a first direction. An intermediate layer of conductive soft polymer material is positioned above the first insulating layer and the first array of said electrically conductive strips. A second insulating layer having a second array of electrically conductive strips embedded therein, which extend in a second direction which is different than the first direction, is positioned above the intermediate layer. The first array of electrically conductive strips are connected to the second array of electrically conductive strips, and both the first and second array of electrically conductive strips are also connected to an impedance measuring device.
    Type: Grant
    Filed: September 20, 2016
    Date of Patent: December 18, 2018
    Assignee: The University of Akron
    Inventors: Jae-Won Choi, Erik Daniel Engeberg, Morteza Vatani, Ho-Chan Kim, Thomas Swiger
  • Patent number: 10132783
    Abstract: A method is presented for fabricating a fluidic system for a gas chromatograph. The method includes: microfabricating a portion of a fluidic system of a gas chromatograph on a substrate using a first mask; microfabricating a portion of the fluidic system of the gas chromatograph using a second mask; and microfabricating a portion of the fluidic system of the gas chromatograph using a third mask, such that the first mask, the second mask and the third mask are different from each other and the microfabricating of the fluidic system of the gas chromatograph is completed using only the first, second and third masks. A gas chromatograph wherein a microfabricated Knudsen pump is arranged to operate in a first direction to draw carrier gas into a preconcentrator and in a second direction to draw gas out of the preconcentrator.
    Type: Grant
    Filed: May 16, 2014
    Date of Patent: November 20, 2018
    Assignee: The Regents of The University of Michigan
    Inventors: Yogesh B. Gianchandani, Yutao Qin
  • Patent number: 10107781
    Abstract: A method for separating a plurality of deformable objects, such as biological cells or biological supramolecules such as DNA, in a liquid medium by use of an electrophoretic technique combined with hydrodynamic forces. The deformable objects are introduced into a channel, having a flow axis and a cross section at right angles to the flow axis, with the minimum size of the cross section being less than or equal to 50 pm; A hydrodynamic flow is defined a in the channel together with the application of an electric field in the channel, making it possible to move the deformable objects in the channel according to the flow axis and to separate them along the flow axis. A device suitable for implementing this method. The electrolyte used for the electrophoretic separation may be a non-Newtonian fluid with viscoelastic properties.
    Type: Grant
    Filed: July 29, 2013
    Date of Patent: October 23, 2018
    Inventors: Aurélien Bancaud, Hubert Ranchon
  • Patent number: 10073054
    Abstract: Isotachophoresis (ITP) is exploited to control various aspects of chemical reactions. In a first aspect, at least one of the reactants of a chemical reaction is confined to an ITP zone, but the resulting product of the chemical reaction is separated from this ITP zone by the ITP process. In a second aspect, one or more reactants of a chemical reaction are confined to an ITP zone, and one or more other reactants of the chemical reaction are not confined to this ITP zone. In a third aspect, ITP is employed to confine at least one reactant of a chemical reaction to an ITP zone, and at least one reactant of the chemical reaction is delivered to the ITP zone in two or more discrete doses. These aspects are especially relevant to performing polymerase chain reactions using chemical denaturants as opposed to thermal cycling.
    Type: Grant
    Filed: March 25, 2016
    Date of Patent: September 11, 2018
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Juan G. Santiago, Alexandre Persat
  • Patent number: 10052631
    Abstract: Microfluidic devices for the rapid and automated processing of sample populations are provided. Described are multiplexer microfluidic devices configured to serially deliver a plurality of distinct sample populations to a sample processing element rapidly and automatically, without cross-contaminating the distinct sample populations. Also provided are microfluidic sample processing elements that can be used to rapidly and automatically manipulate and/or interrogate members of a sample population. The microfluidic devices can be used to improve the throughput and quality of experiments involving model organisms, such as C. elegans.
    Type: Grant
    Filed: March 5, 2014
    Date of Patent: August 21, 2018
    Assignee: Board of Regents, The University of Texas System
    Inventors: Adela Ben-Yakar, Navid Ghorashian, Sertan Kutal Gökçe, Sam Xun Guo, William Neil Everett, Frederic Bourgeois
  • Patent number: 9995668
    Abstract: Microfluidic system comprising a space for containing a liquid and at least one lateral chamber in communication with said space, said lateral chamber containing a metal electrode. The lateral chamber and the space are designed to be filled by the same or different liquid when the system is active.
    Type: Grant
    Filed: February 1, 2007
    Date of Patent: June 12, 2018
    Assignee: Ecole Polytechnique Fédérale de Lausanne (EPFL)
    Inventors: Philippe Renaud, Pontus Linderholm, Thomas Braschler, Nicolas Demierre, Urban Seger
  • Patent number: 9998537
    Abstract: In one aspect, a method includes configuring a kernel driver to record data block changes of a logical unit in a bit map and using the bitmap to perform an incremental backup of the logical unit. In another aspect, an apparatus includes electronic hardware circuitry configured to configure a kernel driver to record data block changes of a logical unit in a bit map and use the bitmap to perform an incremental backup of the logical unit. In a further aspect, an article includes a non-transitory computer-readable medium that stores computer-executable instructions. The instructions cause a machine to configure a kernel driver to record data block changes of a logical unit in a bit map and use the bitmap to perform an incremental backup of the logical unit.
    Type: Grant
    Filed: March 31, 2015
    Date of Patent: June 12, 2018
    Inventors: Mark A. O'Connell, Helen S. Raizen, Brad Bowlin
  • Patent number: 9969964
    Abstract: The invention generally relates to a cell culture system for coculturing non-neoplastic and neoplastic cells on a planar member which more faithfully mimics the in vivo geometry of a lumen or a cavity.
    Type: Grant
    Filed: December 19, 2014
    Date of Patent: May 15, 2018
    Inventors: Sophie Andree Lelievre, Pierre-Alexandre Vidi, James Francis Leary, Teimour Maleki-Jafarabadi
  • Patent number: 9953817
    Abstract: An ion transfer tube assembly, a mass spectrometry system, and a method for providing an ion stream to an ion detection device are described that include using an ion transfer tube that provides a coaxial sheath gas flow. In an implementation, an ion transfer tube assembly includes an ion transfer tube for delivering the ion stream, where a sheath gas flows through the ion transfer tube, and where the ion transfer tube receives the ion stream from a first conduit coupled to an ion source; a pump fluidly coupled to the ion transfer tube, where the pump causes the sheath gas to flow through the ion transfer tube, where the ion stream is separated from the ion transfer tube walls by the coaxial sheath gas flow, and where the ion stream is received by a second conduit coupled to the ion detection device.
    Type: Grant
    Filed: April 22, 2016
    Date of Patent: April 24, 2018
    Assignee: Smiths Detection Inc.
    Inventors: Vadym Berkout, Douglas J. Green
  • Patent number: 9927397
    Abstract: Methods and apparatus for long read, label-free, optical nanopore long chain molecule sequencing. In general, the present disclosure describes a novel sequencing technology based on the integration of nanochannels to deliver single long-chain molecules with widely spaced (>wavelength), ˜1-nm aperture “tortuous” nanopores that slow translocation sufficiently to provide massively parallel, single base resolution using optical techniques. A novel, directed self-assembly nanofabrication scheme using simple colloidal nanoparticles is used to form the nanopore arrays atop nanochannels that unfold the long chain molecules. At the surface of the nanoparticle array, strongly localized electromagnetic fields in engineered plasmonic/polaritonic structures allow for single base resolution using optical techniques.
    Type: Grant
    Filed: November 26, 2014
    Date of Patent: March 27, 2018
    Assignee: STC.UNM
    Inventors: Steven R. J. Brueck, Jeremy Scott Edwards, Alexander Neumann, Yuliya Kuznetsova, Edgar A. Mendoza, C. Jeffrey Brinker
  • Patent number: 9901926
    Abstract: The present invention is notably directed to a microfluidic chip (1, 1a) comprising: a flow path (22) defined by a hydrophilic surface; a liquid input (24, 24a, 24b) on one side of the flow path; at least one electrical circuit (62), hereafter DEP circuit, comprising at least one pair of dielectrophoretic electrodes (E21, E22), hereafter DEP electrodes, wherein: each of the DEP electrodes extends transverse to the flow path; and the DEP circuit is configured to generate a dielectrophoretic force, hereafter DEP force, at the level of the DEP electrodes. The chip may further include one or more electroosmotic circuits. The present invention is further directed to methods of operation of such a microfluidic chip.
    Type: Grant
    Filed: June 18, 2014
    Date of Patent: February 27, 2018
    Assignee: International Business Machines Corporation
    Inventors: Jaione Tirapu Azpiroz, Emmanuel Delamarche, Tobias Guenzler, Govind Kaigala, Yuksel Temiz, Tino Treiber
  • Patent number: 9903835
    Abstract: A fully automated high-precision capillary electrophoresis instrument, comprising an electrophoresis system, a sample injection flow path, and an automatic sampling flow path; the sampling flow path comprising a shunt waste bottle, which is connected to a four-way connector, a four-way sample injection valve and a buffer syringe pump; the automatic sampling flow path comprises a sampling needle, a sample tray, a cleaning tank, reagent bottles, a buffer tube, a six-channel liquid dispenser, and a syringe pump. The described capillary electrophoresis instrument has a fast sample injection speed, high accuracy, good reproducibility, and can be widely used in automated analysis of different substances by capillary electrophoresis.
    Type: Grant
    Filed: May 8, 2014
    Date of Patent: February 27, 2018
    Inventor: Chao Yan
  • Patent number: 9897572
    Abstract: Apparatuses and associated methods for manipulating an assembly of glass slides employed in cellular assay processes are provided. Each apparatus can accommodate at least one removable rack of slides to undergo electrophoresis in a comet assay. The slides can remain in the same apparatus while being subjected to a sequence of fluid staining and washing with temperature control, advantageously shortening the amount of time required for processing the slides by keeping them in the same work station for the entire duration of the assay.
    Type: Grant
    Filed: December 2, 2016
    Date of Patent: February 20, 2018
    Inventors: Marcus S. Cooke, Shekhar Bhansali, Mahsa Karbaschi, Pratikkumar Shah
  • Patent number: 9895690
    Abstract: Provided is a microfluidic chip, which comprises a substrate and a cover sheet, wherein a microreactor array is arranged on the substrate and comprises at least one main channel (401) and at least two micro cells (402) connected to the main channel (401). The microfluidic chip also comprises at least one local temperature control device, which is used for heating the main channel (401) or cooling the micro cells (402). The use of the microfluidic chip ensures uniformity and independency of the micro cells (402). Also provided is an application of the microfluidic chip in biological detection or medical inspection.
    Type: Grant
    Filed: August 23, 2013
    Date of Patent: February 20, 2018
    Assignees: Capitalbio Corporation, Tsinghua University
    Inventors: Guohao Zhang, Guoliang Huang, Can Wang, Su Guo, Lei Wang, Wanli Xing, Jing Cheng
  • Patent number: 9869669
    Abstract: Provided is a sensor platform that includes a substrate, a plurality of nanochannels disposed on the substrate, and a plurality of electrodes, a waveguide disposed on the substrate and an analysis chamber and a reference chamber disposed on the substrate. Each electrode extends substantially across a width of the plurality of nanochannels. At least one analysis optical resonator is disposed in the analysis chamber and is optically coupled to at least a portion of the waveguide. The at least one analysis optical resonator is in fluid communication with at least one of the plurality of nanochannels. At least one reference optical resonator is disposed in the reference chamber and is optically coupled to at least a portion of the waveguide. The at least one reference optical resonator is in fluid communication with at least one other of the plurality of nanochannels.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: January 16, 2018
    Inventors: Sang M. Han, Cornelius F. Ivory, Mani Hossein-Zadeh
  • Patent number: 9855684
    Abstract: Embodiments of electrophoresis systems, devices, and associated methods of analysis are described herein. In one embodiment, an electrophoresis device includes a first electrode having a first polarity, a second electrode having a second polarity, and a substrate. The substrate includes a first channel having a first section with a first cross-sectional area and a second section with a second cross-sectional area. The first end is electrically coupled to the first electrode, and the second end is electrically coupled to the second electrode. The first cross-sectional area is greater than the second cross-sectional area in a first dimension and in a second dimension generally orthogonal to the first dimension.
    Type: Grant
    Filed: February 10, 2012
    Date of Patent: January 2, 2018
    Assignee: Washington State University
    Inventor: Cornelius F. Ivory
  • Patent number: 9857333
    Abstract: Individual biological micro-objects can be deterministically selected and moved into holding pens in a micro-fluidic device. A flow of a first liquid medium can be provided to the pens. Physical pens can be structured to impede a direct flow of the first medium into a second medium in the pens while allowing diffusive mixing of the first medium and the second medium. Virtual pens can allow a common flow of medium to multiple ones of the pens.
    Type: Grant
    Filed: October 22, 2013
    Date of Patent: January 2, 2018
    Assignee: Berkeley Lights, Inc.
    Inventors: Kevin T. Chapman, Igor Y. Khandros, Gaetan L. Mathieu, J. Tanner Nevill, Ming C. Wu
  • Patent number: 9833781
    Abstract: An example micro-fluidic device includes a micro-fluidic channel having an inner surface and a plurality of pillars positioned along the inner surface. The device further includes a plurality of power supplies connected to the pillars. Another example micro-fluidic device includes a micro-fluidic channel having an inner surface and a plurality of pillars positioned along the inner surface. The device further includes a power supply. The pillars are grouped into at least two groups of pillars, each group of pillars including at least two pillars, and all pillars of at least one group of pillars are connected to the power supply. In another example, a sensing system for detecting bioparticles includes a micro-fluidic device, wherein a surface of each pillar comprises functionalized plasmonic nanoparticles or functionalized SERS nanoparticles, a radiation source for radiating the micro-fluidic device, and a detector for detecting SERS signals or surface plasmon resonance.
    Type: Grant
    Filed: May 17, 2014
    Date of Patent: December 5, 2017
    Assignee: IMEC
    Inventors: Chengjun Huang, Chengxun Liu, Liesbet Lagae, Paolo Fiorini, Benjamin Jones
  • Patent number: 9815059
    Abstract: The invention presents a microfluidic device that provides investigation of distance dependent interactions between cells and various factors. A method that uses the device to determine distance dependent interactions between cells and various factors and agents that can change these interactions is also presented.
    Type: Grant
    Filed: September 29, 2014
    Date of Patent: November 14, 2017
    Inventor: Devrim Pesen Okvur
  • Patent number: 9791453
    Abstract: A mechanism is provided for utilizing a nanodevice to distinguish molecules with different structure. The molecules translocate through or across a nanochannel filled with a electrolyte solution. An electrical signal through the nanochannel is measured for every translocation event. Inner surfaces of the nanochannel include a functional layer, which is a coating to functionalize the nanochannel, in which the functional layer is configured to interact with predetermined ones of the molecules during translocation events. It is determined that a combination of at least two different molecules is formed based on predetermined ones of the molecules interacting with the functional layer to change the electrical signal and/or change a translocation time for the translocation event.
    Type: Grant
    Filed: December 26, 2012
    Date of Patent: October 17, 2017
    Inventors: Matthew Downton, Natalie Gunn, Stefan Harrer, Priscilla Rogers, John Wagner, Ross Bathgate, Daniel Scott, Stan Skafidas
  • Patent number: 9783826
    Abstract: The invention generally provides methods for producing recombinant AAV viral particles using cells grown in suspension. The invention provides recombinant AAV particles for use in methods for delivering genes encoding therapeutic proteins, and methods for using the recombinant AAV particles in gene therapy.
    Type: Grant
    Filed: November 21, 2012
    Date of Patent: October 10, 2017
    Assignee: Applied Genetic Technologies Corporation
    Inventors: David R. Knop, Darby Thomas, Gabor Veres
  • Patent number: 9766216
    Abstract: This invention provides methods and compositions, e.g., to reduce interference from non-specific binding sample constituents in a migration shift assay. Interference due to non-specific binding of sample constituents to an affinity substance (e.g., an affinity molecule or a conjugate of an affinity molecule and a charged carrier molecule) is prevented by, e.g., binding the constituents to charged polymers such as heparin sulfate. The present invention also provides methods to concentrate an analyte of interest with high concentration and to detect the analyte with high sensitivity, and further to optimize the reaction conditions for easily concentrating the analyte. Such objects of the present invention are attained, for example, by concentrating a complex of the analyte and a conjugate which is formed by contacting the analyte in a sample with an affinity molecule bound to a charged carrier molecule such as DNA.
    Type: Grant
    Filed: April 8, 2004
    Date of Patent: September 19, 2017
    Assignee: Wako Pure Chemical Industries, Ltd.
    Inventors: H. Garrett Wada, Irina G. Kazakova, Yutaka Miki, Toshinari Ohashi, Futoshi Kanke
  • Patent number: 9745949
    Abstract: The invention is directed to a microfluidic probe head (100) with a base layer (120) comprising: at least two processing liquid microchannel (123, 124) in fluid communication with a processing liquid aperture (121, 122) on a face of the base layer; and an immersion liquid microchannel (223, 224) in fluid communication with a immersion liquid aperture (221, 222) on a face of the base layer, wherein the microfluidic probe head is configured to allow, in operation, processing liquid provided through the processing liquid aperture to merge into immersion liquid provided through the immersion liquid aperture. An additional layer can be provided to close the microchannels. Such a multilayered head is compact and easier to fabricate than heads made with unitary construction. The head can further be interfaced with tubing using e.g. a standard fitting for tubing port.
    Type: Grant
    Filed: October 18, 2011
    Date of Patent: August 29, 2017
    Assignee: International Business Machines Corporation
    Inventors: Emmanuel Delamarche, Govind Kaigala, Robert Lovchik
  • Patent number: 9733232
    Abstract: A technique relates to stretching an extensible molecule. The molecule moves through an array of pillars in a flow direction, where the array has an interface connecting a first pillar region and a second pillar region. Stretching the molecule by traversing the molecule in the flow direction through the interface connecting the first pillar region to the second pillar region, such that a first end and a second end of the molecule straddle a straddle pillar, thereby causing the first end to extend along a first path in the second and the second end to extend along a second path. Traversing the molecule stretches the first end and the second end along two different paths. The molecule is further traversed through the array such that the second end follows the first end along the first path, where the stretching causes the molecule to be in an uncoiled state.
    Type: Grant
    Filed: January 25, 2016
    Date of Patent: August 15, 2017
    Inventors: Gustavo A. Stolovitzky, Chao Wang