Tin, Lead, Or Germanium Is Predominant Constituent Patents (Class 205/252)
  • Publication number: 20040245113
    Abstract: Disclosed are systems and methods of plating a tin alloy in an efficient, economical, and environmentally friendly manner. An electrochemical cell containing an anolyte compartment and a catholyte compartment separated by a selective membrane is employed. The selective membrane prevents ionic metals from migrating from the catholyte compartment to the anolyte compartment. A conduit may be employed in the electrochemical cell to permit one way flow of anolyte to the catholyte compartment thereby replenishing tin to the catholyte compartment.
    Type: Application
    Filed: June 6, 2003
    Publication date: December 9, 2004
    Inventors: George S. Bokisa, William E. Eckles, Robert E. Frischauf
  • Publication number: 20040231999
    Abstract: The invention relates to an electroplating solution for providing a deposit of an alloy of gold and tin. This solution includes an aqueous solvent in which gold is present in the form of a solution soluble cyanide complex and tin is present in the form of a solution soluble organotin complex. 2,2′-dipyridyl is present as an additive that allows the codeposition of useful gold-tin alloy compositions at current densities lower than would be possible in its absence, given the concentrations of the individual metallic components in the solution. This additive is generally used at a concentration of 0.1 to 1 grams per liter for imparting significant enhancements in providing gold-tin alloy deposits.
    Type: Application
    Filed: May 18, 2004
    Publication date: November 25, 2004
    Inventor: Ronald J. Morrissey
  • Patent number: 6821681
    Abstract: An interchangeable electrolyte contains an additive that promotes interchangeable use between batteries and electroplating cells by limiting dendritic deposition in battery cells and promoting a smooth finish in an electroplating cell, such that fresh or spent electrolyte can be used interchangeably in these type of cells.
    Type: Grant
    Filed: August 10, 2001
    Date of Patent: November 23, 2004
    Inventor: Johan C. Fitter
  • Patent number: 6811672
    Abstract: A method for forming a plating film, comprising the steps of: applying a plating film onto an object to be plated at a first current density for a predetermined period in a plating bath having a cathode capable of varying current and an anode and; and maintaining the object to be plated at a second current density lower than the first current density. According to the present invention, it is possible to improve solderability of a plating film for conventional lead-free solder by a simple method, which allows the productivity to further enhanced, resulting in a plating film with reduced production costs.
    Type: Grant
    Filed: June 25, 2002
    Date of Patent: November 2, 2004
    Assignees: Sharp Kabushiki Kaisha, Kobe Leadmikk Co., Ltd.
    Inventors: Yoshihiko Matsuo, Ryukichi Ikeda, Kimihiko Yoshida, Fumio Okuda
  • Publication number: 20040180779
    Abstract: To provide a rust inhibitor which is a fired composition excellent in corrosion resisting properties almost as same as or even better than lead compounds and which is also good in stability of electrodeposition bath. The fired composition is a fired matter of a zinc compound and a tin compound, wherein zinc oxide Wz and tin oxide Ws are in the relation of Wz≧Ws in weight %. The ratio of the zinc oxide Wz and the tin oxide Ws is in the range of 99/1 to 70/30 in weight %, and preferably in the range of 95/5 to 85/15. Such a fired matter has not only a rust resisting function but also a curing catalyst function, so that such a curing catalyst as dibutyl tin oxide, which has heretofore been used, can be eliminated.
    Type: Application
    Filed: February 3, 2004
    Publication date: September 16, 2004
    Inventors: Hiroshi Ishikawa, Tsuyoshi Iwamoto, Kazutoshi Motegi
  • Patent number: 6790333
    Abstract: The present invention relates to a to-be-mounted electronic component to which functional alloy plating using a bonding material for mounting is applied with a substitute bonding material for solder (tin-lead alloy), and aims at providing alloy plating which has been put to a practical use in such a way that the function of existing alloy plating of this type has been significantly improved to eliminate toxic plating from various kinds of electronic components for use in electronic devices so that it is useful in protecting the environment. Functional alloy plating using substitute bonding material for Pb and electronic component to be mounted to which the functional alloy plating is applied, characterized in that with Sn (tin) as a base, one of Bi (bismuth), Ag (silver) and Cu (copper) is selected, a Bi content to the Sn is set to 1.0% or less, the Bi content to the Sn is set to 2.0 to 10.0%, an Ag content to the Sn is set to 1.0 to 3.0%, the Ag content to the Sn is set to 3.0 to 5.
    Type: Grant
    Filed: September 27, 2002
    Date of Patent: September 14, 2004
    Assignee: Nishihara Rikoh Corporation
    Inventor: Masaaki Ishiyama
  • Patent number: 6783653
    Abstract: A new class of solar selective absorption coatings are disclosed. These coatings comprise a structured metallic overlayer such that the overlayer has a sub-micron structure designed to efficiently absorb solar radiation, while retaining low thermal emissivity for infrared thermal radiation. A sol-gel layer protects the structured metallic overlayer from mechanical, thermal, and environmental degradation. Processes for producing such solar selective absorption coatings are also disclosed.
    Type: Grant
    Filed: December 4, 2002
    Date of Patent: August 31, 2004
    Assignee: Sandia Corporation
    Inventors: Alan R. Mahoney, Scott T. Reed, Carol S. Ashley, F. Edward Martinez
  • Publication number: 20040149587
    Abstract: A solution for use in connection with the deposition of one or more metals on electroplatable substrates. This solution includes water; a metal ion; and a complexing agent. The complexing agent is advantageously an organic compound having between 4 and 18 carbon atoms which includes at least two hydroxyl groups and a five or six membered ring that contains at least one oxygen atom. The compound is present in an amount sufficient to complex the metal in the solution and inhibit oxidation of the metal. In particular, the complexing agent and metal ion are present in a concentration ratio of between about 3:1 and 9:1 to reduce or minimize agglomeration of the substrates during electroplating. If necessary, a suitable pH adjusting agent can be included in the solution to maintain the pH of the solution in the range of between about 3.5 to 5.5.
    Type: Application
    Filed: January 22, 2004
    Publication date: August 5, 2004
    Inventor: George Hradil
  • Patent number: 6736954
    Abstract: A metal plating bath and method of plating a metal on a substrate where the metal plating bath contains heteroatom organic compounds that prevent or inhibit the consumption of metal plating bath additives. The metal plating bath additives improve the brightness of plated metal as well as the ductility, micro-throwing power and macro-throwing power of the plating bath. The addition of the additive consumption inhibiting heteroatom organic compounds improves the physical properties of the plated metal as well as the efficiency of the plating process. The heteroatom organic compounds may contain sulfur, oxygen or nitrogen heteroatoms.
    Type: Grant
    Filed: October 2, 2001
    Date of Patent: May 18, 2004
    Assignee: Shipley Company, L.L.C.
    Inventors: Andrew J. Cobley, Mark J. Kapeckas, Erik Reddington, Wade Sonnenberg, Leon R. Barstad, Thomas Buckley
  • Publication number: 20040089556
    Abstract: In the low-lead-content plating process of the present invention, tens to hundreds ppms of lead, thallium and iron ions, which are much lower than the international “non-lead” standard, are added into a pure tin plating liquid to change the crystal phase orientation during infrared-ray reflow, thereby reducing the melting point of the plated layer.
    Type: Application
    Filed: October 31, 2003
    Publication date: May 13, 2004
    Inventor: Philip Chung-Hwei Chen
  • Patent number: 6726827
    Abstract: In accordance with the present invention, an electroplating solution is provided for electroplating satin bright tin-bismuth alloy solder coatings in high speed electroplating applications. The solution comprises a sulfonic acid electrolyte, a soluble tin compound, a soluble bismuth compound, a non-ionic surfactant, a grain refiner and an antioxidant. The preferred non-ionic surfactant comprises a mixture of polyethylene glycol-block-polypropylene glycol, polyethylene glycol-ran-polypropylene glycol, and ethylenediamine tetrakis (polyethylene glycol-block-polypropylene glycol) tetrol.
    Type: Grant
    Filed: January 17, 2002
    Date of Patent: April 27, 2004
    Assignee: Lucent Technologies Inc.
    Inventors: Oscar Khaselev, Igor S. Zavarine, Yun Zhang
  • Publication number: 20040065558
    Abstract: An electroplating bath medium for electroplating articles with a tin-cobalt, tin-nickel, or tin-cobalt-nickel alloy comprises: at least one tin salt; an alloying metal salt comprising a cobalt salt and/or a nickel salt; a complexant comprising a hydroxycarbox acid or alkali metal salt thereof such as a sodium or potassium gluconate or heptonate complexant; boric acid; and a bath soluble substituted phenolic compound. The current regime applied to the plating bath can include time intervals of direct current and of pulsed current in order to selectively control the deposition of tin by activation or diffusion control.
    Type: Application
    Filed: July 30, 2003
    Publication date: April 8, 2004
    Inventors: Roderick D. Herdman, Trevor Pearson
  • Publication number: 20040035714
    Abstract: The invention relates to an acid electrolyte for depositing tin-copper alloys. Said electrolyte comprises one or more alkylsulfonic acids and/or alkanolsulfonic acids, one or more soluble tin(II) salts, one or more soluble copper(II) salts, and one or more organic sulfur compounds having one or more thioether functions and/or ether functions of general formula —R—Z—R′—(R and R′ are the same or different non-aromatic organic radicals, and Z represents S or O). The invention also relates to a method, which involves the use of the electrolyte, to the coating obtained using said method, and to the use of the electrolyte for coating electronic components.
    Type: Application
    Filed: September 5, 2003
    Publication date: February 26, 2004
    Inventors: Michael Dietterle, Manfred Jordan, Gernot Strube
  • Patent number: 6685820
    Abstract: The present invention relates to a method for treating spent tin or tin/lead stripping solution used in the electronic industry, particularly in the manufacture of printed circuit boards or a lead frames. Said method comprises (i) electrolytically reducing copper ions in the solution to copper at a low temperature; (ii) electrolytically oxidizing Sn2+ and Pb2+ in the solution at a high temperature to form solid tin and lead oxides and hydroxides; (iii) separating solid tin and lead oxides and hydroxides from the solution; (iv) dissolving tin and lead oxides and hydroxides obtained in step (iii) in a strong alkali or acidic solution; and (v) electrolytically reducing the alkali or acidic solution obtained in step (iv) at a high temperature to recover metallic tin and lead. Also, the filtrate obtained in step (iii) above is useful for preparing fresh tin or tin/lead stripping solution.
    Type: Grant
    Filed: April 26, 2002
    Date of Patent: February 3, 2004
    Assignees: Amia Co., Ltd., Persee Chemical Co., Ltd.
    Inventors: Kuo-Chin Chen, Ching-Hwa Chang, Yu-Feng Lin, Tai-Sheng Yuan, Hung-Ming Wang, Jenn-Fang Wu, Huei-Yin Cheng
  • Patent number: 6677056
    Abstract: A tin-silver alloy plating film improved in solderability and flex cracking characteristics is provided by producing it by an electroplating process which uses a current having a pulse waveform of a current passing period of not less than 3 ms and not more than 500 ms and a stopping period of not less than 1 ms and not more than 500 ms with a proviso that the stopping period is equal to or shorter than the passing period.
    Type: Grant
    Filed: October 21, 2002
    Date of Patent: January 13, 2004
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Hisahiro Tanaka, Matsuo Masuda
  • Patent number: 6669834
    Abstract: The present invention is directed to an improved electroplating method, chemistry, and apparatus for selectively depositing tin/lead solder bumps and other structures at a high deposition rate pursuant to manufacturing a microelectronic device from a workpiece, such as a semiconductor wafer. An apparatus for plating solder on a microelectronic workpiece in accordance with one aspect of the present invention comprises a reactor chamber containing an electroplating solution having free ions of tin and lead for plating onto the workpiece. A chemical delivery system is used to deliver the electroplating solution to the reactor chamber at a high flow rate. A workpiece support is used that includes a contact assembly for providing electroplating power to a surface at a side of the workpiece that is to be plated. The contact contacts the workpiece at a large plurality of discrete contact points that isolated from exposure to the electroplating solution.
    Type: Grant
    Filed: June 18, 2001
    Date of Patent: December 30, 2003
    Assignee: Semitool, Inc.
    Inventors: Robert W. Batz, Jr., Scot Conrady, Thomas L. Ritzdorf
  • Publication number: 20030226758
    Abstract: Tin deposits having greatly reduced whisker formation are provided. Methods of depositing tin layers or films having a reduced tendency to form whiskers are also provided.
    Type: Application
    Filed: March 5, 2003
    Publication date: December 11, 2003
    Applicant: Shipley Company, L.L.C.
    Inventor: Andre Egli
  • Patent number: 6645549
    Abstract: A process for providing bond enhancement and an etch resist for a printed circuit board is provided. A sheet comprising at least a layer of copper is immerses in a first immersion tin solution comprising a tin metal and a complexing agent in an acidic medium for a time sufficient to deposit a first heavy tin deposit on the sheet. The sheet is then immersed in a second immersion tin solution comprising stannous tin ions and stannic tin ions and a complexing agent in an acidic medium for a time sufficient to deposit a second thin tin deposit on the sheet. The second thin tin deposit has a thickness less than a thickness of the first heavy tin deposit. A rough surface texture providing mechanical adhesion sites results. The board is then treated with a coupling agent, such as silane, for enhanced bonding to a subsequent epoxy or other polymer prepreg. Additionally, the first heavy tin deposit may serve as an etch resist in subsequent fabrication of the provided circuit board.
    Type: Grant
    Filed: October 11, 2001
    Date of Patent: November 11, 2003
    Assignee: Parlex Corporation
    Inventors: Darryl J. McKenney, Arthur J. Demaso, Kathy A. Gosselin, Craig S. Wilson
  • Publication number: 20030201187
    Abstract: A gas/liquid phase separator includes a fluid inlet, a vapor outlet, a liquid outlet, and first and second valves disposed in fluid communication with the liquid outlet. Both valves are controllable in response to a system pressure and a fluid level in the gas/liquid phase separator. Both valves are further disposed in parallel fluid communication with each other. A method of controlling a liquid level in the phase separator includes sensing an amount of liquid in the phase separator, sensing a system pressure, and selectively opening a valve disposed in fluid communication with the phase separator to drain the liquid.
    Type: Application
    Filed: April 24, 2002
    Publication date: October 30, 2003
    Inventors: A. John Speranza, Andrzej E. Stanek, Angelo A. Morson, Justin D. Baltrucki
  • Publication number: 20030188974
    Abstract: Embodiments of the invention may generally provide a method for plating a homogenous copper tin alloy onto a semiconductor substrate. The method generally includes providing a plating solution to a plating cell, wherein the plating solution contains an acid, a copper ion source, and a tin ion source, the copper ion source including up to about 98.5% of the metal ions and the tin ions including up to about 1.5% of the metal ions, providing a plating bias to a conductive layer formed on the semiconductor substrate while the conductive layer is in fluid contact with the plating solution, the plating bias being configured to overlap a plating potential range of both copper and tin, and simultaneously plating copper and tin ions onto the conductive layer from the plating solution to form a homogenous copper tin alloy layer on the conductive layer.
    Type: Application
    Filed: January 24, 2003
    Publication date: October 9, 2003
    Applicant: Applied Materials, Inc.
    Inventors: Deenesh Padhi, Sivakami Ramanathan, Chris R. McGuirk, Srinivas Gandikota, Girish Dixit
  • Publication number: 20030168347
    Abstract: A new class of solar selective absorption coatings are disclosed. These coatings comprise a structured metallic overlayer such that the overlayer has a sub-micron structure designed to efficiently absorb solar radiation, while retaining low thermal emissivity for infrared thermal radiation. A sol-gel layer protects the structured metallic overlayer from mechanical, thermal, and environmental degradation. Processes for producing such solar selective absorption coatings are also disclosed.
    Type: Application
    Filed: December 4, 2002
    Publication date: September 11, 2003
    Inventors: Alan R. Mahoney, Scott T. Reed, Carol S. Ashley, F. Edward Martinez
  • Publication number: 20030168341
    Abstract: Object The present invention relates to a to-be-mounted electronic component to which functional alloy plating using a bonding material for mounting is applied with a substitute bonding material for solder (tin-lead alloy), and aims at providing alloy plating which has been put to a practical use in such a way that the function of existing alloy plating of this type has been significantly improved to eliminate toxic plating from various kinds of electronic components for use in electronic devices so that it is useful in protecting the environment.
    Type: Application
    Filed: September 27, 2002
    Publication date: September 11, 2003
    Applicant: Nishihara Rikoh Corporation
    Inventor: Masaaki Ishiyama
  • Publication number: 20030150740
    Abstract: A complex porous structure of a reticulated foam, felt or fabric types, wherein their metallisation over their entire developed surface, by electrolysis of lead or lead alloys, is made possible by a specific preliminary conductive activation treatment obtained by using two consecutive phases of coating the developed surface of the structures, comprising a first deposition of a conductive polymer, which provides the structures with the required conductivity, and a second thin deposition of conductive lacquer or varnish which ensures the surface protection of the conductive polymer against the deactivating effect of the conductive nature of the latter, due to the cathodic polarisation of the said structures in the electrolytic lead-coating bath.
    Type: Application
    Filed: January 30, 2003
    Publication date: August 14, 2003
    Inventors: Bernard Bugnet, Denis Doniat
  • Publication number: 20030150743
    Abstract: There are provided a tin or tin-base alloy plating bath having significantly improved solderability, a tin salt solution and an acid or complexing agent solution for preparing or controlling and making up the plating bath, as well as electrical and electric components prepared by the use of the plating bath.
    Type: Application
    Filed: September 20, 2002
    Publication date: August 14, 2003
    Applicant: DAIWA FINE CHEMICALS CO., LTD.
    Inventors: Keigo Obata, Masakazu Yoshimoto, Kiyotaka Tsuji, Ei Uchida
  • Publication number: 20030141192
    Abstract: The present invention relates to a to-be-mounted electronic component to which functional alloy plating using a bonding material for mounting is applied with a substitute bonding material for solder (tin-lead alloy), and aims at providing alloy plating which has been put to a practical use in such a way that the function of existing alloy plating of this type has been significantly improved to eliminate toxic plating from various kinds of electronic components for use in electronic devices so that it is useful in protecting the environment.
    Type: Application
    Filed: September 27, 2002
    Publication date: July 31, 2003
    Applicant: Nishihara Rikoh Corporation
    Inventor: Masaaki Ishiyama
  • Publication number: 20030132122
    Abstract: In accordance with the present invention, an electroplating solution is provided for electroplating satin bright tin-bismuth alloy solder coatings in high speed electroplating applications. The solution comprises a sulfonic acid electrolytes, a soluble tin compound, a soluble bismuth compound, a non-ionic surfactant, a grain refiner and an antioxidant. The preferred non-ionic surfactant comprises a mixture of polyethylene glycol-block-polypropylene glycol, polyethylene glycol-ran-polypropylene glycol, and ethylenediamine tetrakis (polyethylene glycol-block-polypropylene glycol) tetrol.
    Type: Application
    Filed: January 17, 2002
    Publication date: July 17, 2003
    Applicant: LUCENT TECHNOLOGIES INC
    Inventors: Oscar Khaselev, Igor S. Zavarine, Yun Zhang
  • Patent number: 6582582
    Abstract: An electroplating bath is disclosed that is particularly suited to the electrodeposition of tin, zinc and alloys of the foregoing in a smooth and bright electrodeposit. The disclosed electroplating bath comprises propanedioic acid, diethyl ester, polymer with N-(3-aminopropyl)-1,3-propanediamine, N-(2-carboxy benzoyl) as a brightener additive. In addition, the electroplating bath may also comprise carboxylic acids, ammonium salts, aldehyde compounds and a variety of co-brighteners.
    Type: Grant
    Filed: March 9, 2001
    Date of Patent: June 24, 2003
    Inventor: Donald Becking
  • Publication number: 20030089617
    Abstract: In the low-lead-content plating process of the present invention, tens to hundreds ppms of lead, thallium and iron ions, which are much lower than the international “non-lead” standard, are added into a pure tin plating liquid to change the crystal phase orientation during infrared-ray reflow, thereby reducing the melting point of the plated layer.
    Type: Application
    Filed: December 28, 2001
    Publication date: May 15, 2003
    Inventor: Philip Chung-Hwei Chen
  • Patent number: 6544398
    Abstract: The present invention provides a non-cyanide-type gold-tin alloy plating bath comprising: (i) at least one water-soluble gold compound, (ii) at least one completing agent for gold, (iii) at least one water-soluble tin compound, and (iv) at least one component selected from the group consisting of cationic macromolecular surfactants and cationic macromolecular compounds. By using the non-cyanide-type gold-tin alloy plating bath of the present invention, a gold-tin alloy plating film having good brightness, reflow properties and the like can be formed.
    Type: Grant
    Filed: October 9, 2001
    Date of Patent: April 8, 2003
    Assignee: Ishihara Chemical Co., LTD
    Inventors: Ei Uchida, Takashi Okada
  • Patent number: 6537683
    Abstract: A method is described for producing composite multilayer materials which exhibit optimum properties throughout their entire service life. The composite multilayer material comprises a backing layer, a bearing metal layer, an intermediate layer and an electrodeposited overlay, which exhibits a hardness which increases continuously from its surface in the direction of the bearing metal layer. The method provides for the electrodeposition as overlay of a lead-free alloy with at least one hard and one soft component, the current density being modified within the range of from 0.3 to 20 A/dm2 during the deposition process and/or the temperature of the electroplating bath being modified within the range of from 15° C. to 80° C.
    Type: Grant
    Filed: May 3, 2001
    Date of Patent: March 25, 2003
    Assignee: Federal-Mogul Wiesbaden GmbH & Co. KG
    Inventors: Klaus Staschko, Karl-Heinz Gruenthaler
  • Patent number: 6500327
    Abstract: An Sn—Bi alloy plating bath has a pH about 2.0 to 9.0 and comprises Bi3+ ions, Sn2+ ions, complexing agent (I) and complexing agent (II). Complexing agent (I) can be (a) aliphatic dicarboxylic acids having alkyl groups of 1-3 carbon atoms, (b) aliphatic hydroxymonocarboxylic acids having alkyl groups of 1-3 carbon atoms, (c) aliphatic hydroxypolycarboxylic acids having alkyl groups of 1-4 carbon atoms, (d) monosaccharides, polyhydroxycarboxylic acids produced by partially oxidizing the monosaccharides, and their cyclic ester compounds, and (e) condensed phosphoric acids. Complexing Agent (II) can be (s) ethylenediamineteraacetic acid (EDTA), (t) nitrilotriacetic acid (NTA), and (u) trans-1,2-cyclohexanediaminetetraacetic acid (CyDTA).
    Type: Grant
    Filed: February 3, 2000
    Date of Patent: December 31, 2002
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Junichi Saitoh, Tatsuo Kunishi, Yukio Hamaji
  • Publication number: 20020195335
    Abstract: This invention is an improved fuel cell design for use at low pressure. The invention has a reduced number of component parts to reduce fabrication costs, as well as a simpler design that permits the size of the system to be reduced at the same time as performance is being improved.
    Type: Application
    Filed: April 9, 2002
    Publication date: December 26, 2002
    Inventors: Alan J. Cisar, Dacong Weng, Oliver J. Murphy
  • Publication number: 20020187355
    Abstract: Electrolyte compositions for the deposition of tin and tin-alloys on a substrate are disclosed, along with methods of electroplating tin and tin-alloys using such compositions. These electrolyte compositions are useful for high speed tin plating.
    Type: Application
    Filed: May 6, 2002
    Publication date: December 12, 2002
    Applicant: Shipley Company, L.L.C.
    Inventor: Jeffrey N. Crosby
  • Publication number: 20020187364
    Abstract: Disclosed is a method of reducing whisker formation in tin films by the use of a thin metal undercoat. Also disclosed are structures having tin films with substantially reduced whisker formation.
    Type: Application
    Filed: March 15, 2002
    Publication date: December 12, 2002
    Applicant: Shipley Company, L.L.C.
    Inventors: Jochen Heber, Andre Egli, Michael P. Toben, Felix Schwager
  • Publication number: 20020166774
    Abstract: Disclosed are electrolyte compositions for depositing tin-copper alloys that are substantially free of lead. Also disclosed are methods of plating tin-copper alloys that are substantially free of lead on substrates and uses for such plated substrates.
    Type: Application
    Filed: September 20, 2001
    Publication date: November 14, 2002
    Applicant: Shipley Company, L.L.C.
    Inventors: Robert A. Schetty, Michael P. Toben, James L. Martin, Neil D. Brown, Jeffrey N. Crosby, Keith J. Whitlaw
  • Patent number: 6478944
    Abstract: The present invention relates to a to-be-mounted electronic component to which functional alloy plating using a bonding material for mounting is applied with a substitute bonding material for solder (tin-lead alloy), and aims at providing alloy plating which has been put to a practical use in such a way that the function of existing alloy plating of this type has been significantly improved to eliminate toxic plating from various kinds of electronic components for use in electronic devices so that it is useful in protecting the environment.
    Type: Grant
    Filed: May 5, 2000
    Date of Patent: November 12, 2002
    Assignee: Nishihara Rikoh Corporation
    Inventor: Masaaki Ishiyama
  • Publication number: 20020153260
    Abstract: The present invention provides inter alias electroplating compositions, methods for use of the compositions and products formed by the compositions. Electroplating compositions of the invention are characterized in significant part by a grain refiner/stabilizer additive comprising one or more non-aromatic compounds having &pgr; electrons that can be delocalized, e.g., an &agr;,&bgr; unsaturated system or other conjugated system that contains a proximate electron-withdrawing group. Compositions of the invention provide enhanced grain refinement and increased stability in metal plating solutions, particularly in tin and tin alloy plating formulations.
    Type: Application
    Filed: June 29, 2001
    Publication date: October 24, 2002
    Applicant: Shipley Company, L.L.C.
    Inventors: Andre Egli, Anja Vinckier, Jochen Heber, Wan Zhang
  • Patent number: 6454928
    Abstract: A method for providing a tin-plated wire which is free from thermal oxidation yellowing. In a tin-plated wire which comprises a core wire 1 with its surface being formed with a tin-plating layer 2, the composition of the plating is comprised of 30 to 500 wppm gallium, and tin or tin alloy that makes up the remainder thereof. With the content of Ga more than 30 wppm, thermal yellowing is able to be prevented. As too much content of Ga causes surface roughness, the content of Ga must be 500 wppm or below.
    Type: Grant
    Filed: February 1, 2001
    Date of Patent: September 24, 2002
    Assignee: Riken Electric Wire Co., Ltd.
    Inventors: Yasuo Takeshita, Tomohiro Fujioka, Nobuhiro Miyazawa
  • Publication number: 20020079232
    Abstract: Disclosed are methods for depositing a conductive layer on a substrate having a barrier layer and/or a dielectric layer. Such methods are particularly suitable for depositing an electroplated copper layer on a substrate having small apertures, and preferably very small apertures.
    Type: Application
    Filed: October 25, 2001
    Publication date: June 27, 2002
    Applicant: Shipley Company, L.L.C.
    Inventor: James G. Shelnut
  • Patent number: 6361677
    Abstract: The plant comprises: an electrolysis cell (1″) having a soluble anode (2″1) and an insoluble cathode (3″) without an interposed membrane, means for introducing the bath into the cell and for removing the bath from the cell, means for maintaining an appropriate bath density gradient in the said cell so that, if D1 is the density of the bath in the vicinity of the cathode and if D2 is the density of the bath in the vicinity of the anode, (D2−D1)>100 g/l. Associated process. By virtue of the densitometric separation, the dissolved metal is not redeposited on the cathode and the overall dissolution yield is improved.
    Type: Grant
    Filed: November 13, 2000
    Date of Patent: March 26, 2002
    Assignee: Usinor
    Inventors: Bernard Fritzinger, Marc Sardoy
  • Patent number: 6337145
    Abstract: A process for the production of sliding elements in which an overlay of lead-tin-copper is applied by electroplating to the prefabricated semi-finished product, and in which a ternary, fluoroborate-free electroplating bath is used without brighteners and with the addition of non-ionic wetting agents and free alkyl sulfonic acid. After the deposition of the galvanic overlay a heat treatment is carried out in the temperature range of 150° C. to 200° C. for between 1 and 100 hours. The multilayer material for sliding elements comprises at least a backing and an overlay of 12 to 16 wt. % tin and 7 to 11 wt. % copper, the rest being lead. The overlay comprises 15 to 25 wt. % particles of intermetallic compound Cu6Sn5.
    Type: Grant
    Filed: April 27, 2000
    Date of Patent: January 8, 2002
    Assignee: Federal-Mogul Wiesbaden GmbH & Co.
    Inventor: George Pratt
  • Publication number: 20020000378
    Abstract: The present invention is directed to an improved electroplating method, chemistry, and apparatus for selectively depositing tin/lead solder bumps and other structures at a high deposition rate pursuant to manufacturing a microelectronic device from a workpiece, such as a semiconductor wafer. An apparatus for plating solder on a microelectronic workpiece in accordance with one aspect of the present invention comprises a reactor chamber containing an electroplating solution having free ions of tin and lead for plating onto the workpiece. A chemical delivery system is used to deliver the electroplating solution to the reactor chamber at a high flow rate. A workpiece support is used that includes a contact assembly for providing electroplating power to a surface at a side of the workpiece that is to be plated. The contact contacts the workpiece at a large plurality of discrete contact points that isolated from exposure to the electroplating solution.
    Type: Application
    Filed: June 18, 2001
    Publication date: January 3, 2002
    Applicant: Semitool, Inc.
    Inventors: Robert W. Batz,, Scot Conrady, Thomas L. Ritzdorf
  • Publication number: 20010054557
    Abstract: Excessive evolution of hydrogen in electrolytic deposition of metals on a cathode substrate can be controlled by using a pulsed reverse current. Reverse current pulses interposed between the forward current pulses consume at least some of the nascent hydrogen and prevent the local pH at the cathode surface from becoming excessively alkaline. Control of hydroxide ion concentration by pulsed reverse current alleviates problems caused by reaction of metal-bearing-ions with hydroxide ions generated near the cathode by evolution of hydrogen. The method is useful in depositing functional chromium coatings on electrically conductive substrates from plating baths comprising aqueous solutions of trivalent chromium salts. In such a method the current comprises forward pulses having a duty cycle of from about 50% to about 90% and reverse pulses having a duty cycle of from about 5% to about 30%, and a frequency of from about 5 Hz to about 700 Hz.
    Type: Application
    Filed: June 9, 1997
    Publication date: December 27, 2001
    Inventors: E. JENNINGS TAYLOR, CHENGDONG ZHOU, ROBERT P. RENZ, ERIC C. STORTZ
  • Patent number: 6322686
    Abstract: Disclosed are electrolyte compositions for depositing tin or tin-alloys at various current densities. Also disclosed are methods of plating such tin or tin-alloys on substrates, such as the high speed tin plating of steel.
    Type: Grant
    Filed: March 31, 2000
    Date of Patent: November 27, 2001
    Assignee: Shipley Company, L.L.C.
    Inventors: Neil D. Brown, George A. Federman, Angelo B. Chirafisi, Gregory Lai
  • Patent number: 6308544
    Abstract: The invention relates to a coated metal fastener that is prepared by electrogalvanically coating a metal fastener with a layer of tin and zinc mixed crystals, wherein the tin is from about 50 to about 90% by weight of the mixed crystals layer. The fastener plated with the tin and zinc alloy layer has a number of unexpected properties, including stability at higher temperatures than expected, which is important for retaining the strength of a vehicle joint secured with the fastener during subsequent finishing operations; retention of electrical conductivity, which makes the fastener suitable for use as a grounding member; and resistance to galvanic corrosion when the fastener joins metals of differing electrode potential.
    Type: Grant
    Filed: January 22, 1999
    Date of Patent: October 30, 2001
    Assignee: Emhart Inc.
    Inventors: Walter Kuehnl, Dieter Mauer, Reinhold Opper
  • Patent number: 6258241
    Abstract: A process for electroplating metal on a resistive substrate and the article of manufacture produced therefrom are disclosed. The metal layer is electroplated onto the resistive substrate in an electroplating bath having a polarization parameter &xgr; less than approximately 10 such that the metal layer is of substantially uniform thickness. The polarization parameter &xgr; of less than approximately 10 for the electroplating bath can be achieved by numerous means, such as by providing a low metal ion concentration in the electroplating bath or by adding one or more additives to the electroplating bath. The present invention may be used with a variety of metals and resistive substrates.
    Type: Grant
    Filed: December 10, 1997
    Date of Patent: July 10, 2001
    Assignee: Lucent Technologies, Inc.
    Inventor: Ken M. Takahashi
  • Patent number: 6183619
    Abstract: The use of alkali metal, alkaline earth metal, ammonium and substituted ammonium salts of alkyl and alkanol sulfonic acids as additives in pure metal and metal alloy sulfonic acid electroplating baths has a number of unexpected benefits including wider useful current density range, improved appearance and in the case of tin improved oxidative stability. An additional significant appearance is to reduce the overall costs of this type of bath with the more economical salts of alkyl and alkanol sulfonic acids. The metals and metal alloys include but are not limited to tin, lead, copper, nickel, zinc, tin/lead, tin/lead/copper, tin/zinc and zinc/nickel.
    Type: Grant
    Filed: March 19, 1999
    Date of Patent: February 6, 2001
    Assignees: Technic, Inc., Specialty Chemical Systems, Inc.
    Inventors: Hyman D. Gillman, Brenda Fernandes, Kazimierz Wikiel
  • Patent number: 6179985
    Abstract: The use of alkali metal, alkaline earth metal, ammonium and substituted ammonium salts of alkyl and alkanol sulfonic acids as additives in pure metal and metal alloy fluoroborate electroplating baths has a number of unexpected benefits including wider useful current density range and improved appearance. The metals and metal alloys include but are not limited to tin, lead, copper, cadmium, indium, iron, tin/lead and tin/lead copper.
    Type: Grant
    Filed: March 19, 1999
    Date of Patent: January 30, 2001
    Assignees: Technic, Inc., Specialty Chemical Systems, Inc.
    Inventors: Hyman D. Gillman, Brenda Fernandes, Kazimierz Wikiel
  • Patent number: 6103088
    Abstract: The invention provides a process for preparing bismuth compounds, in particular a process for preparing highly concentrated solutions of bismuth methanesulfonate, that are stable to hydrolysis.The preparation takes place from aqueous solutions of bismuth compounds of the formula (I)BiX.sub.3 (I)by subjecting acid of the formula (II)HX (II)whereX is the anion of a mineral acid, an organic acid radical, fluoroborate, hexafluorosilicate or cyanide, in an electrolytic cell, to electrolytic dissolution of the anode with metallic bismuth as the anode.
    Type: Grant
    Filed: October 22, 1998
    Date of Patent: August 15, 2000
    Assignee: Goldschmidt Ag.
    Inventors: Dieter Guhl, Frank Honselmann
  • Patent number: RE36985
    Abstract: A particular anode comprising an electrochemically active material selected from the group .[.comprising.]. .Iadd.consisting of .Iaddend.the oxides of the elements tin, germanium and lead and mixtures comprising at least one of the respective oxides of such elements is useful in an electrochemical cell for the direct production of essentially dry halogen gas from essentially anhydrous halogen halide, or in a process for such production of essentially dry halogen gas. This cell or process may be used to produce halogen gas such as chlorine, bromine, fluorine and iodine from a respective anhydrous hydrogen halide, such as hydrogen chloride, hydrogen bromide, hydrogen fluoride and hydrogen iodide.
    Type: Grant
    Filed: June 8, 1998
    Date of Patent: December 12, 2000
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: James Arthur Trainham, III, Clarence Garland Law, Jr., John S. Newman