Involving Measuring, Analyzing, Or Testing Patents (Class 205/81)
  • Patent number: 6749739
    Abstract: Relative concentrations of active suppressor additive species and suppressor breakdown contaminants in an acid copper electroplating bath are determined by cyclic voltammetric stripping (CVS) dilution titration analysis using two negative electrode potential limits. The analysis results for the more negative potential limit provide a measure of the suppressor additive concentration alone since the suppressor breakdowvn contaminants are not effective at suppressing the copper deposition rate at the more negative potentials. The analysis results for the less negative potential limit provide a measure of the combined concentrations of the suppressor additive and the suppressor breakdown contaminants. Comparison of the results for the two analyses yields a measure of the concentration of the suppressor breakdown contaminants relative to the suppressor additive concentration.
    Type: Grant
    Filed: October 7, 2002
    Date of Patent: June 15, 2004
    Assignee: ECI Technology, Inc.
    Inventors: Gene Chalyt, Peter Bratin, Michael Pavlov, Alex Kogan, Michael James Perpich
  • Patent number: 6749776
    Abstract: A method of making an electron emissive material using combinatorial chemistry techniques is provided. The method includes providing a plurality of pixels of the electron emissive material, each pixel having at least one different characteristic from any other one of the plurality of pixels, and measuring at least one property of each pixel. The measurement may include a measurement of the electron emissive material work function using a Kelvin probe or other work function measurement systems.
    Type: Grant
    Filed: December 4, 2000
    Date of Patent: June 15, 2004
    Assignee: General Electric Company
    Inventors: Sung Su Han, Sylvain Simon Coulombe
  • Publication number: 20040108213
    Abstract: A method of plating bath composition control. The method may include analysis of a plating bath to determine byproduct concentrations and changing the composition of the plating bath as a result thereof. Additionally, plating bath solution may be circulated between reservoirs before, during, or after the analysis and the changing of the composition. Methods may be carried out with use of a system having separate reservoirs, an analyzer, and a dosing controller for the changing of the composition.
    Type: Application
    Filed: December 9, 2002
    Publication date: June 10, 2004
    Inventors: Robert T. Talasek, Marc Van den Berg, William F. Ryann
  • Patent number: 6746579
    Abstract: An object of the present invention is to provide a method of monitoring deterioration of an electrolytic gold plating solution which can always stably performing gold plating by continuously detecting a deterioration state of the gold sulfite complex plating solution, and to provide an apparatus for monitoring the deterioration of the electrolytic gold plating solution. The present invention is characterized by an electrolytic gold plating method for performing electrolytic gold plating on a surface of a substrate body using a gold sulfite plating solution, wherein the gold plating is performed while deterioration of the plating solution is being always or intermittently detected during plating.
    Type: Grant
    Filed: November 21, 2001
    Date of Patent: June 8, 2004
    Assignee: Hitachi Kyowa Engineering Co., Ltd.
    Inventor: Hiroyuki Kadota
  • Patent number: 6736952
    Abstract: An electrochemical planarization apparatus for planarizing a metallized surface on a workpiece includes a polishing pad and a platen. The platen is formed of conductive material, is disposed proximate to the polishing pad and is configured to have a negative charge during at least a portion of a planarization process. At least one electrical conductor is positioned within the platen. The electrical conductor has a first end connected to a power source. A workpiece carrier is configured to carry a workpiece and press the workpiece against the polishing pad. The power source applies a positive charge to the workpiece via the electrical conductor so that an electric potential difference between the metallized surface of the workpiece and the platen is created to remove at least a portion of the metallized surface from the workpiece.
    Type: Grant
    Filed: February 12, 2001
    Date of Patent: May 18, 2004
    Assignee: SpeedFam-IPEC Corporation
    Inventors: Ismail Emesh, Saket Chadda, Nikolay N. Korovin, Brian L. Mueller
  • Patent number: 6733656
    Abstract: In the present invention, the test reference electrode used for voltammetric analysis of a plating bath is calibrated relative to the zero-current point between metal plating and stripping at a rotating platinum disk electrode in the plating bath supporting electrolyte. This calibration is readily performed during the normal course of cyclic voltammetric stripping (CVS) or cyclic pulse voltammetric stripping (CPVS) plating bath analysis the need for additional instrumentation or removal of the test reference electrode from the analysis equipment. Automatic calibration of the reference electrode enabled by the present invention, saves labor, time and expense, and minimizes errors in the plating bath analysis.
    Type: Grant
    Filed: April 3, 2002
    Date of Patent: May 11, 2004
    Assignee: ECI Technology Inc.
    Inventors: Gene Chalyt, Peter Bratin, Michael Pavlov, Alex Kogan, Michael James Perpich
  • Patent number: 6726825
    Abstract: A method of manufacturing a positive electrode foil of an aluminum electrolytic capacitor is provided in which anodizing conditions are optimally determined and automatically set to minimize the loss of production and to produce a constant quality of the positive electrode foil. The method comprises an etching process and an anodizing process. An etched foil produced in the etching process is subjected to a constant current inspection, and then, the anodizing conditions are determined from the result of the constant current inspection. The anodizing conditions are transferred to a control panel in the anodizing process where they are automatically registered as its settings. Also, an apparatus for manufacturing the positive electrode foil is provided which has a voltage sensor connected between an output running roller and cathode electrodes in an anodizing tank. A voltage measured by the voltage sensor is fed back to a direct-current source for controlling its output voltage.
    Type: Grant
    Filed: April 3, 2001
    Date of Patent: April 27, 2004
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Mitsuhisa Yoshimura, Kazuaki Nakanishi, Kenji Yoshida, Seita Takahashi, Hiroyuki Nakano, Naomi Kurihara, Katsuyuki Nakamura, Masanori Okabayashi, Takahiro Suzuki
  • Patent number: 6726824
    Abstract: The present invention provides methods and apparatus for analysis and monitoring of electrolyte bath composition. Based on the results of the analysis, the invention controls electrolyte bath composition and plating hardware. Thus, the invention provides control of electroplating processes based on plating bath composition data. The invention accomplishes this by incorporating mass spectral analysis into a feedback control mechanism for electroplating. Mass spectrometry is used to identify plating bath conditions and based on the results, the plating bath formulation and plating process are controlled.
    Type: Grant
    Filed: April 11, 2001
    Date of Patent: April 27, 2004
    Assignee: Novellus Systems, Inc.
    Inventor: Mukul Khosla
  • Patent number: 6716329
    Abstract: A plating system is composed of a transfer device for performing transfer of a wafer, a plating unit and a washing/drying unit provided around the transfer device. Each unit is structured to be detachable from the plating system. The plating unit is divided into a wafer transfer section and a plating section by a separator, and atmosphere of each section is independently set.
    Type: Grant
    Filed: May 1, 2001
    Date of Patent: April 6, 2004
    Assignee: Tokyo Electron Limited
    Inventors: Wataru Okase, Takenobu Matsuo
  • Patent number: 6716330
    Abstract: An plating apparatus which can easily form a plated film having more uniform thickness on a surface, to be plate, of a material to be plated. The plating apparatus includes a holding portion having a heating portion for holding a material to be plated in such a state that a surface to be plated faces downward, and a plating bath for introducing an electroless plating liquid having a predetermined temperature into a plating chamber, and holding the electroless plating liquid while allowing the electroless plating liquid to overflow an overflow dam. The material which is by the holding portion, is brought into contact with the plating liquid in the plating bath to plate the material.
    Type: Grant
    Filed: October 24, 2001
    Date of Patent: April 6, 2004
    Assignee: Ebara Corporation
    Inventors: Akihisa Hongo, Koji Mishima, Hiroaki Inoue, Norio Kimura, Tsutomu Karimata
  • Publication number: 20040055888
    Abstract: The present invention relates generally to any plating solution and methods for monitoring its performance. More specifically, the present invention relates to plating bath and methods for monitoring its plating functionality based on chemometric analysis of voltammetric data obtained for these baths. More particularly, the method of the present invention relates to application of numerous chemometric techniques to describe quantitatively plating bath functionality in order to maintain its proper performance.
    Type: Application
    Filed: July 16, 2003
    Publication date: March 25, 2004
    Inventors: Kazimierz J. Wikiel, Aleksander Jaworski, Hanna Wikiel
  • Patent number: 6709568
    Abstract: The present invention relates to a method for determining concentration of brightener and leveler contained in an aqueous acid metal electroplating solution, by firstly determining the concentration of the brightener at a first set of measurement conditions, and secondly determining the concentration of the leveler at a second set of measurement conditions, provided that the first set of measurement conditions differ from the second set of measurement conditions on the rotation speed of a rotating disc electrode used for measuring plating potential of said aqueous acid metal electroplating solution, and optionally, the electroplating duration at which the plating potential of said aqueous acid metal electroplating solution is measured, provided that the first rotation speed is lower than the second rotation speed, and that the first electroplating duration is shorter than the second electroplating duration.
    Type: Grant
    Filed: June 13, 2002
    Date of Patent: March 23, 2004
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Jianwen Han, Ronni M. Etterman, Peter M. Robertson, Richard Bhella, David Price
  • Patent number: 6709561
    Abstract: The concentration of a reducing agent in an electroless bath for plating a first metal is determined from the effect of the reducing agent on the electrodeposition rate of a second metal. For electroless cobalt and nickel baths, a sample of the electroless plating bath is added to an acid copper plating solution and the copper electrodeposition rate is measured by cyclic voltammetric stripping (CVS) analysis. Separate analyses for hypophosphite and dimethylamineborane in baths employing both reducing agents are attained via selective decomposition of the dimethylamineborane in acidic solution.
    Type: Grant
    Filed: November 6, 2002
    Date of Patent: March 23, 2004
    Assignee: ECI Technology, Inc.
    Inventors: Michael Pavlov, Gene Chalyt, Peter Bratin, Alex Kogan, Michael James Perpich
  • Patent number: 6693417
    Abstract: A micro-electronic bond degradation sensor includes a sensor substrate having sensor circuitry and a sensor stud and a power stud extending therefrom. The sensor circuitry includes a voltage-to-current amplifier having an input coupled to sensor stud and an output coupled to the power stud. The voltage-to-current amplifier is operable to convert a voltage signal occurring along the sensor stud to a current signal output along the power stud.
    Type: Grant
    Filed: May 3, 2002
    Date of Patent: February 17, 2004
    Assignee: Commonwealth of Australia
    Inventor: Alan Wilson
  • Patent number: 6683446
    Abstract: Methods and apparatus employ the use of arrays of two or more electronically discrete electrodes to facilitate high-throughput preparation and testing of materials with two or more elements. High rates of deposition, synthesis and/or analysis of materials are achieved with the use of arrays of electrodes whereby desired materials are developed. The high rate synthesis and/or analysis of an array of materials uses deposition control techniques in conjunction with the electrode array to develop a meaningful array of materials and to analyze the materials for desired characteristics to develop one or more materials with desired characteristics. The use of an array of electrodes enables high throughput development of materials having scientific and economic advantages.
    Type: Grant
    Filed: June 22, 2001
    Date of Patent: January 27, 2004
    Inventors: John Pope, Daniel Buttry
  • Patent number: 6673226
    Abstract: The concentration of chloride ion in an acid copper electroplating bath is determined from the effect that chloride exerts on the copper electrodeposition rate in the presence of organic additives. A cyclic voltammetric stripping (CVS) rate parameter is measured, before and after standard addition of a plating bath sample, in an acid copper electrodeposition solution containing little or no chloride and at least one organic additive. Cross contamination and waste disposal issues associated with the reagents and reaction products involved in chloride titration analyses are avoided. The method may also be applied to analysis of other halides (bromide and iodide) and other solutions.
    Type: Grant
    Filed: December 20, 2002
    Date of Patent: January 6, 2004
    Assignee: ECI Technology
    Inventors: Alex Kogan, Eugene Shalyt, Peter Bratin, Michael Pavlov, Michael James Perpich
  • Publication number: 20040000484
    Abstract: Embodiments of the invention provide an electro-analytical method for determining the concentration of an organic additive in an acidic or basic metal plating bath using an organic chemical analyzer. The method includes preparing a supporting-electrolyte solution, preparing a testing solution including the supporting-electrolyte solution and a standard solution, measuring an electrochemical response of the supporting-electrolyte solution using the organic chemical analyzer, and implementing an electro-analytical technique to determine the concentration of the organic additive in the plating bath from the electrochemical response measurements. The method is performed for independently analyzing one organic additive component in a plating bath containing multi-component organic additives, regardless of knowledge of the concentration of other organic additives and with minimal interference among organic additives.
    Type: Application
    Filed: June 27, 2002
    Publication date: January 1, 2004
    Applicant: Applied Materials, Inc.
    Inventors: Zhi-wen Sun, Chunman Yu, Brian Metzger, David W. Nguyen, Girish Dixit
  • Publication number: 20030217811
    Abstract: A system and method for processing semiconductor wafers using different wafer processes utilizes multiple processing assemblies to efficiently perform these wafer processes. The wafer processes performed by the processing assemblies may vary with respect to operating parameters or the types of wafer processes, which allows customization of the wafer processes. Each of the processing assemblies is configured to sequentially process two or more semiconductor wafers at different processing positions by sequentially transferring the semiconductor wafers to the different processing positions using a wafer transfer carousel. As the semiconductor wafers are processed at one of the processing assemblies, the processed semiconductor wafers are sequentially transferred to the next processing assembly in an efficient manner. The sequential processing of the semiconductor wafers at each of the processing assemblies and the sequential transferring of the wafers contribute to an increased throughput.
    Type: Application
    Filed: August 16, 2001
    Publication date: November 27, 2003
    Inventor: In Kwon Jeong
  • Patent number: 6645364
    Abstract: Disclosed is a method of analyzing components in an electroplating bath. Also disclosed is a method of controlling electroplating baths by monitoring the components of the plating bath in real-time.
    Type: Grant
    Filed: October 19, 2001
    Date of Patent: November 11, 2003
    Assignee: Shipley Company, L.L.C.
    Inventors: Jeffrey M. Calvert, Robert A. Binstead
  • Publication number: 20030190536
    Abstract: The present invention relates to maskless photolithography using a patterned light generator for creating 2-D and 3-D patterns on objects using etching and deposition techniques. In an embodiment, the patterned light generator uses a micromirror array to direct pattern light on a target object. In an alternate embodiment, the patterned light generator uses a plasma display device to generate and direct patterned light onto a target object. Specifically, the invention provides a maskless photolithography system and method for photo stimulated etching of objects in a liquid solution, patterning glass, and photoselective metal deposition. For photo stimulated etching of objects in a liquid solution, the invention provides a system and method for immersing a substrate in an etchant solution, exposing the immersed substrate to patterned light, and etching the substrate according to the pattern of incident light.
    Type: Application
    Filed: June 25, 2002
    Publication date: October 9, 2003
    Inventor: David P. Fries
  • Publication number: 20030173224
    Abstract: A method for measuring a target constituent of an electroplating solution using an electroanalytical technique is set forth in which the electroplating solution includes one or more constituents whose by-products skew an initial electrical response to an energy input of the electroanalytical technique. The method comprises a first step in which an electroanalytical measurement cycle of the target constituent is initiated by providing an energy input to a pair of electrodes disposed in the electroplating solution. The energy input to the pair of electrodes is provided for at least a predetermined time period corresponding to a time period in which the electroanalytical measurement cycle reaches a steady-state condition. In a subsequent step, an electroanalytical measurement of the energy output of the electroanalytical technique is taken after the electroanalytical measurement cycle has reached the steady-state condition.
    Type: Application
    Filed: February 26, 2003
    Publication date: September 18, 2003
    Inventors: Lyndon W. Graham, Thomas C. Taylor, Thomas L. Ritzdorf, Fredrick A. Lindberg, Bradley C. Carpenter
  • Patent number: 6607650
    Abstract: The object of the present invention is to provide a plating method capable of planarization process of high quality in comparison with the conventional plating method and also provide a plating device and a plating system adopting the plating method of the invention. In the plating method and device, an object 10 to be processed and an electrode plate 20 are dipped in a solution including objective metal ions and a forward current is supplied between the object and the electrode plate to educe a metal on the surface of the object. After forming a plating film on the object excessively, a backward current is supplied between the object 10 and the electrode 20 to uniformly remove at least part of superfluous plating film.
    Type: Grant
    Filed: September 18, 2000
    Date of Patent: August 19, 2003
    Assignee: Tokyo Electron Ltd.
    Inventors: Takayuki Niuya, Michihiro Ono, Hideto Goto, Kyungho Park, Yoshinori Marumo, Katsusuke Shimizu
  • Publication number: 20030146101
    Abstract: The plating method comprises the steps of dividing a region, to be plated, into a group of mesh-like zones, measuring a plating area of each of the zones, comparing the measurement values of the plating areas and judging whether or not the plating area has any variance, and conducting a design change, on patterns contained in this zone, to eliminate the variance.
    Type: Application
    Filed: October 2, 2002
    Publication date: August 7, 2003
    Applicant: FUJITSU LIMITED
    Inventor: Motoharu Nii
  • Patent number: 6592736
    Abstract: An automated chemical management system for managing the chemical content of an electrochemical bath used to deposit a material on the surface of a microelectronic workpiece is set forth. The automated chemical management system includes a dosing system that is adapted to dose an amount of one or more chemicals to replenish a given electrochemical bath constituent in accordance with a predetermined dosing equation. The chemical management system also includes an analytical measurement system that is adapted to provide a measurement result indicative of the amount of the given constituent in the electrochemical bath at predetermined time intervals. The chemical management system uses the measurement results to modify the dosing equation of the dosing system. In this manner, the replenishment operations executed by the chemical management system are effectively refined over time thereby providing more accurate control of the amount of the target constituent in the electrochemical bath.
    Type: Grant
    Filed: January 23, 2002
    Date of Patent: July 15, 2003
    Assignee: Semitool, Inc.
    Inventors: Dakin Fulton, Thomas L. Ritzdorf
  • Patent number: 6592737
    Abstract: An apparatus and method for the indirect determination of concentrations of additives in metal plating electrolyte solutions, particularly organic additives in Cu-metalization baths for semiconductor manufacturing. Plating potentials between the reference and test electrodes are measured and plotted for each of the solution mixtures, and data are extrapolated to determine the concentration of the additive in the sample. A multi-cycle method determines the concentration of both accelerator and suppressor organic additives in Cu plating solution in a single test suite.
    Type: Grant
    Filed: October 17, 2000
    Date of Patent: July 15, 2003
    Assignee: Advanced Technology Materials, Inc.
    Inventor: Peter M. Robertson
  • Patent number: 6572753
    Abstract: Acid copper electroplating baths used to form ultra-fine circuitry features on semiconductor chips contain suppressor, anti-suppressor and leveler additives that must be closely controlled in order to obtain acceptable copper deposits. Cyclic voltammetric stripping (CVS) methods are available to measure the concentrations of the suppressor and anti-suppressor based on the effects of these additives on the copper electrodeposition rate. The present invention is a method that also uses measurements of the copper electrodeposition rate to determine the concentration of the leveler additive. The other two additives are included in the measurement solution at concentrations determined to provide the optimum compromise between minimal interference, high sensitivity and good reproducibility for the leveler analysis.
    Type: Grant
    Filed: October 1, 2001
    Date of Patent: June 3, 2003
    Assignee: ECI Technology, Inc.
    Inventors: Gene Chalyt, Peter Bratin, Michael Pavlov, Alex Kogan, Michael James Perpich
  • Patent number: 6551483
    Abstract: Controlled-potential electroplating provides an effective method of electroplating metals onto the surfaces of high aspect ratio recessed features of integrated circuit devices. Methods are provided to mitigate corrosion of a metal seed layer on recessed features due to contact of the seed layer with an electrolyte solution. The potential can also be controlled to provide conformal plating over the seed layer and bottom-up filling of the recessed features. For each of these processes, a constant cathodic voltage, pulsed cathodic voltage, or ramped cathodic voltage can be used. An apparatus for controlled-potential electroplating includes a reference electrode placed near the surface to be plated and at least one cathode sense lead to measure the potential at points on the circumference of the integrated circuit structure.
    Type: Grant
    Filed: May 10, 2001
    Date of Patent: April 22, 2003
    Assignee: Novellus Systems, Inc.
    Inventors: Steven T. Mayer, Jonathan Reid, Robert Contolini
  • Publication number: 20030066752
    Abstract: An electrochemical processing apparatus for processing a microelectronic workpiece includes a metrology unit and a control, signal-connected to the metrology unit. An electrochemical deposition unit provides a space to receive said microelectronic workpiece to deposit a subsequent film layer onto a prior layer, wherein a condition signal from the metrology unit influences the process control of the electrochemical deposition unit. The signal can also be used to transfer the microelectronic workpiece to a layer stripping unit, or a layer enhancement unit, or to a non-compliance station. The apparatus is particularly useful in measuring seed layer thickness and adjusting the operating control of a computational fluid dynamic reactor, which electroplates a process layer onto the seed layer.
    Type: Application
    Filed: August 6, 2002
    Publication date: April 10, 2003
    Inventors: Thomas L. Ritzdorf, Steve L. Eudy, Gregory J. Wilson, Paul R. McHugh
  • Publication number: 20030062266
    Abstract: Acid copper electroplating baths used to form ultra-fine circuitry features on semiconductor chips contain suppressor, anti-suppressor and leveler additives that must be closely controlled in order to obtain acceptable copper deposits. Cyclic voltammetric stripping (CVS) methods are available to measure the concentrations of the suppressor and anti-suppressor based on the effects of these additives on the copper electrodepositionrate. The present invention is a method that also uses measurements of the copper electrodepositionrate to determine the concentration of the leveler additive. The other two additives are included in the measurement solution at concentrations determined to provide the optimum compromise between minimal interference, high sensitivity and good reproducibility for the leveler analysis.
    Type: Application
    Filed: October 1, 2001
    Publication date: April 3, 2003
    Applicant: ECI TECHNOLOGY INC.
    Inventors: Gene Chalyt, Peter Bratin, Michael Pavlov, Alex Kogan, Michael James Perpich
  • Patent number: 6542784
    Abstract: A plating analysis method is disclosed for electroplating in a system in which resistance of an anode and/or a cathode cannot be neglected. This method comprises giving a three-dimensional Laplace's equation, as a dominant equation, to a region containing a plating solution; discretizing the Laplace's equation by the boundary element method; giving a two-dimensional or three-dimensional Poisson's equation dealing with a flat surface or a curved surface, as a dominant equation, to a region within the anode and/or the cathode; discretizing the Poisson's equation by the boundary element method or the finite element method; and formulating a simultaneous equation of the discretized equations to calculate a current density distribution i and a potential distribution &phgr; in the system. The method can obtain the current density and potential distributions efficiently for a plating problem requiring consideration for the resistance of an electrode.
    Type: Grant
    Filed: November 17, 2000
    Date of Patent: April 1, 2003
    Assignee: Ebara Corporation
    Inventors: Kenji Amaya, Shigeru Aoki, Matsuho Miyasaka
  • Patent number: 6533920
    Abstract: A device for detecting an end point of electro-plating comprises a mandrel having a substrate and a patterned conductive layer with a main conductive area and an insulated conductive area on the substrate, an insulation region interposed between the main conductive area and the insulated conductive area, and a sensor electrically connected to the insulated conductive area for detecting a signal which indicates the end point of electro-plating.
    Type: Grant
    Filed: January 8, 2001
    Date of Patent: March 18, 2003
    Assignee: Hewlett-Packard Company
    Inventors: Joo Khim Joachim Ng, Hock Choon Tan
  • Patent number: 6524460
    Abstract: A method for defining the characteristics of metal electrodes of ceramic sensor elements, where the metal electrodes are deposited as layers and subjected to a subsequent annealing process. The aim is to provide a non-destructive, simple and economical method, capable of being automated, for performing an acceptance test in a specimen-specific manner on the sensor element. In the case of the test procedure proposed here, the quantity and distribution of gold deposited so as to be inaccessible in the protective layer, are indirectly determined. This is done by measuring the layer thickness during manufacturing of an electrode, in a before/after comparison, with the aid of an eddy-current measuring process where the electrode is placed in the magnetic circuit of a coil that is traversed by the flow of a high-frequency a.c. current, and the resulting ostensible inductance of the coil is measured using an LCR measuring unit. The coil can be wired as a resonant circuit with the aid of a capacitor.
    Type: Grant
    Filed: October 20, 2000
    Date of Patent: February 25, 2003
    Assignee: Robert Bosch GmbH
    Inventors: Hansjoerg Hachtel, Jens Stefan Schneider, Thomas Moser
  • Patent number: 6521112
    Abstract: A method of controlling the content of a chemical bath includes the steps of: determining a replenishment condition for the chemical bath; defining a unit of the replenishment condition; establishing a pacing factor corresponding to a replenishment volume of a replenishment medium per unit of the replenishment condition; and defining a replenishment threshold corresponding to the product of a predetermined number of the defined units of the replenishment condition and the pacing factor. The rate of continued replenishment of the predetermined constituent of the chemical bath is determined in response to the replenishment condition, which may be elapsed time, ampere-hours (or coulombs), number of product loads, product surface area, or line speed over time. The method replenishes constituents as they actually are consumed. It also prevents depletion (or buildup in the case of decanting a by-product) and the associated time delay related to detection and correction.
    Type: Grant
    Filed: January 12, 2001
    Date of Patent: February 18, 2003
    Assignee: Dj Parker Company, Inc.
    Inventor: Todd Alan Balisky
  • Publication number: 20030029726
    Abstract: The present invention generally relates to an apparatus and method of evaluating electroplating solutions and conditions. In one embodiment, the method of evaluating electroplating solutions comprises utilizing an electrochemical measuring cell having a working electrode having a lid with at least one hole, a counter electrode, and a reference electrode. The working electrode, the counter electrode, and the reference electrode are immersed in at least one sample of at least one electroplating solution. The lid is disposed over the working electrode forming a chamber between the working electrode and the lid. The lid further has a hole to allow an electroplating solution to flow into the chamber and reach the working electrode. The potential of the working electrode in the sample of the electroplating solution is measured over time with a constant current supplied to the working electrode.
    Type: Application
    Filed: August 7, 2001
    Publication date: February 13, 2003
    Applicant: Applied Materials, Inc.
    Inventors: Nicolay Kovarsky, Zhi-Wen Sun, Girish A. Dixit
  • Patent number: 6511588
    Abstract: A plating method comprising using a plating solution containing an additive satisfying the following conditions: 0.005×h2/w<D/&kgr;<0.5×h2/w, and 0.01≦&THgr;≦0.
    Type: Grant
    Filed: April 7, 2000
    Date of Patent: January 28, 2003
    Assignee: Hitachi, Ltd.
    Inventors: Kinya Kobayashi, Akihiro Sano, Takeyuki Itabashi, Toshio Haba, Haruo Akahoshi, Shinichi Fukada
  • Patent number: 6508924
    Abstract: Disclosed are methods for analyzing additive breakdown products in electroplating baths as well as methods of controlling the presence of such breakdown products in electroplating baths.
    Type: Grant
    Filed: May 31, 2000
    Date of Patent: January 21, 2003
    Assignee: Shipley Company L.L.C.
    Inventors: Luis A. Gomez, Rozalia Beica, Denis Morrissey, Eugene N. Step
  • Publication number: 20030000841
    Abstract: A system is provided in which a smaller flow of deposition solution is diverted from a larger flow of deposition solution flowing on an electrochemical deposition tool platform. The smaller flow is diverted to a dosing unit which may be on a separate platform. The dosing unit in one embodiment comprises a pressurized flow line.
    Type: Application
    Filed: August 13, 2002
    Publication date: January 2, 2003
    Applicant: Applied Materials, Inc.
    Inventors: Joseph J. Stevens, Yevgeniy Rabinovich, Sandy S. Chao, Mark R. Denome, Allen L. D'Ambra, Donald J. Olgado
  • Publication number: 20030000840
    Abstract: An electroplating apparatus and method that can detect the film thickness of a plated film, which is being deposited on the surface, to be plated, of a substrate, consecutively in real time, thereby enabling the detection of the end point of plating. The electroplating apparatus for plating a substrate by filling a plating solution between the substrate held by a substrate holding portion and an anode, and applying a voltage between the substrate and the anode, includes at least one of a voltage monitor for monitoring the voltage applied between the substrate and the anode, thereby detecting the end point of the electroplating, and a current monitor for monitoring an electric current that flows through a detection circuit, which is formed by connecting at least two cathode electrodes and to which a constant voltage is applied, thereby detecting the end point of the electroplating.
    Type: Application
    Filed: June 26, 2002
    Publication date: January 2, 2003
    Inventors: Norio Kimura, Hiroaki Inoue
  • Patent number: 6495018
    Abstract: A single delivery channel is formed by, and between, inner wall 2 and baffle 3. Electrolyte 5 is pumped up the interior of channel 1 and is directed onto substrate 4 being a cathode maintained at −10 volts. The upper part of the inner wall 2 of channel 1 forms the anode such that electrote is forced between the substrate and the upper horizontal surface of the anode 6. A second baffle 7 is provided in order to assist in collecting and removing electrolyte 5 after impingement with substrate 4, possible for re-use. Contact between the electrolyte 5 and substrate 4 is optimised by providing the electrolyte with a swirling motion as it passes up channel 1. Anode 6 is a solid conducting bar 10, alternatively it is formed of solid rods 11 nor tubes 12.
    Type: Grant
    Filed: March 15, 2000
    Date of Patent: December 17, 2002
    Assignee: Technology Development Associate Operations Limited
    Inventor: John Michael Lowe
  • Patent number: 6479644
    Abstract: The invention relates to a process for purifying and concentrating charge-bearing first molecules 9, such as proteins, nucleic acids and the like, comprising the following steps: a) preparation of a solution containing the first molecules 9, b) contacting the solution with an electrode 2 which is directly provided with a coating of second molecules 4 having affinity for the first molecules 9, and c) connecting the electrode 2 to a means 11 for generating an electric field to bring about a movement of the first molecules 9 in the solution directed relative to the electrode 2.
    Type: Grant
    Filed: March 8, 1999
    Date of Patent: November 12, 2002
    Inventor: Wolf Bertling
  • Patent number: 6471845
    Abstract: A method for controlling the composition of a chemical bath in which predictive dosing is used to account for changes in the composition of the bath in which the operating characteristics of the process are partitioned into a plurality of operating modes and the consumption or generation of materials related to the process are determined empirically and additions of material are made as appropriate.
    Type: Grant
    Filed: December 15, 1999
    Date of Patent: October 29, 2002
    Assignees: International Business Machines Corporation, Novellus Systems, Inc.
    Inventors: John O. Dukovic, William E. Corbin, Jr., Erick G. Walton, Peter S. Locke, Panayotis C. Andricacos, James E. Fluegel, Evan Patton, Jonathan Reid
  • Patent number: 6468410
    Abstract: An apparatus that is useful for evaluating and optimizing electrochemical processes and for electrochemically characterizing materials includes a base or substrate carrying a plurality of electrodes, at least one housing member that is secured to the base or substrate to define an electrochemical cell volume for holding an electrolyte in contact with the plurality of electrodes carried on the base, and a counter electrode disposed in the cell volume. The apparatus may be used for rapidly evaluating various parameters that influence electrochemical deposition processes, electrolytic processes and electrochemical cell performance.
    Type: Grant
    Filed: May 17, 2000
    Date of Patent: October 22, 2002
    Assignee: Eveready Battery Company, Inc.
    Inventor: Scott W. Donne
  • Patent number: 6468806
    Abstract: Methods and apparatus are provided for the preparation of a substrate having an array of diverse materials, the materials being deposited at spatially addressable, predefined regions. In particular, potential masking systems are provided which generate spatially and temporally varying electric, magnetic and chemical potentials across a substrate. These varying potentials are used to deposit components of source materials onto a substrate in a combinatorial fashion, thus creating arrays of materials that differ slightly in chemical composition, concentration, stoichiometry, and/or thickness. The diverse materials may be organized in discrete arrays, or they may vary continuously over the surface of the substrate. The shape of the potential allows the determination of the composition of the resulting materials at all locations on the substrate.
    Type: Grant
    Filed: September 30, 1997
    Date of Patent: October 22, 2002
    Assignee: Symyx Technologies, Inc.
    Inventors: Eric McFarland, Earl Danielson, Martin Devenney, Christopher J. Warren
  • Patent number: 6451194
    Abstract: A process and apparatus for supplying a soluble metal compound to an electrolyte solution uses a powder wetting device in a loop from a working tank. The powder wetting machine supplies the powdered metal compound directly into the electrolyte solution which rapidly dissolves to replenish the electrolyte compound during the treating process. The process and apparatus are particularly suitable for replenishing the metal salts consumed during an electroplating process.
    Type: Grant
    Filed: March 28, 2001
    Date of Patent: September 17, 2002
    Assignee: Andritz-Patentverwaltungs-Gesellschaft m.b.H.
    Inventors: Gerald Maresch, Herbert Track, Lutz Wieser
  • Patent number: 6440291
    Abstract: Methods and apparatus are used for triggering and controlling an initial induction period in which a substrate is immersed in an electrochemical bath prior to actual electrochemical processing. This is accomplished by sensing a change in cell potential upon immersion of the substrate or a counter electrode in an electrochemical bath. Appropriate logic then holds the cell potential or current at a fixed value for a defined delay period. After that period ends, the logic allows the cell potential or current to increase to a level where electrochemical processing begins.
    Type: Grant
    Filed: November 30, 2000
    Date of Patent: August 27, 2002
    Assignee: Novellus Systems, Inc.
    Inventors: Jon Henri, John Floyd Ostrowski
  • Patent number: 6440288
    Abstract: Disclosed is a method for forming an aluminum oxide film of a large surface area on an electrode for a high voltage electrolytic capacitor. In accordance with the method, an oxide film of a uniform thickness is formed, prior to a process of etching the oxide film. A re-anodization is then partially conducted for an etched portion of the oxide film. The resultant oxide film has an increased surface area. The method of the invention makes it possible to prepare a dielectric oxide film having characteristics of a uniform thickness and a large surface area. In accordance with the invention, it is possible to expect an increase in the capacitance of electrolytic capacitors.
    Type: Grant
    Filed: October 19, 2000
    Date of Patent: August 27, 2002
    Assignee: Korea Advanced Institute of Science and Technology
    Inventors: Su Il Pyun, Woo Jin Lee
  • Publication number: 20020108861
    Abstract: An electrochemical planarization apparatus for planarizing a metallized surface on a workpiece includes a polishing pad and a platen. The platen is formed of conductive material, is disposed proximate to the polishing pad and is configured to have a negative charge during at least a portion of a planarization process. At least one electrical conductor is positioned within the platen. The electrical conductor has a first end connected to a power source. A workpiece carrier is configured to carry a workpiece and press the workpiece against the polishing pad. The power source applies a positive charge to the workpiece via the electrical conductor so that an electric potential difference between the metallized surface of the workpiece and the platen is created to remove at least a portion of the metallized surface from the workpiece.
    Type: Application
    Filed: February 12, 2001
    Publication date: August 15, 2002
    Inventors: Ismail Emesh, Saket Chadda, Nikolay Korovin, Brian L. Mueller
  • Publication number: 20020079225
    Abstract: An electrolyte solution for a particle measuring apparatus which comprises an inorganic salt, such as sodium chloride or calcium chloride, dissolved in an organic solvent. A substance that promotes dissolution of inorganic salts is added to provide the organic solvent with sufficient electric conductivity for electrical particle measurement. Such substances include either or both: Compound (a): a zwitterionic compound or compounds, and Compound (b): a compound or compounds including a hydroxyl group and a carboxyl or an amino group in the same molecule.
    Type: Application
    Filed: October 30, 2001
    Publication date: June 27, 2002
    Inventor: Kouhei Shiba
  • Patent number: 6398935
    Abstract: There is disclosed an improved method for manufacturing printed circuit boards which solves the problem of immersion bath contaminants being plated-out onto electrically-conductive, circuit functional pads, (board-features) by introducing into the bath system a mechanism for attracting those contaminants to non-functional “micro-thieves” which are electrically-conductive, non-circuit-functional pads having substantially smaller dimensions than those of the smallest board-feature, thereby taking advantage of previously unknown immersion bath uncontrolled strike phenomena, whereby the contaminants are directed to the micro-thieves and away from the board-features. Application of the micro-thieves in the immersion bath environment also produces plated features, of both finer and larger geometries, having flatter surfaces and a more uniform plated thickness for all features on the printed circuit board, than previously obtained.
    Type: Grant
    Filed: March 27, 2000
    Date of Patent: June 4, 2002
    Assignee: EMC Corporation
    Inventor: Stuart Douglas Downes
  • Patent number: 6379520
    Abstract: The plating apparatus has a plating section in which a plating process is performed and a control section for regulating the plating solution. The plating section includes a plating bath containing plating solution, an anode provided in the plating solution, and a plating object serving as a cathode placed in the plating solution opposite the anode. The control section includes a regulating tank for regulating the composition and/or concentration of the plating solution, and a replenishing tank for injecting solution into the plating solution in the regulating tank. The plating apparatus also includes a mechanism for circulating plating solution between the regulating tank in the control section and the plating bath in the plating section. The plating section is installed in a first room, while the control section is installed in a second room, which is separate from the first room Accordingly, contamination in the plating section is prevented.
    Type: Grant
    Filed: July 27, 2000
    Date of Patent: April 30, 2002
    Assignee: Ebara Corporation
    Inventors: Fumio Kuriyama, Hiroyuki Ueyama, Junitsu Yamakawa, Kenichi Suzuki, Atsushi Chono