Oxide-containing Coating (e.g., Lead Dioxide, Etc.) Patents (Class 205/333)
  • Publication number: 20030042148
    Abstract: A method and apparatus for anodizing aluminum exhaust housings including the utilization of conducting rods placed through the narrow passages. The rods allow current to flow and anodizing coating to build up inside the narrow passages. The rods are insulated from the housing and are connected to a special end plate. The end plate has an insulating spacer between the housing and connecting plate and ensures that the rods are installed and spaced properly and that the current properly flows. The assembly is then degreased and rinsed. The clean assembly is then placed into an appropriate anodizing solution and connected to a current source until the coating sufficiently builds up. The assembly is then removed from the anodizing tanks and rinsed in a series of tanks of increasing temperature.
    Type: Application
    Filed: August 31, 2001
    Publication date: March 6, 2003
    Applicant: Detroit Diesel Corporation
    Inventors: Kenneth Wickenheiser, Thomas B. Poiry
  • Patent number: 6521671
    Abstract: A micelle dispersion containing hydrophobic particles, conductive particles and a surfactant of a ferrocene derivative dispersed in an aqueous medium. The surfactant of a ferrocene derivative in an equilibrium concentration contains an oxidized compound in a concentration of 40 &mgr;g/ml or less and a reduced compound in a concentration of 50 to 300 &mgr;g/ml. A process for producing a micelle dispersion including dispersing hydrophobic particles, conductive particles and a surfactant of a ferrocene derivative in an aqueous medium, where an oxidized compound in the surfactant of a ferrocene derivative is removed with at least one of an ion exchange resin and a reducing agent. A color filter can be produced in excellent yield without color overlapping by using the micelle dispersion and the process provides the micelle dispersion.
    Type: Grant
    Filed: November 6, 2000
    Date of Patent: February 18, 2003
    Assignee: Idemitsu Kosan Co., Ltd.
    Inventors: Motoharu Ishikawa, Hideaki Kurata
  • Publication number: 20030024821
    Abstract: A recovery system for platinum electrolytic baths operating at low current densities is disclosed. An oxidizing system is provided in a closed-loop recirculation system for platinum plating at low current densities. The oxidizing system reoxidizes Pt+2 ions, which are typically formed at low current densities, to Pt+4 ions by using oxidizers, for example peroxide. A sensor may be also provided to detect the relative concentration of [Pt+2] ions to [Pt+4] ions and to tailor the relative concentrations to a predetermined level.
    Type: Application
    Filed: August 6, 2001
    Publication date: February 6, 2003
    Inventor: Dinesh Chopra
  • Publication number: 20030010644
    Abstract: Disclosed are a process for producing a zinc oxide film comprising the steps of transporting a conductive long substrate via above at least one electrode comprised of zinc in an electrodeposition bath held in an electrodeposition tank and applying an electric field between the electrode and the conductive long substrate, thereby forming a zinc oxide film on the conductive long substrate, the process comprising a first step of forming the zinc oxide film on a part of the conductive long substrate; a second step of stopping the application of the electric field and the transportation; and a third step of bringing at least a region of a part of the conductive long substrate being in contact with the electrodeposition bath in the second step into non-contact with the electrodeposition bath, and an apparatus suitably used for the process. The process and apparatus enables high-quality zinc oxide films to be produced.
    Type: Application
    Filed: July 3, 2001
    Publication date: January 16, 2003
    Inventors: Yuichi Sonoda, Kozo Arao, Noboru Toyama, Yusuke Miyamoto
  • Publication number: 20030000847
    Abstract: A method, a composition and a method for making the composition for anodizing metal surfaces, especially magnesium surfaces is disclosed. The composition is a basic aqueous solution including hydroxylamine, phosphate anions and nonionic surfactants. A complementary method, composition and method for making the composition for rendering an anodized metal surface, especially a magnesium surface, conductive is disclosed. The composition is a basic aqueous solution including bivalent nickel, pyrophosphate anions, sodium hypophosphite and either ammonium thiocyanate or lead nitrate.
    Type: Application
    Filed: June 26, 2002
    Publication date: January 2, 2003
    Applicant: ALGAT SHERUTEY GIMUT TEUFATI - KIBBUTZ ALONIM
    Inventor: Ilya Ostrovsky
  • Patent number: 6489035
    Abstract: A sheet material, comprised of a copper foil treated to have a stabilization layer thereon. The stabilization layer is comprised of zinc oxide, chromium oxide or a combination thereof having a thickness between about 5 Å and about 70 Å. A vapor deposited resistive material is provided on the stabilization layer.
    Type: Grant
    Filed: July 31, 2000
    Date of Patent: December 3, 2002
    Assignee: Gould Electronics Inc.
    Inventors: Jiangtao Wang, John Callahan, Dan Lillie
  • Patent number: 6475367
    Abstract: There is disclosed an electrodeposition method capable of suppressing the drop in the power supply voltage and minimizing the heat loss by the electrodeposition current, thereby achieving uniform film formation with satisfactory characteristics. A conductive substrate is dipped in an electrodeposition bath held in an electrodeposition tank, and an oxide is electrolytically deposited on the conductive substrate.
    Type: Grant
    Filed: February 9, 2000
    Date of Patent: November 5, 2002
    Assignee: Canon Kabushiki Kaisha
    Inventors: Noboru Toyama, Kozo Arao, Yuichi Sonoda, Yusuke Miyamoto
  • Patent number: 6471848
    Abstract: This invention provides an electrodeposition apparatus, comprising at least one electrodeposition vessel for supplying a current between a substrate and an electrode in an electrodeposition bath to form an oxide film or the substrate and a rinsing means for rinsing the substrate after passing the electrodeposition tank with water, wherein a humidifying means for preventing drying of at least the film forming surface of the substrate is provided along the transporting path of the substrate at least at the exit side of the electrodeposition vessel and an oxide film forming method. Thus a uniform oxide film without unevenness can be formed on the substrate.
    Type: Grant
    Filed: February 12, 1999
    Date of Patent: October 29, 2002
    Assignee: Canon Kabushiki Kaisha
    Inventors: Kozo Arao, Noboru Toyama, Yuichi Sonoda, Yusuke Miyamoto
  • Publication number: 20020148733
    Abstract: Provided is a wiring board and production method thereof, wherein production of wiring by a fall additive method is achieved. This is extremely useful in forming fine copper wiring featuring a high adhesion on an insulating resin substrate. A resin having an excellent alkali resistance is used as the insulating resin substrate, and the copper wiring is formed on the insulating resin substrate through a degenerated layer containing amide group and a metallic oxide layer of a metal having a reduction potential more base than that of copper. The degenerated layer can be provided by, e.g., introduction of amide group into the surface of the insulating resin substrate. The copper can be formed by processes including electroless plating. The insulating resin substrate has superb heat resistance and dimensional stability, and the formed structure can provide a highly packed wiring board.
    Type: Application
    Filed: March 26, 2002
    Publication date: October 17, 2002
    Inventors: Toshiro Saito, Haruo Akahoshi, Takeyuki Itabashi
  • Publication number: 20020139688
    Abstract: A process for producing a zinc oxide acicular structure by growing an acicular zinc oxide on a substrate, the process comprising the steps of holding the substrate in an electrolytic solution in which at least zinc ions are present, and forming zinc oxide on the substrate by electrodeposition. The electrolytic solution contains at least one cosolute. Also disclosed is a photoelectric conversion device comprising a charge transport layer having the zinc oxide acicular structure.
    Type: Application
    Filed: March 20, 2002
    Publication date: October 3, 2002
    Inventors: Hiroshi Okura, Tohru Den, Kaoru Konakahara
  • Patent number: 6440292
    Abstract: A blended solution is made by melting LiOH.H2O into distilled water, and then, Co metallic powders are added into the blended solution to make a reactive solution. The reactive solution is charged into an autoclave, and held at a predetermined temperature. Then, a pair of platinum electrodes are set into the reactive solution, and a given voltage is applied between the pair of platinum electrode. As a result, a compound thin film, made of crystal LiCoO2 including Li element of the blended solution and Co element of the Co metallic powders, is synthesized on the platinum electrode constituting the anode electrode.
    Type: Grant
    Filed: March 16, 2001
    Date of Patent: August 27, 2002
    Assignee: Tokyo Institute of Technology
    Inventors: Masahiro Yoshimura, Takeshi Fujiwara, Seung-wan Song, Tomoaki Watanabe, Ryo Teranishi, Kyoo-Seung Han
  • Publication number: 20020112967
    Abstract: An anodizing system for forming a anodized coating on at least a portion of a substrate thereby creating an anodized substrate is disclosed. The anodizing system includes a bath, a coating thickness monitor, at least one probe and at least one controller. The coating thickness monitor includes at least one radiation source directed at at least a portion of the anodized substrate; at least one probe for capturing at least a portion of the radiation reflected and refracted by the anodized coating on the anodized substrate, the captured radiation being at least a portion of the radiation directed the anodized substrate from the radiation source; and at least one detector in communication with the at least one probe, the at least one detector capable of processing the captured radiation to allow a determination of at least the thickness.
    Type: Application
    Filed: December 21, 2000
    Publication date: August 22, 2002
    Inventor: Joseph K. Price
  • Publication number: 20020100695
    Abstract: A method and apparatus for anodizing a component. The component is placed in a container having first and second seal members that seal an annular surface of the component to be anodized. The first and second seal members, the annular surface of the component, and an inner surface of the container form a reaction chamber that holds a reaction medium therein. The reaction medium is supplied to the reaction chamber through a supply passage formed in the container. The reaction medium is drained from the reaction chamber through a drain passage formed in the container.
    Type: Application
    Filed: January 15, 2002
    Publication date: August 1, 2002
    Applicant: UNISIA JECS CORPORATION
    Inventors: Masato Sasaki, Yuzuru Morioka, Sachiko Sugita, Masazumi Ishikawa
  • Publication number: 20020100696
    Abstract: The present invention provides a method of producing a zinc oxide thin film in which a current is passed between a conductive substrate immersed in an aqueous solution containing at least zinc ions, ammonium ions and zinc ammonia complex ions, and an electrode as an anode immersed in the aqueous solution to form a zinc oxide thin film on the conductive substrate. This method stabilizes formation of the zinc oxide thin film and improves adhesion between the thin film and the substrate.
    Type: Application
    Filed: January 17, 2002
    Publication date: August 1, 2002
    Inventors: Masafumi Sano, Yuichi Sonoda
  • Publication number: 20020063065
    Abstract: The present invention provides a method of forming a zinc oxide film on a conductive substrate, which comprises dipping the conductive substrate and a counter electrode in an aqueous solution containing at least nitric acid ion and zinc ion and supplying a current between these electrodes to form a zinc oxide film, wherein the aqueous solution further contains polycarboxylic acid in which a carboxyl radical is bonded to each of carbon having sp2 hybrid orbital, or its ester with a concentration of 0.5 &mgr;mol/L to 500 &mgr;mol/L. Thereby, it is possible to form in a short time a thin film having texture structure exhibiting an optical confinement effect, to prevent abnormal growth of a deposited film, and to obtain a zinc oxide thin film having excellent uniformity and adhesion on a surface thereof where the film is formed. Also, by applying the photovoltaic device to a stacked structure, it is possible to enhance the photoelectric characteristics and mass producibility.
    Type: Application
    Filed: September 17, 2001
    Publication date: May 30, 2002
    Inventors: Yuichi Sonoda, Noboru Toyama, Yusuke Miyamoto, Hidetoshi Tsuzuki
  • Patent number: 6383358
    Abstract: A first reactive solution is made of a water solution composed of LiOH.7H2O melted in distilled water, and a second reactive solution is made of a water solution composed of CoSO4.7H2O melted in distilled water. Then, the first and the second reactive solutions are put in a flow-type reactor with a pair of electrodes and a porous base material provided in between the pair of electrodes therein. The first reactive solution is flown in between one electrode and the porous base material at its given flow rate, and the second reactive solution is flown in between the other electrode and the porous base material at its given flow rate. Then, a given voltage is applied between the pair of electrodes to synthesize a compound thin film including the components of the first and the second reactive solutions directly on the porous base material.
    Type: Grant
    Filed: March 16, 2001
    Date of Patent: May 7, 2002
    Assignee: Tokyo Institute of Technology
    Inventors: Masahiro Yoshimura, Takeshi Fujiwara, Seung-wan Song, Tomoaki Watanabe, Ryo Teranishi, Kyoo-Seung Han
  • Patent number: 6383359
    Abstract: Provided are a substrate with a zinc oxide layer, in which at least a zinc oxide layer is provided on a support substrate, wherein the zinc oxide layer comprises a zinc oxide layer having the c axis perpendicular to the support substrate and a zinc oxide layer having the c axis slantindicular to the support substrate in the order from the side of the support substrate; and a photovoltaic device in which a semiconductor layer is formed on the substrate with the zinc oxide layer. Thus provided is the inexpensive photovoltaic device with excellent reflective performance and optical confinement effect and with high photoelectric conversion efficiency.
    Type: Grant
    Filed: April 3, 2001
    Date of Patent: May 7, 2002
    Assignee: Canon Kabushiki Kaisha
    Inventors: Kozo Arao, Hideo Tamura, Noboru Toyama, Yuichi Sonoda, Yusuke Miyamoto
  • Patent number: 6379521
    Abstract: The present invention provides a method of producing a zinc oxide film, which comprises applying current between a conductive base member immersed in an electrodepositing bath and a counter electrode immersed in the electrodepositing bath to form a zinc oxide film on the conductive base member, wherein the electrodepositing bath is maintained at a temperature of 50° C. or more and has a temperature profile such that the temperature of the electrodepositing bath is lower in the final stage of electrodeposition than in the initial of electrodeposition. By the present method, a zinc oxide film with the excellent effect of light containment is stably produced in a short time, thereby producing a solar cell with a high efficiency at low a cost.
    Type: Grant
    Filed: December 30, 1998
    Date of Patent: April 30, 2002
    Assignee: Canon Kabushiki Kaisha
    Inventor: Yutaka Nishio
  • Patent number: 6358386
    Abstract: A method of producing multilayered conformal coatings of tunable, low electronic loss ceramic composites is carried out by mixing two-phase BSTO/MgO into a base solution of typical lab grade acetone to form a mixed solution, inserting two platinum sheets separated into the mixed solution, applying a constant direct current (DC) bias across the two platinum sheets acting as electrodes, and stirring to reduce sedimentation of particles using a magnetic stirrer. Deposition is also performed on insulating substrates by initially coating them with conducting films of Au, performing BSTO deposition, and subsequently sintering the dielectric film so that the underlying metal film evaporates.
    Type: Grant
    Filed: September 1, 2000
    Date of Patent: March 19, 2002
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Louise Sengupta, Somnath Sengupta, Eric Ngo
  • Publication number: 20020029973
    Abstract: An anode is configured to be used within a metal film plating apparatus. The anode has a substantially planar electric field generating portion and an electrolyte solution chemical reaction portion. The planar electric field generating portion is coated with an inert material that is impervious to the electrolyte solution. In one embodiment, the anode is formed as a perforated anode. In one aspect, the electric field generating portion is formed contiguous with the electrolyte solution chemical reaction portion. In another aspects, the planar electric field generating portion is formed as a distinct member from the electrolyte solution chemical reaction portion.
    Type: Application
    Filed: February 28, 2001
    Publication date: March 14, 2002
    Applicant: Applied Materials, Inc.
    Inventor: Dan Maydan
  • Patent number: 6346184
    Abstract: The present invention provides a method of producing a zinc oxide thin film in which a current is passed between a conductive substrate immersed in an aqueous solution containing at least zinc ions and carboxylic acid ions, and an electrode as an anode immersed in the aqueous solution to form a zinc oxide thin film on the conductive substrate. This method stabilizes formation of the zinc oxide thin film and improves adhesion between the thin film and the substrate.
    Type: Grant
    Filed: May 8, 1998
    Date of Patent: February 12, 2002
    Assignee: Canon Kabushiki Kaisha
    Inventors: Masafumi Sano, Yuichi Sonoda
  • Patent number: 6346185
    Abstract: A method of anodizing valve metals with a borate polyester solution formed by the combining 2-methyl-1,3-propane diol and boric acid and heating to about 130 to about 160° C. The heating drives off water produced by esterification. A substrate is immersed in the borate polyester electrolyte solution at a temperature of about 25° C. to about 85° C. and an anodizing voltage is applied.
    Type: Grant
    Filed: October 23, 2000
    Date of Patent: February 12, 2002
    Assignee: Kemet Electronics Corporation
    Inventors: John Tony Kinard, Brian John Melody, David Alexander Wheeler, Philip Michael Lessner
  • Publication number: 20020011419
    Abstract: The present invention provides an electrodeposition apparatus for continuously forming a film of an oxide on a substrate by electrodeposition, wherein an electrodeposition tank for retaining an electrodeposition bath is formed of a metal and the inside of the electrodeposition tank is kept electrically floating. This can form a uniform oxide film without irregularities on the substrate.
    Type: Application
    Filed: February 17, 1999
    Publication date: January 31, 2002
    Inventors: KOZO ARAO, NOBORU TOYAMA, YUICHI SONODA, YUSUKE MIYAMOTO
  • Patent number: 6335099
    Abstract: A corrosion-resistant article of a magnesium material having the gloss of the metal substrate surface comprises an anodic oxide film formed on the external surface of an article of magnesium or a magnesium alloy, which never changes the gloss of the metal substrate and a colorless or colored transparent electrodeposition coating film on the anodic film. Such an article can be prepared by immersing an article of magnesium or a magnesium alloy in an electrolyte containing a phosphate and an aluminate to thus form an anodic oxide film through anodization of the surface of the article and forming a colorless or colored transparent electrodeposition coating film on the anodic film through electrodeposition coating.
    Type: Grant
    Filed: October 22, 1999
    Date of Patent: January 1, 2002
    Assignee: Mitsui Mining and Smelting Co., Ltd.
    Inventors: Tsutomu Higuchi, Mitsuo Suzuki, Makoto Dobashi
  • Publication number: 20010054555
    Abstract: A blended solution is made by melting LiOH•H2O into distilled water, and then, Co metallic powders are added into the blended solution to make a reactive solution. The reactive solution is charged into an autoclave, and held at a predetermined temperature. Then, a pair of platinum electrodes are set into the reactive solution, and a given voltage is applied between the pair of platinum electrode. As a result, a compound thin film, made of crystal LiCoO2 including Li element of the blended solution and Co element of the Co metallic powders, is synthesized on the platinum electrode constituting the anode electrode.
    Type: Application
    Filed: March 16, 2001
    Publication date: December 27, 2001
    Inventors: Masahiro Yoshimura, Takeshi Fujiwara, Seung-wan Song, Tomoaki Watanabe, Ryo Teranishi, Kyoo-Seung Han
  • Publication number: 20010054226
    Abstract: A first reactive solution is made of a water solution composed of LiOH.7H2O melted in distilled water, and a second reactive solution is made of a water solution composed of CoSO4.7H2O melted in distilled water. Then, the first and the second reactive solutions are put in a flow-type reactor with a pair of electrodes and a porous base material provided in between the pair of electrodes therein. The first reactive solution is flown in between one electrode and the porous base material at its given flow rate, and the second reactive solution is flown in between the other electrode and the porous base material at its given flow rate. Then, a given voltage is applied between the pair of electrodes to synthesize a compound thin film including the components of the first and the second reactive solutions directly on the porous base material.
    Type: Application
    Filed: March 16, 2001
    Publication date: December 27, 2001
    Inventors: Masahiro Yoshimura, Takeshi Fujiwara, Seung-wan Song, Tomoaki Watanabe, Ryo Teranishi, Kyoo-Seung Han
  • Publication number: 20010053452
    Abstract: A non-aqueous electrolyte comprises an organic solvent and a solute, and also has an electrolytic conductivity that is greater than or equal to 1 mS/cm but less than or equal to 100 mS/cm. This solute preferably includes at least one of a carboxylate and a salt of inorganic oxoacid. In addition, the non-aqueous electrolyte preferably comprises water in a proportion of 1 to 10 wt %. In an MIM nonlinear element (20), an insulated film (24) is formed by anodic oxidation using the above non-aqueous electrolyte. In addition, the insulated film comprises at least one of carbon atoms and atoms of families 3 to 7 that were originally the central atoms of the salt of inorganic oxoacid, and has a relative permittivity of 10 to 25. With this MIM nonlinear element, the capacitance is sufficiently small, the steepness of the voltage-current characteristic is sufficiently large, and also the resistance is sufficiently uniform over a wide range of voltages.
    Type: Application
    Filed: September 15, 1998
    Publication date: December 20, 2001
    Inventors: TAKASHI INOUE, TAKEYOSHI USHIKI, TAKUMI SEKI, MAKOTO UE, FUMIKAZU MIZUTANI, SACHIE TAKEUCHI
  • Publication number: 20010040097
    Abstract: The present invention provides a web conveying apparatus for conveying a web while holding the web and applying tension to the web, wherein the conveying apparatus has a plurality of rollers with which the web contacts to be conveyed, and at least one roller of the plurality of rollers has a mechanism for limiting deformation of the web within Y/E, and a web conveying method using a web conveying apparatus for conveying a web while holding the web and applying tension to the web, wherein the conveying apparatus has a plurality of rollers with which the web contacts to be conveyed, and the web is conveyed while the deformation of the web is limited within Y/E by a mechanism that is provided for at least one roller of the plurality of rollers. The apparatus and the method prevent meandering of the web.
    Type: Application
    Filed: March 27, 2001
    Publication date: November 15, 2001
    Inventors: Kozo Arao, Noboru Toyama, Yuichi Sonoda, Yusuke Miyamoto
  • Patent number: 6309427
    Abstract: 1:2 chromium complex dyes of the formula in which R signifies C1-9-alkyl or a radical of the formula R1 signifies C1-4-alkyl, —COOM, —COOR5 or —CONH2, R2 signifies hydrogen or —SO3M, R3 signifies hydrogen, methyl or methoxy, R4 signifies hydrogen, methyl, methoxy or chloro, n signifies from 0 to 3, M signifies hydrogen or a non-chromophoric cation and Kat+ signifies hydrogen or a non-chromophoric cation are suitable for dyeing artificially produced oxide layers on aluminium or aluminium alloys and so give highly lightfast dyeings in orange shades.
    Type: Grant
    Filed: December 14, 1999
    Date of Patent: October 30, 2001
    Assignee: Clariant Finance (BVI) Limited
    Inventor: Klaus Körte
  • Publication number: 20010020590
    Abstract: A cell for the electrowinning of aluminium comprising one or more anodes (10), each having a metal-based anode substrate, for instance comprising a metal core (11) covered with an metal layer 12, an oxygen barrier layer (13), one or more intermediate layers (14; 14A, 14B) and an iron layer (15). The anode substrate is covered with an electrochemically active transition metal oxide layer, in particular an iron oxide-based outside layer (16) such as a hematite-based layer, which remains dimensionally stable during operation in a cell by maintaining in the electrolyte a sufficient concentration of iron species and dissolved alumina. The cell operating temperature is sufficiently low so species and dissolved alumina.
    Type: Application
    Filed: January 29, 2001
    Publication date: September 13, 2001
    Inventors: Jean-Jacques Duruz, Vittorio de Nora, Olivier Crottaz
  • Publication number: 20010013474
    Abstract: A non-carbon, metal based slow-consumable anode of a cell for the electrowinning of aluminum self-forms during normal electrolysis an electrochemically-active oxide-based surface layer (20). The rate of formation (35) of the layer (20) is substantially equal to its rate of dissolution (30) at the surface layer/electrolyte interface (25) thereby maintaining its thickness substantially constant, forming a limited barrier controlling the oxidation rate (35). The anode (10) usually comprises an alloy or iron at least one of nickel, copper, cobalt or zinc which during use forms an oxide surface layer (20) mainly containing ferrite.
    Type: Application
    Filed: December 1, 2000
    Publication date: August 16, 2001
    Inventors: Vittorio De Nora, Jean-Jacques Duruz
  • Patent number: 6258244
    Abstract: In order to effectively remove gas molecules of a by-product in a chemical reaction in a solution so as to achieve high efficiency, high rate, and uniformity of the chemical reaction in the solution and in order to realize formation of a semiconductor substrate applicable to production of SOI structure and realize formation of a semiconductor substrate in which a light-emitting element or a gas sensor can be formed, on the basis of an inexpensive silicon substrate, the chemical reaction is performed while the concentration of a gas dissolved in a reaction solution in a reaction vessel is always controlled to be not more than the solubility thereof during the reaction.
    Type: Grant
    Filed: May 13, 1998
    Date of Patent: July 10, 2001
    Assignees: Canon Kabushiki Kaisha, Ultraclean Technology Research Institute
    Inventors: Tadahiro Ohmi, Nobuyoshi Tanaka, Takeo Ushiki, Toshikuni Shinohara, Takahisa Nitta
  • Patent number: 6238808
    Abstract: Provided are a substrate with a zinc oxide layer, in which at least a zinc oxide layer is provided on a support substrate, wherein the zinc oxide layer comprises a zinc oxide layer having the c axis perpendicular to the support substrate and a zinc oxide layer having the c axis slantindicular to the support substrate in the order from the side of the support substrate; and a photovoltaic device in which a semiconductor layer is formed on the substrate with the zinc oxide layer. Thus provided is the inexpensive photovoltaic device with excellent reflective performance and optical confinement effect and with high photoelectric conversion efficiency.
    Type: Grant
    Filed: January 20, 1999
    Date of Patent: May 29, 2001
    Assignee: Canon Kabushiki Kaisha
    Inventors: Kozo Arao, Hideo Tamura, Noboru Toyama, Yuichi Sonoda, Yusuke Miyamoto
  • Publication number: 20010001194
    Abstract: A high energy density electrochemical capacitors with electrodes is formed from proton inserted ruthenium oxides (e.g. HRuO2.xH2O or HRuO2). The electrode material is formed by reducing ruthenium oxides (e.g. RuO2.xH2O or RuO2) using electrochemical method or chemical reaction between ruthenium oxides with acetone or methanol. Electrochemical capacitors with electrodes formed of proton inserted ruthenium oxides possess higher energy density, lower resistance, broader operating temperature range, and longer lifetime than that with electrodes comprised ruthenium oxides.
    Type: Application
    Filed: January 5, 2001
    Publication date: May 17, 2001
    Inventors: T. Richard Jow, Jian-Ping Zheng
  • Patent number: 6214198
    Abstract: The present invention provides improved cathode material comprised of electrolytic manganese dioxide having high discharge capacity at high discharge rates and methods of producing such electrolytic manganese dioxide by electrolysis in an electrolytic cell. The methods are basically comprised of maintaining a heated high purity aqueous electrolyte solution comprising sulfuric acid and manganese sulfate in the electrolytic cell, the manganese sulfate being present in the solution whereby it contains in the range of from about 5 to about 50 grams of manganese per liter of solution. An electric current is applied to the electrodes of the electrolytic cell whereby the anodic electrode current density is in the range of from about 2.5 to about 6 amperes per square foot.
    Type: Grant
    Filed: December 21, 1998
    Date of Patent: April 10, 2001
    Assignee: Kerr-McGee Chemical LLC
    Inventors: Terrell Neils Andersen, Samuel Faust Burkhardt, Wilmont Frederick Howard, Jr., Richard F. Wohletz, Vahid Kazerooni, Mohammad Reza Moumenzadeh, Amy Wren Unsell
  • Patent number: 6214194
    Abstract: The electrochemical formation of oxygen ion conducting solid oxide layers is achieved by the cathodic deposition of the oxide layers from a melted salt bath of alkali element halides containing dissolved metal halides which provide the metal cations from which oxide layers are formed and attached to conductive cathodes. Oxygen is supplied at the cathodes to form oxygen ions which diffuse through the cathodically formed oxide layers and react with dissolved metal cations leading to oxide layer growth. The dissolved metal halides are regenerated at the anodes from metals and metal compounds. The process is called cathodic oxide deposition (COD) and represents a new and economic method for the fabrication of oxygen ion conductor layers for solid oxide electrochemical devices.
    Type: Grant
    Filed: November 8, 1999
    Date of Patent: April 10, 2001
    Inventor: Arnold O. Isenberg
  • Patent number: 6197184
    Abstract: An oxide dissolving acid dip is integrated into an anodic foil formation process. After a foil, either etched or un-etched, is hydrated in a bath of deionized water at an elevated temperature, the foil is then dipped in an organic acid mixture. Next, an oxide layer formation step is utilized to form a barrier oxide layer on a surface of the foil. Next, an oxide dissolving acid dip is utilized to selectively remove a diffuse hydrate layer formed in the formation process. The diffuse hydrate layer is responsible for the reduction of capacitance of the anodic foil. By the use of this oxide dissolving acid dip in conjunction with an organic acid dip, the foil exhibits reduced leakage current properties, while maintaining its capacitance. The treated foil can then be incorporated into a high voltage electrolytic capacitor suitable for use in an implantable cardioverter defibrillator.
    Type: Grant
    Filed: October 29, 1998
    Date of Patent: March 6, 2001
    Assignee: Pacesetter, Inc.
    Inventors: Ralph Jason Hemphill, Thomas Flavian Strange
  • Patent number: 6165624
    Abstract: In the formation of a double oxide film of Li element and a metal element other than Li element, a metal body of the metal element selected from the group consisting of Ni, Co, V, Fe, Cr and Al is immersed in an alkaline solution containing Li ion to conduct a hydrothermal reaction between the metal body and Li ion, whereby a double oxide film is formed on the surface of the metal body.
    Type: Grant
    Filed: November 12, 1998
    Date of Patent: December 26, 2000
    Assignee: Tokyo Institute of Technology
    Inventors: Masahiro Yoshimura, Kyoo-Seung Han
  • Patent number: 6123824
    Abstract: A photo-electricity generating device is produced through the steps of: immersing an electrode and an electroconductive substrate in an aqueous solution comprising nitrate ions and zinc ions, supplying a current passing through a gap between the electrode and the electroconductive substrate to form a first zinc oxide layer on the electroconductive substrate, etching the first zinc oxide layer, and forming a semiconductor layer on the zinc oxide layer. The zinc oxide layer may preferably be formed in two zinc oxide layers under different electrudeposition conditions. In this case, the etching step may preferably be performed between steps for forming these zinc oxide layers. The zinc oxide layer is provided with an unevenness at its surface suitable for constituting a light-confining layer of a resultant photo-electricity generating device.
    Type: Grant
    Filed: December 15, 1997
    Date of Patent: September 26, 2000
    Assignee: Canon Kabushiki Kaisha
    Inventors: Masafumi Sano, Toshimitsu Kariya
  • Patent number: 6110347
    Abstract: A method for forming an indium oxide film on an electrically conductive substrate by immersing the substrate and a counter electrode in an aqueous solution containing at least nitrate and indium ions and flowing an electric current between the substrate and the couter electrode, thereby causing indium oxide film formation on the substrate, is provided. A substrate for a semiconductor element and a photovoltaic element produced using the film forming method are also provided. An aqueous solution for the formation of an indium oxide film by an electroless deposition process, containing at least nitrate and indium ions and tartrate, is also disclosed. A film-forming method for the formation of an indium oxide film on a substrate by an electroless deposition process, using the aqueous solution, and a substrate for a semiconductor element and a photovoltaic element produced using the film-forming method are further provided.
    Type: Grant
    Filed: October 15, 1998
    Date of Patent: August 29, 2000
    Assignee: Canon Kabushiki Kashia
    Inventors: Kozo Arao, Katsumi Nakagawa, Yukiko Iwasaki
  • Patent number: 6106689
    Abstract: A process for forming a zinc oxide film including immersing an electroconductive substrate having a surface including a plurality of linear projections in an aqueous solution containing at least nitrate ions and zinc ions to form a zinc oxide film on the electroconductive substrate by a liquid-phase deposition. The plurality of linear projections may preferably provide an uneven surface which has a center-line average surface roughness Ra(X) of 15-300 nm when scanned in a direction parallel to the linear projections, a center line average surface roughness Ra(Y) of 20-600 nm when scanned in a direction perpendicular to the linear projections, and an Ra(X)/Ra(Y) ratio of at most 0.8. The thus formed zinc oxide film is provided with an uneven surface suitable for an optical-confinement layer of a photo-electricity generating device excellent in photoelectric performances.
    Type: Grant
    Filed: January 20, 1998
    Date of Patent: August 22, 2000
    Assignee: Canon Kabushiki Kaisha
    Inventor: Jinsho Matsuyama
  • Patent number: 6068755
    Abstract: A zinc oxide film is formed on an electroconductive substrate by electrodeposition. The electrodeposition is performed by immersing an electroconductive substrate and an electrode in an aqueous solution containing nitrate ion and zinc ion, and supplying a current passing through a gap between the electroconductive substrate and the electrode while vibrating the electroconductive substrate to stably form a uniform zinc oxide film free from anomalous growth of a crystal on the electroconductive substrate. The zinc oxide film is excellent in adhesive properties with the electroconductive substrate and suitable for a light-confining layer of a photo-electricity generating device.
    Type: Grant
    Filed: December 8, 1997
    Date of Patent: May 30, 2000
    Assignee: Canon Kabushiki Kaisha
    Inventors: Koichi Matsuda, Yuichi Sonoda, Tetsuro Nakamura
  • Patent number: 6063141
    Abstract: A method for manufacturing a cathode for a molten carbonate fuel cell includes oxidation of a porous precursor electrode and contact with molten carbonate. Following assembly of a layered arrangement containing the precursor electrode, a matrix layer made of molten carbonate, and a porous anode, the precursor electrode is anodically oxidized with a preset curve for the current density, and doped by contact with molten carbonate.
    Type: Grant
    Filed: December 18, 1998
    Date of Patent: May 16, 2000
    Assignee: MTU Motoren-Und Turbinen-Union Friedrichshafen GmbH
    Inventors: Hartmut Wendt, Hans-Juergen Salge, Manfred Bischoff
  • Patent number: 6051117
    Abstract: An apertured and porous metal article can find use, for example, in diaphragm or membrane electrolysis cells. The article may comprise a thin and flexible metal foam of small pores which, typically, has been perforated with large apertures. The article may also be provided with an electrocatalytic coating. It can be in substantial physical contact with a membrane or diaphragm separator used in the cell for separating anode and cathode members or compartments. There is also disclosed the preparation of the article and an electrolysis cell utilizing the resulting apertured and porous metal article.
    Type: Grant
    Filed: November 5, 1997
    Date of Patent: April 18, 2000
    Assignee: Eltech Systems, Corp.
    Inventors: Donald S. Novak, Douglas J. Waskovich, Mark L. Arnold, Kevin J. O'Leary, Eric J. Rudd, Thomas J. Gilligan, III, Timothy M. Hambor
  • Patent number: 6030517
    Abstract: Process for depositing a film of a metal oxide or of a metal hydroxide on a substrate in an electrochemical cell, wherein (i) the metal hydroxide is of formula M(OH).sub.x A.sub.y, M representing at least one metallic species in an oxidation state i chosen from the elements in Groups II and III of the Periodic Table, A being an anion whose number of charges is n, 0<x.ltoreq.i and x+ny=i,(ii) the electrochemical cell comprises (a) an electrode comprising the substrate, (b) a counterelectrode, (c) a reference electrode and (d) an electrolyte comprising a conducting solution comprising at least one salt of the metal M, the process comprising the steps of:dissolving oxygen in the electrolyte andimposing a cathode potential of less than the oxygen reduction potential and greater than the potential for deposition of the metal M in the electrolyte in question on the electrochemical cell.
    Type: Grant
    Filed: October 7, 1997
    Date of Patent: February 29, 2000
    Assignee: Centre National de la Recherche Scientifique
    Inventors: Daniel Lincot, Sophie Peulon
  • Patent number: 6001237
    Abstract: A film of nickel oxide is anodically deposited on a graphite sheet held in osition on an electrochemical cell during application of a positive electrode voltage to the graphite sheet while exposed to an electrolytic nickel oxide solution within a volumetrically variable chamber of the cell. An angularly orientated x-ray beam is admitted into the cell for transmission through the deposited nickel oxide film in order to obtain structural information while the film is subject to electrochemical and in-situ x-ray spectroscopy from which optimum film thickness, may be determined by comparative analysis for capacitor fabrication purposes.
    Type: Grant
    Filed: December 2, 1997
    Date of Patent: December 14, 1999
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Azzam N. Mansour, Carlos A. Melendres
  • Patent number: 5989396
    Abstract: An electrode is disclosed having a coating on part of the electrode, e.g., a front face, comprising the oxides of tin, antimony, at least one platinum group metal and at least one valve metal. Another part of the electrode, such as a back face, has a coating comprising the oxides of at least one valve metal and at least one platinum group metal. The electrode can be generally plate-shaped and most desirably has at least one chamfered corner. The electrode is particularly useful in a cell wherein brine electrolyte is electrolyzed to prepare a disinfectant solution containing hypochlorite. The disinfectant solution can be especially serviceable, such as in maritime application, for treating water, e.g., freshwater as represented by desalinated water.
    Type: Grant
    Filed: April 1, 1998
    Date of Patent: November 23, 1999
    Assignee: ELTECH Systems Corporation
    Inventors: Albert R. Prasnikar, Richard C. Carlson, Richard J. Coin, Lynne M. Ernes, Thomas A. Mitchell, Catherine M. Lezan
  • Patent number: 5980723
    Abstract: A process for forming polymer films through electrochemical techniques utilizing electrolytes which include conductive polymer. The resulting polymer films are electrically conductive and corrosion and wear resistant. Poyamino-benzene (polyaniline), for example, undergoes an insulator-to-metal transition upon doping with protonic acids in an acid/base-type reaction. Composite polymer-aluminum oxide films may be formed by modifying the anodizing electrolyte, resulting in the codeposition of polyaniline during aluminum anodization. A nonprotonated, ring-sulfonated aluminum salt of polyaniline was determined to be the reaction product within the aluminum oxide phase of the codeposited films. A second process, which incorporates electrochemical sealing of the anodic layer with polyaniline, was also developed.The formation of these composite films is documented through experimental processing, and characterized through scientific analysis and engineering tests.
    Type: Grant
    Filed: August 27, 1997
    Date of Patent: November 9, 1999
    Assignee: Jude Runge-Marchese
    Inventors: Jude Mary Runge-Marchese, Michael McNallan
  • Patent number: 5968250
    Abstract: Disclosed are kaolin compositions of at least one hydrous kaolin characterized by a particle size distribution where 98% of the particles are less than about 2.mu., 90% are less than about 0.5.mu. and the median particle size is less than about 0.3.mu.. Also disclosed is a process which involves the steps (i) preparing an aqueous slurry of at least one hydrous kaolin; (ii) separating the particles from said slurry so that the particle size distribution is such that 98% of the particles are less than about 2.mu., 90% are less than about 0.5.mu. and a median particle size is less than about 0.3.mu.; and (iii) drying said separated particles. Pigment pastes and electrodeposition paints containing said compositions as well as cationic electrodeposition of said paint on a substrate and the article of manufacture prepared thereby are disclosed.
    Type: Grant
    Filed: June 6, 1997
    Date of Patent: October 19, 1999
    Assignee: Engelhard Corporation
    Inventors: Robert Reynolds Sheppard, Jr., Karen Ann Gruber
  • Patent number: 5948222
    Abstract: Disclosed is a method of reactivating a deactivated anode that has a coating of a noble metal or noble metal oxide on a substrate. A coating of a noble metal is deposited on the anode either electrolessly or electrolytically. The noble metal in the deposited coating can be platinum, palladium, iridium, rhodium, ruthenium, osmium, or a mixture thereof.
    Type: Grant
    Filed: May 1, 1995
    Date of Patent: September 7, 1999
    Assignee: Occidental Chemical Corporation
    Inventors: Chao-Peng Chen, Tilak V. Bommaraju