Alkali Metal Containing Patents (Class 205/510)
  • Patent number: 11702754
    Abstract: In this disclosure, a process of recycling acid, base and the salt reagents required in the Li recovery process is introduced. A membrane electrolysis cell which incorporates an oxygen depolarized cathode is implemented to generate the required chemicals onsite. The system can utilize a portion of the salar brine or other lithium-containing brine or solid waste to generate hydrochloric or sulfuric acid, sodium hydroxide and carbonate salts. Simultaneous generation of acid and base allows for taking advantage of both chemicals during the conventional Li recovery from brines and mineral rocks. The desalinated water can also be used for the washing steps on the recovery process or returned into the evaporation ponds. The method also can be used for the direct conversion of lithium salts to the high value LiOH product. The method does not produce any solid effluent which makes it easy-to-adopt for use in existing industrial Li recovery plants.
    Type: Grant
    Filed: August 9, 2022
    Date of Patent: July 18, 2023
    Assignee: MANGROVE WATER TECHNOLOGIES LTD.
    Inventors: Saad Dara, Beniamin Zahiri
  • Patent number: 11697861
    Abstract: There are provided processes comprising submitting an aqueous composition comprising lithium sulphate and/or bisulfate to an electrolysis or an electrodialysis for converting at least a portion of said sulphate into lithium hydroxide. During electrolysis or electrodialysis, the aqueous composition is at least substantially maintained at a pH having a value of about 1 to about 4; and converting said lithium hydroxide into lithium carbonate.
    Type: Grant
    Filed: November 9, 2018
    Date of Patent: July 11, 2023
    Assignee: NEMASKA LITHIUM INC.
    Inventors: Guy Bourassa, Gary Pearse, Stephen Charles Mackie, Mykolas Gladkovas, Peter Symons, J. David Genders, Jean-François Magnan, Geneviève Clayton
  • Patent number: 10597305
    Abstract: The disclosure relates to methods for preparing lithium hydroxide.
    Type: Grant
    Filed: August 26, 2016
    Date of Patent: March 24, 2020
    Assignee: NEMASKA LITHIUM INC.
    Inventors: Jean-François Magnan, Guy Bourassa, Nicolas Laroche, Gary Pearse, Stephen Charles Mackie, Mykolas Gladkovas, Peter Symons, J. David Genders, Geneviève Clayton, Pierre Bouchard, Bertin Ouellet
  • Patent number: 10337108
    Abstract: Electrochemical systems and methods for producing hydrogen. Generally, the systems and methods involve providing an electrochemical cell that includes an anolyte compartment holding an anode in contact with an anolyte, wherein the anolyte includes an oxidizable substance having a higher standard oxidation potential than water. The cell further comprises a catholyte compartment holding a cathode in contact with a catholyte that includes a substance that reduces to form hydrogen. Additionally, the cell includes an alkali cation conductive membrane that separates the anolyte compartment from the catholyte compartment. As an electrical potential passes between the anode and cathode, the reducible substance reduces to form hydrogen and the oxidizable substance oxidizes to form an oxidized product. The pH within the catholyte compartment may be controlled and maintained to a value in the range of 6 to 8. Apparatus and methods to regenerate the oxidizable substance are disclosed.
    Type: Grant
    Filed: March 4, 2016
    Date of Patent: July 2, 2019
    Assignee: ENLIGHTEN INNOVATIONS INC.
    Inventors: Ashok V Joshi, Sai Bhavaraju
  • Patent number: 10093560
    Abstract: The invention provides a process apparatus and associated method comprising at least one elongate hollow semi-permeable member, at least one anode and at least one cathode. The anode and cathode are arranged radially and concentrically with respect to the semi-permeable member.
    Type: Grant
    Filed: April 25, 2014
    Date of Patent: October 9, 2018
    Assignee: PERMASCAND AB
    Inventor: Jason Jonathan Dale
  • Patent number: 9976221
    Abstract: An electrolytic tank apparatus includes a tank body and at least one electrode set. The tank body defines an outer tank space for receiving a coolant, and at least one inner tank space that is surrounded by the outer tank space and that is not in fluid communication with the outer tank space. The tank body has a tank wall formed with a coolant inlet and a coolant outlet each communicating with the outer tank space. The electrode set is disposed in the inner tank space and includes at least one cathode plate, at least one anode plate, a cathode-connecting structure that is electrically coupled to the cathode plate, and an anode-connecting structure that is electrically coupled to the anode plate.
    Type: Grant
    Filed: December 30, 2015
    Date of Patent: May 22, 2018
    Assignee: National Chiao Tung University
    Inventors: Jin-Chern Chiou, Pao-Yuan Chang, Huang-Yuan Chang
  • Patent number: 9896354
    Abstract: A method for producing oxidized water for sterilization use which contains chlorine dioxide, said method comprising: electrolyzing tap water containing chlorine ions using a three-chamber-type electrolysis vessel, in which an intermediate chamber is located between an anode chamber and a cathode chamber; trapping the chlorine ions dissolved in the tap water; and electrolytically oxidizing the trapped chlorine ions on an anode electrode. A partitioning membrane that isolates the anode chamber from the intermediate chamber is composed of a fluorine-containing cation exchange membrane and an anion exchange membrane, wherein a porous anode electrode is adhered onto the fluorine-containing cation exchange membrane in the partitioning membrane.
    Type: Grant
    Filed: December 8, 2014
    Date of Patent: February 20, 2018
    Assignee: TECH CORPORATION CO., LTD.
    Inventor: Osao Sumita
  • Patent number: 9222148
    Abstract: A method for recovering and extracting lithium from a feed liquid that may have a mixture of lithium and non-lithium salts present in the feed liquid. Salts of varying solubility are precipitated out of the feed liquid using water evaporation or other techniques. Pure lithium hydroxide is obtained using electrolysis or electro-dialysis processes in combination with a lithium ion selective inorganic membrane such as LiSICON. The negative effect of sodium and potassium on the lithium ion selective inorganic membrane is reduced by reversing the polarity of the current placed across the membrane.
    Type: Grant
    Filed: October 31, 2011
    Date of Patent: December 29, 2015
    Assignee: CERAMATEC, INC.
    Inventors: John Howard Gordon, Sai Bhavaraju
  • Patent number: 9206516
    Abstract: In one aspect, the present invention is directed to liquid anodes and fuels for production of metals from their oxides. In one aspect, the invention relates apparatuses for producing a metal from a metal oxide comprising a cathode in electrical contact with an electrolyte, a liquid metal anode separated from the cathode and the electrolyte by a solid oxygen ion conducting membrane, a fuel inlet, and a power supply for establishing a potential between the cathode and the anode. In another aspect, the invention relates to methods for production of metals from their oxides comprising providing a cathode in electrical contact with a molten electrolyte, providing a liquid metal anode separated from the cathode and the molten electrolyte by a solid oxygen ion conducting membrane, providing a fuel inlet, delivering a gaseous fuel comprising hydrogen to the liquid metal anode via the fuel inlet, and establishing a potential between the cathode and the anode.
    Type: Grant
    Filed: August 22, 2012
    Date of Patent: December 8, 2015
    Assignee: Infinium, Inc.
    Inventors: Adam Clayton Powell, Soobhankar Pati, Uday B. Pal, Steven J. Derezinski, III, Steve R. Tucker
  • Patent number: 9023215
    Abstract: A low energy water treatment system and method is provided. The system has at least one electrodialysis device that produces partially treated water and a brine byproduct, a softener, and at least one electrodeionization device. The partially treated water stream can be softened by the softener to reduce the likelihood of scale formation and to reduce energy consumption in the electrodeionization device, which produces water having target properties. At least a portion of the energy used by the electrodeionization device can be generated by concentration differences between the brine and seawater streams introduced into compartments thereof. The brine stream can also be used to regenerate the softener.
    Type: Grant
    Filed: September 22, 2008
    Date of Patent: May 5, 2015
    Assignee: Evoqua Water Technologies LLC
    Inventors: Gary C. Ganzi, Li-Shiang Liang, Frederick C. Wilkins
  • Patent number: 8936711
    Abstract: The present invention relates to a method of extracting lithium with high purity from a lithium bearing solution by electrolysis. More specifically, the present invention provides a method of economical extraction of lithium from the lithium bearing solution by adding a phosphorous supplying material to the solution to prepare a lithium phosphate aqueous solution subject to electrolysis.
    Type: Grant
    Filed: February 7, 2013
    Date of Patent: January 20, 2015
    Assignee: Research Institute of Industrial Science & Technology
    Inventors: Uong Chon, Ki Hong Kim, Oh Joon Kwon, Chang Ho Song, Gi Chun Han, Ki Young Kim
  • Publication number: 20140262813
    Abstract: Both the reaction of hydride-forming compositions with hydrogen to form hydrides, and the decomposition of such hydrides to release hydrogen may be promoted electrochemically. These reactions may be conducted reversibly, and if performed in a suitable cell, the cell will serve as a hydrogen storage and release device.
    Type: Application
    Filed: May 27, 2014
    Publication date: September 18, 2014
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: John J. Vajo, Wen Li, Ping Liu, Frederick E. Pinkerton
  • Publication number: 20140262812
    Abstract: A system and method for generating and dispensing a diluted sodium hydroxide solution, the system including an electrolysis unit configured to electrochemically generate a concentrated sodium hydroxide solution from an anolyte solution formed with a non-chlorinated electrolyte. The system also including a dosing pump configured to receive dilution water and the concentrated sodium hydroxide solution at a high dilution ratio to produce the diluted sodium hydroxide solution, and a dispenser configured to dispense the diluted sodium hydroxide solution.
    Type: Application
    Filed: March 13, 2014
    Publication date: September 18, 2014
    Inventors: Daniel Paul Longhenry, Daniel L. Joynt
  • Publication number: 20140234193
    Abstract: Systems are described for dissolving metal silicates to: produce metal hydroxide; remove carbon dioxide or other acid gases from the atmosphere or other gas mixture by reacting such gases with the metal hydroxide; penetrate or excavate metal silicates; extract metals or silicon-containing compounds from metal silicates; and produce hydrogen and oxygen or other gases.
    Type: Application
    Filed: January 18, 2011
    Publication date: August 21, 2014
    Applicant: Lawrence Livermore National Security, LLC
    Inventor: Gregory Hudson Rau
  • Patent number: 8795508
    Abstract: The present invention relates to carbon dioxide sequestration, including processes in which group-2 silicates are used to remove carbon dioxide from waste streams to form corresponding group-2 carbonates and silica.
    Type: Grant
    Filed: December 17, 2010
    Date of Patent: August 5, 2014
    Assignee: Skyonic Corporation
    Inventor: Joe David Jones
  • Patent number: 8764965
    Abstract: Electrochemical processes to convert alkali sulfates into useful chemical products, such as syngas, alkali hydroxide, and sulfur are disclosed. An alkali sulfate is reacted with carbon to form carbon monoxide and alkali sulfide. In one embodiment, the alkali sulfide is dissolved in water and subjected to electrochemical reaction to form alkali hydroxide, hydrogen, and sulfur. In another embodiment, the alkali sulfide is reacted with iodine to form alkali iodide sulfur in a non-aqueous solvent, such as methyl alcohol. The alkali iodide is electrochemically reacted to form alkali hydroxide, hydrogen, and iodine. The iodine may be recycled to react with additional alkali sulfide. The hydrogen and carbon monoxide from both embodiments may be combined to form syngas. The alkali hydroxide from both embodiments may be recovered as a useful industrial chemical.
    Type: Grant
    Filed: January 27, 2012
    Date of Patent: July 1, 2014
    Assignee: Ceramatec,Inc.
    Inventor: Ashok V. Joshi
  • Publication number: 20140069821
    Abstract: The systems and methods disclosed herein process produced/flowback water, such as high total dissolved solids produced water, to generate high purity, high value products with little to no waste. The generated high purity, high value products include caustic soda, hydrochloric acid, and/or sodium hypochlorite. Further, the methods and systems disclosed herein generate high quality brine for electrolysis through the systematic removal of contaminants such as but not limited to suspended solids, iron, sulfides, barium, radium, strontium, calcium, magnesium, manganese, fluoride, heavy metals, organic carbon, recoverable hydrocarbons, silica, lithium, and/or nitrogen containing compounds. Further, some products generated by the systems and methods disclosed herein may be recovered and reutilized or sold for other uses, such as carbon dioxide, calcium oxide, chlorine, magnesium oxide, calcium carbonate, and/or barium sulfate.
    Type: Application
    Filed: November 18, 2013
    Publication date: March 13, 2014
    Inventors: Mark A. Marcin, Thomas R. Sage
  • Publication number: 20140037521
    Abstract: The invention generally relates to methods of selectively removing lithium from various liquids, methods of producing high purity lithium carbonate, methods of producing high purity lithium hydroxide, and methods of regenerating resin.
    Type: Application
    Filed: October 3, 2013
    Publication date: February 6, 2014
    Applicant: Simbol Inc.
    Inventors: Stephen Harrison, Robert Blanchet
  • Publication number: 20140014526
    Abstract: Methods for enhancing alkalinity and performance of ash-based detergents are disclosed. Nonhazardous ash-based detergent alkalinity is enhanced through increasing the ratio of sodium hydroxide to ash-based alkalinity. Methods according to the invention do not require the addition of chemical ingredients, do not generate additional waste streams and use the entirety of the ash-based detergent. The methods according to the invention provide alkalinity-enhanced detergent use solutions that are sufficiently concentrated for adequate cleaning capability while only requiring minimal amounts of the use solution to be dispensed for an in situ cleaning process.
    Type: Application
    Filed: September 11, 2013
    Publication date: January 16, 2014
    Applicant: Ecolab USA Inc.
    Inventors: Katherine M. Sanville, Clinton Hunt, JR., Barry R. Taylor
  • Publication number: 20130319876
    Abstract: An apparatus and method is provided for the production of alkali metals and caustic solutions. The apparatus and method do not require the use of toxic liquid mercury-sodium amalgam electrodes. The apparatus and methods utilize a bismuth-indium-tin eutectic alloy as a substitute for the mercury electrode used in a conventional Castner-Kellner apparatus.
    Type: Application
    Filed: November 23, 2011
    Publication date: December 5, 2013
    Applicant: United States Government, as represented by the Secretary of the Navy
    Inventor: Peter Yaw-Ming Hsieh
  • Patent number: 8562810
    Abstract: Methods for enhancing alkalinity and performance of ash-based detergents are disclosed. Nonhazardous ash-based detergent alkalinity is enhanced through increasing the ratio of sodium hydroxide to ash-based alkalinity. Methods according to the invention do not require the addition of chemical ingredients, do not generate additional waste streams and use the entirety of the ash-based detergent. The methods according to the invention provide alkalinity-enhanced detergent use solutions that are sufficiently concentrated for adequate cleaning capability while only requiring minimal amounts of the use solution to be dispensed for an in situ cleaning process.
    Type: Grant
    Filed: July 26, 2011
    Date of Patent: October 22, 2013
    Assignee: Ecolab USA Inc.
    Inventors: Katherine M. Sanville, Clinton Hunt, Jr., Barry R. Taylor
  • Publication number: 20130256149
    Abstract: A microbial electrolysis cell having a brush anode is described. A method of producing products, such as hydrogen, at the cathode of the microbial electrolysis cell is also provided. The microbial electrolysis cell is configured in a cylindrical shape having an anode, cathode and anion exchange membrane all disposed concentrically. A brush anode spirally wound around the outside of the cylindrical microbial electrolysis cell is described. The method may include sparging the anode and/or cathode with air in some cases. In addition, CO2-containing gas may be injected into a cathode chamber to reduce pH is some cases.
    Type: Application
    Filed: March 15, 2013
    Publication date: October 3, 2013
    Applicant: Arizona Science and Technology Enterprises LLC
    Inventors: Sudeep Popat, Prathap Parameswaran, Cesar Torres, Bruce Rittmann
  • Patent number: 8518231
    Abstract: The invention relates to a process for production of diaryl carbonate combined with the electrolysis of the resultant alkali metal chloride-containing process wastewater. The process according to the invention makes possible, inter alia, improved utilization in electrolysis of the alkali metal chloride-containing solution obtained in the production of diaryl carbonate.
    Type: Grant
    Filed: March 1, 2011
    Date of Patent: August 27, 2013
    Assignee: Bayer Intellectual Property GmbH
    Inventors: Pieter Ooms, Andreas Bulan, Johann Rechner, Rainer Weber, Marc Buts, Johan Vanden Eynde
  • Publication number: 20130206605
    Abstract: Apparatus for seawater acidification including an ion exchange, cathode and anode electrode compartments and cation-permeable membranes that separate the electrode compartments from the ion exchange compartment. Means is provided for feeding seawater through the ion exchange compartment and for feeding a dissociable liquid media through the anode and cathode electrode compartments. A cathode is located in the cathode electrode compartment and an anode is located in the anode electrode compartment and a means for application of current to the cathode and anode is provided. A method for the acidification of seawater by subjecting the seawater to an ion exchange reaction to exchange H+ ions for Na+ ions. Carbon dioxide may be extracted from the acidified seawater. Optionally, the ion exchange reaction can be conducted under conditions which produce hydrogen as well as carbon dioxide. The carbon dioxide and hydrogen may be used to produce hydrocarbons.
    Type: Application
    Filed: March 15, 2013
    Publication date: August 15, 2013
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Felice DiMascio, Dennis R. Hardy, Heather D. Willauer, M. Kathleen Lewis, Frederick Williams
  • Patent number: 8501034
    Abstract: Processes and apparatus for purifying brine are provided including (1) providing an aqueous brine solution comprising one or more inorganic salts and one or more organic compounds and (2) conducting at least one unit operation for removing organic compounds from the brine solution to obtain a purified brine solution.
    Type: Grant
    Filed: August 18, 2008
    Date of Patent: August 6, 2013
    Assignee: Dow Global Technologies LLC
    Inventors: Bruce Hook, Dan Tirtowidjojo, Anil Mehta
  • Publication number: 20130146474
    Abstract: The present invention is an apparatus and method of employing an electrolysis cell assembly for producing simultaneously various diluted Hypochlorous Acid solutions and simultaneously a diluted Sodium Hydroxide solution for usage as cleaning and sanitation by electrolysis of an aqueous saline solution. The apparatus comprising a cylindrical three chamber electrolysis cell consisting of an inner chamber, a middle chamber and an outer chamber having two middle mesh-electrodes in the middle chamber wherein ion-selective exchange membranes are sealed around or on the inside of the middle mesh-electrodes to separate the middle chamber from the inner and outer chamber. The method allows production of different concentrations of Sodium Hydroxide and Hypochlorous Acid solutions isolating a Sodium Hydroxide solution having a negative redox potential ranging from ?600 to ?1200 mV and isolating a diluted Hypochlorous Acid solution having a positive redox potential ranging from +700 to +1200 mV.
    Type: Application
    Filed: December 18, 2012
    Publication date: June 13, 2013
    Applicant: AQUAOX INC.
    Inventor: AQUAOX INC.
  • Publication number: 20130146473
    Abstract: An Electrolysis cell assembly to produce diluted Sodium Hydroxide solutions (NAOH) and diluted Hypochlorous Acid (HOCL) solutions having cleaning and sanitizing properties. The electrolysis cell consists of two insulating end pieces for a cylindrical electrolysis cell comprising at least two cylindrical electrodes with two cylindrical diaphragms arranged co-axially between them. The method of producing different volumes and concentrations of diluted NAOH solutions and diluted HOCL solutions comprises recirculating an aqueous sodium chloride or potassium chloride solution into the middle chamber of the cylindrical electrolytic cell and feeding softened filtered water into the cathode chamber and into the anode chamber of the cylindrical electrolysis cell.
    Type: Application
    Filed: December 13, 2011
    Publication date: June 13, 2013
    Inventors: Ralph A. Lambert, Michael van Schaik
  • Patent number: 8431005
    Abstract: This invention relates to the separation of lithium from lithium-containing materials, primarily ores such as hectoritic montmorillonite, having about 0.1 to 1.0 percent lithium by weight. The process comprises reducing the particle size of the material to less than about 150 microns; mixing the material with a solid source of sulfates and carbonates at predetermined ratios; granulating the mix with an aqueous solvent in order to obtain granules of 1-10 mm; reacting the granules at temperatures of 950-1100° C.; slurrying the reaction products with an aqueous solution; heating the resulting slurry at about 50° to 100° C. for from about 0.
    Type: Grant
    Filed: June 24, 2011
    Date of Patent: April 30, 2013
    Assignee: Western Lithium Corporation
    Inventors: Vladimir Zbranek, Silvio Bertolli, Pedro Vargas
  • Publication number: 20130048509
    Abstract: A method for producing an alkali metal hydroxide, comprises providing an electrolytic cell that includes at least one membrane having ceramic material configured to selectively transport alkali metal ions. The method includes introducing a first solution comprising an alkali metal hydroxide solution into a catholyte compartment such that said first solution is in communication with the membrane and a cathode. A second solution comprising at least one alkali metal salt and one or more monovalent, divalent, or multivalent metal salts is introduced into an anolyte compartment such that said second solution is in communication with the membrane and an anode. The method includes applying an electric potential to the electrolytic cell such that alkali metal ions pass through the membrane and are available to undertake a chemical reaction with hydroxyl ions in the catholyte compartment to form alkali metal hydroxide.
    Type: Application
    Filed: August 31, 2011
    Publication date: February 28, 2013
    Inventors: Shekar Balagopal, Marc Flinders, Justin Pendelton
  • Publication number: 20130037415
    Abstract: The current invention is to provide an oxygen gas diffusion cathode for brine electrolysis which reduces an initial electrolysis voltage and is excellent in the durability against short-circuit, and an electrolytic cell and an electrolytic method using the same. The oxygen gas diffusion cathode for brine electrolysis includes a gas diffusion layer 13 and a reaction layer 14 on one surface of an electro-conductive substrate 12, and an electro-conductive layer 15 on the opposite surface thereof. The present oxygen gas diffusion cathode reduces the resistance of the electro-conductive substrate 12 and supplies uniform current by mounting the electro-conductive layer 15.
    Type: Application
    Filed: February 15, 2011
    Publication date: February 14, 2013
    Inventors: Yuki Izawa, Setsuro Ogata, Masaharu Uno, Masashi Tanaka
  • Patent number: 8349165
    Abstract: Soluble nickel and tin contained in a coating layer are eluted into an aqueous solution by bringing a cathode coated with a nickel-tin alloy into contact with an aqueous solution of an alkali metal hydrogen carbonate such as sodium hydrogen carbonate, thereby reducing the amounts of these metals eluted during electrolysis.
    Type: Grant
    Filed: November 12, 2009
    Date of Patent: January 8, 2013
    Assignee: Tokuyama Corporation
    Inventors: Yasuyuki Tanaka, Kenji Aoki
  • Patent number: 8317994
    Abstract: A method for concentrating an aqueous caustic alkali produced by a membrane cell process by using a single or multiple effect evaporator system in which the vapor flows in a counter direction to the aqueous caustic alkali flow and the heat recovered from the catholyte circulation line is used as part of the concentration process. In one embodiment, a catholyte heat recovery heat exchanger and evaporation chamber are located after the last effect of a multiple effect evaporator system. In another embodiment, the catholyte heat recovery heat exchanger and evaporation chamber are located prior to the single or multiple effect evaporator system. In yet another embodiment, the catholyte heat recovery process is used in conjunction with additional heat exchanger processes to further concentrate the final product as desired.
    Type: Grant
    Filed: August 7, 2008
    Date of Patent: November 27, 2012
    Assignee: Westlake Vinyl Corporation
    Inventors: Anthony B. Davis, Thomas H. Yohe, Russell F. Dunn
  • Publication number: 20120273365
    Abstract: Electrochemical processes to convert alkali sulfates into useful chemical products, such as syngas, alkali hydroxide, and sulfur are disclosed. An alkali sulfate is reacted with carbon to form carbon monoxide and alkali sulfide. In one embodiment, the alkali sulfide is dissolved in water and subjected to electrochemical reaction to form alkali hydroxide, hydrogen, and sulfur. In another embodiment, the alkali sulfide is reacted with iodine to form alkali iodide sulfur in a non-aqueous solvent, such as methyl alcohol. The alkali iodide is electrochemically reacted to form alkali hydroxide, hydrogen, and iodine. The iodine may be recycled to react with additional alkali sulfide. The hydrogen and carbon monoxide from both embodiments may be combined to form syngas. The alkali hydroxide from both embodiments may be recovered as a useful industrial chemical.
    Type: Application
    Filed: January 27, 2012
    Publication date: November 1, 2012
    Inventor: Ashok V. Joshi
  • Patent number: 8287709
    Abstract: An immersion treatment method with which a vehicle body horizontally immersed in liquid is taken out in a tilted position. The vehicle body is taken out of the liquid at high speed in a tilted position. Foreign matter is separated from the vehicle body and removed together with the liquid.
    Type: Grant
    Filed: March 6, 2008
    Date of Patent: October 16, 2012
    Assignee: Honda Motor Co., Ltd.
    Inventors: Yusuke Hagihara, Masaki Takahashi, Makoto Takayanagi, Hideki Ikeda, Naoya Kanke, Tsukasa Yamanaka, Takayuki Tahara
  • Patent number: 8268159
    Abstract: An electrochemical process for the production of sodium hypochlorite is disclosed. The process may potentially be used to produce sodium hypochlorite from seawater or low purity un-softened or NaCl-based salt solutions. The process utilizes a sodium ion conductive ceramic membrane, such as membranes based on NASICON-type materials, in an electrolytic cell. In the process, water is reduced at a cathode to form hydroxyl ions and hydrogen gas. Chloride ions from a sodium chloride solution are oxidized in the anolyte compartment to produce chlorine gas which reacts with water to produce hypochlorous and hydrochloric acid. Sodium ions are transported from the anolyte compartment to the catholyte compartment across the sodium ion conductive ceramic membrane. Sodium hydroxide is transported from the catholyte compartment to the anolyte compartment to produce sodium hypochlorite within the anolyte compartment.
    Type: Grant
    Filed: December 20, 2006
    Date of Patent: September 18, 2012
    Assignee: Ceramatec, Inc.
    Inventors: Shekar Balagopal, Vinod Malhotra, Justin Pendleton, Kathy Jo Reid
  • Publication number: 20120183462
    Abstract: Systems are described for dissolving metal silicates to: produce metal hydroxide; remove carbon dioxide or other acid gases from the atmosphere or other gas mixture by reacting such gases with the metal hydroxide; penetrate or excavate metal silicates; extract metals or silicon-containing compounds from metal silicates; and produce hydrogen and oxygen or other gases.
    Type: Application
    Filed: January 18, 2011
    Publication date: July 19, 2012
    Applicant: Lawrence Livermore National Security, LLC
    Inventor: Gregory Hudson Rau
  • Publication number: 20120145559
    Abstract: Provided is a gas diffusion electrode equipped ion exchange membrane electrolyzer including an anode, an ion exchange membrane, and a cathode chamber in which a gas diffusion electrode is disposed, wherein the ion exchange membrane and a cathode chamber inner space in which the gas diffusion electrode is disposed are separated by a liquid retaining member, the outer periphery of the liquid retaining member is held in a void formed in a gasket or a cathode chamber frame constituting the cathode chamber, or the outer periphery and the end face of the outer periphery of the liquid retaining member are sealed, or the outer periphery of the liquid retaining member is joined to and integrated with the gasket.
    Type: Application
    Filed: May 24, 2010
    Publication date: June 14, 2012
    Applicants: CHLORINE ENGINEERS CORP., LTD., KANEKA CORPORATION, TOAGOSEI CO., LTD.
    Inventors: Kiyohito Asaumi, Yukinori Iguchi, Mitsuharu Hamamori, Tomonori Izutsu
  • Publication number: 20120125782
    Abstract: Provided is a gas diffusion electrode equipped ion exchange membrane electrolyzer including an anode, an ion-exchange membrane, and a cathode chamber in which a gas diffusion electrode is disposed, wherein in a cathode gas chamber formed between a back plate of the cathode chamber and one side of the gas diffusion electrode opposite to the electrolytic surface, a gas-permeable elastic member is disposed between the gas diffusion electrode and the back plate, and the elastic member forms a conductive connection between the gas diffusion electrode and the back plate by making contact with corrosion-resistant conductive layers formed on the surfaces of a plurality of conductive members which are joined to the back plate.
    Type: Application
    Filed: May 24, 2010
    Publication date: May 24, 2012
    Applicants: CHLORINE ENGINEERS CORP., LTD., KANEKA CORPORATION, TOAGOSEI CO. LTD.
    Inventors: Kiyohito Asaumi, Yukinori Iguchi, Mitsuharu Hamamori
  • Publication number: 20120103826
    Abstract: A method for recovering and extracting lithium from a feed liquid that may have a mixture of lithium and non-lithium salts present in the feed liquid. Salts of varying solubility are precipitated out of the feed liquid using water evaporation or other techniques. Pure lithium hydroxide is obtained using electrolysis or electro-dialysis processes in combination with a lithium ion selective inorganic membrane such as LiSICON. The negative effect of sodium and potassium on the lithium ion selective inorganic membrane is reduced by reversing the polarity of the current placed across the membrane.
    Type: Application
    Filed: October 31, 2011
    Publication date: May 3, 2012
    Inventors: John Howard Gordon, Sai Bhavaraju
  • Publication number: 20120107210
    Abstract: The invention generally relates to methods of selectively removing lithium from various liquids, methods of producing high purity lithium carbonate, methods of producing high purity lithium hydroxide, and methods of regenerating resin.
    Type: Application
    Filed: November 28, 2011
    Publication date: May 3, 2012
    Applicant: Simbol Mining Corp.
    Inventors: Stephen Harrison, Robert Blanchet
  • Publication number: 20120100056
    Abstract: The invention generally relates to methods of selectively removing lithium from various liquids, methods of producing high purity lithium carbonate, methods of producing high purity lithium hydroxide, and methods of regenerating resin.
    Type: Application
    Filed: November 28, 2011
    Publication date: April 26, 2012
    Applicant: Simbol Mining Corp.
    Inventors: Stephen Harrison, Robert Blanchet
  • Patent number: 8133468
    Abstract: Processes are provided for conjointly producing Br2, a concentrated aqueous solution containing CaCI2, and Cl2 from an aqueous HBr-rich stream and a feed brine dilute in CaCI2 that comprises NaCI. Such processes can comprise feeding the aqueous HBr-rich stream and the feed brine to a tower, oxidizing bromide moieties within the tower with Cl2 from a Cl2 source, at least a portion of which is produced according to this invention, to produce Br2, recovering Br2 from the tower, removing a bromide-depleted bottoms from the tower, such bottoms containing HCI, adding a Ca++ source to the bromide-depleted bottoms to convert substantially all of the HCI in the bottoms to CaCI2, as necessary, removing water from the treated bottoms to produce the concentrated aqueous solution, producing Cl2 and caustics from residual chlorides such as NaCI, and using at least a portion of the thus produced Cl2 in the Cl2 source.
    Type: Grant
    Filed: February 5, 2008
    Date of Patent: March 13, 2012
    Assignee: Albemarle Corporation
    Inventors: Joe D. Sauer, George W. Cook, Jr., Tyson J. Hall, George A. Newbill
  • Publication number: 20110240484
    Abstract: Alkali bicarbonate is synthesized in an electrolytic cell from alkali carbonate. The electrolytic cell includes an alkali ion conductive membrane positioned between an anolyte compartment configured with an anode and a catholyte compartment configured with a cathode. The alkali conductive membrane selectively transports alkali ions and prevents the transport of anions produced in the catholyte compartment. An aqueous alkali carbonate solution is introduced into the anolyte compartment and electrolyzed at the anode to produce carbon dioxide and/or hydrogen ions which react with alkali carbonate to produce alkali bicarbonate. The alkali bicarbonate is recovered by filtration or other separation techniques. When the catholyte solution includes water, pure alkali hydroxide is produced. When the catholyte solution includes methanol, pure alkali methoxide is produced.
    Type: Application
    Filed: April 1, 2011
    Publication date: October 6, 2011
    Inventors: Justin Pendleton, Ashok V. Joshi, Sai Bhavaraju
  • Patent number: 7993511
    Abstract: An electrochemical system comprising a cathode electrolyte comprising added carbon dioxide and contacting a cathode; and a first cation exchange membrane separating the cathode electrolyte from an anode electrolyte contacting an anode; and an electrochemical method comprising adding carbon dioxide into a cathode electrolyte separated from an anode electrolyte by a first cation exchange membrane; and producing an alkaline solution in the cathode electrolyte and an acid.
    Type: Grant
    Filed: November 12, 2009
    Date of Patent: August 9, 2011
    Assignee: Calera Corporation
    Inventors: Ryan J. Gilliam, Valentin Decker, Nigel Antony Knott, Michael Kostowskyj, Bryan Boggs
  • Publication number: 20110147274
    Abstract: After desulfurizing a hydrocarbon feedstream using an alkali metal reagent, the hydrocarbon feedstream can include particles of spent alkali metal salts. The spent alkali metal salts can be separated from the hydrocarbon feedstream and regenerated to form an alkali metal reagent, such as a alkali hydroxide or alkali sulfide. The regeneration process can pass through an intermediate stage of forming an alkali carbonate by successive reactions with carbon dioxide and calcium oxide. The calcium oxide can also be regenerated.
    Type: Application
    Filed: December 14, 2010
    Publication date: June 23, 2011
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Jorge L. Soto, Daniel P. Leta, Lu Han, Walter D. Vann, Mark A. Greaney, James R. Bielenberg, Paul D. Oldenburg, Jonathan M. McConnachie, Leo D. Brown, William C. Baird, JR., Roby Bearden, JR.
  • Patent number: 7955490
    Abstract: A process for the production of sodium hydroxide, hydrogen gas and chlorine gas which comprises (1) forming an aqueous solution of sodium chloride, (2) placing the sodium chloride solution in a cell having two compartments separated by a separator, (3) subjecting the cell to a direct electrical current of about 3-24 volts and 0.1-500 K amperes; thereby generating hydrogen gas, chlorine gas and an aqueous sodium hydroxide solution and wherein the electrical current is generated by a solar panel.
    Type: Grant
    Filed: October 23, 2008
    Date of Patent: June 7, 2011
    Inventors: James Fang, John Fang
  • Patent number: 7922890
    Abstract: Method and apparatus for a low maintenance, high reliability on-site electrolytic generator incorporating automatic cell monitoring for contaminant film buildup, as well as automatically removing or cleaning the contaminant film. This method and apparatus preferably does not require human intervention to clean.
    Type: Grant
    Filed: November 28, 2007
    Date of Patent: April 12, 2011
    Assignee: MIOX Corporation
    Inventors: Justin Sanchez, Rodney E. Herrington
  • Patent number: 7875163
    Abstract: A low-voltage, low-energy electrochemical system and method of producing hydroxide ions and/or bicarbonate ions and/or carbonate ions utilizing significantly less than the typical 3V used across the conventional anode and cathode to produce the ions; consequently, carbon dioxide emissions attributable to the present system and method are significantly reduced.
    Type: Grant
    Filed: June 24, 2009
    Date of Patent: January 25, 2011
    Assignee: Calera Corporation
    Inventors: Ryan J. Gilliam, Thomas A. Albrecht, Nikhil Jalani, Nigel Antony Knott, Valentin Decker, Michael Kostowskyj, Bryan Boggs, Kasra Farsad
  • Patent number: 7857953
    Abstract: The present invention provides an oxygen-reduction gas diffusion cathode having: a porous conductive substrate; diamond particle having a hydrophobic surface; and catalyst particle, the diamond particle and the catalyst particle being disposed on the porous conductive substrate, and a method of sodium chloride electrolysis using the cathode.
    Type: Grant
    Filed: October 25, 2006
    Date of Patent: December 28, 2010
    Assignee: Permelec Electrode Ltd.
    Inventors: Yuji Yamada, Yuki Izawa, Masaharu Uno, Yoshinori Nishiki, Tsuneto Furuta
  • Publication number: 20100282689
    Abstract: A low energy water treatment system and method is provided. The system has at least one electrodialysis device that produces partially treated water and a brine byproduct, a softener, and at least one electrodeionization device. The partially treated water stream can be softened by the softener to reduce the likelihood of scale formation and to reduce energy consumption in the electrodeionization device, which produces water having target properties. At least a portion of the energy used by the electrodeionization device can be generated by concentration differences between the brine and seawater streams introduced into compartments thereof. The brine stream can also be used to regenerate the softener.
    Type: Application
    Filed: September 22, 2008
    Publication date: November 11, 2010
    Inventors: Gary C. Ganzi, Li-Shiang Liang, Frederick C. Wilkins