With Group Iii Metal, Rare Earth Metal, Or Metal Oxide (i.e., Sc, Y, Al, Ga, Ln, Tl, Metal Of Atomic Number 57-71, Or Oxide Thereof) Patents (Class 208/111.01)
  • Publication number: 20130334099
    Abstract: A process for the hydrocracking a hydrocarbon-containing feedstock in which at least 50% by weight of the compounds have an initial boiling point above 340° C. and a final boiling point below 540° C., using a catalyst having, in its oxide form, at least one metal selected from the metals of groups VIB, VIII and VB, said metals being present in the form of at least one polyoxometallate of formula (HhXxMmOy)q?, said polyoxometallates being present within a mesostructured matrix based on oxide of at least one element Y, said matrix having a pore size between 1.5 and 50 nm and having amorphous walls of thickness between 1 and 30 nm, said catalyst being sulphurized before used in said process.
    Type: Application
    Filed: December 15, 2011
    Publication date: December 19, 2013
    Applicants: IFP ENERGIES NOUVELLES, CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE
    Inventors: Karin Marchand, Alexandra Chaumonnot, Audrey Bonduelle, Veronique Dufaud, Frederic Lefebvre, Manuela Bader, Susana Lopes Silva
  • Patent number: 8608944
    Abstract: A catalytic conversion process for increasing the light olefin yields, which comprises bringing a hydrocarbon oil feedstock into contact with a catalytic conversion catalyst in a catalytic conversion reactor including one or more reaction zones to carry out the reaction, wherein the hydrocarbon oil feedstock is subjected to the catalytic conversion reaction in the presence of an inhibitor; and separating the reactant vapor optionally containing the inhibitor from the coke deposited catalyst, wherein a target product containing ethylene and propylene is obtained by separating the reactant vapor, and the coke deposited catalyst is stripped and regenerated for recycle use by being returned to the reactor. The process can weaken the further converting reaction of produced light olefins such as ethylene and propylene to 50-70% of the original level by injecting the inhibitor; thereby it can increase the yields of the target products.
    Type: Grant
    Filed: December 19, 2006
    Date of Patent: December 17, 2013
    Assignees: Research Institute of Petroleum Processing SINOPEC, China Petroleum & Chemical Corporation
    Inventors: Zheng Li, Jun Long, Shuandl Hou, Zhijian Da, Chaogang Xie, Jiushun Zhang, Zhanzhu Zhang
  • Publication number: 20130292301
    Abstract: The invention relates to a process for preparing a hydroconversion catalyst based on modified zeolite Y, comprising the steps of: A—preparation of a modified zeolite Y, whose intracrystalline structure presents at least one network of micropores, at least one network of small mesopores with a mean diameter of 2 to 5 nm and at least one network of large mesopores with a mean diameter of 10 to 50 nm, these various networks being interconnected; B—mixing the zeolite with a binder, shaping the mixture and then calcining; C—introducing at least one catalytic metal chosen from metals of group VIII and/or of group VIB, followed by calcination. The invention also relates to a catalyst obtained via this process and also to the use thereof.
    Type: Application
    Filed: June 10, 2011
    Publication date: November 7, 2013
    Applicant: TOTAL RAFFINAGE MARKETING
    Inventors: Sander Van Donk, Nadiya Danilina, Delphine Minoux, Metin Bulut
  • Patent number: 8518242
    Abstract: Catalysts are disclosed comprising fibrous substrates having silica-containing fibers with diameters generally from about 1 to about 50 microns, which act effectively as “micro cylinders.” Such catalysts can dramatically improve physical surface area, for example per unit length of a reactor or reaction zone. At least a portion of the silica, originally present in the silica-containing fibers of a fibrous material used to form the fibrous substrate, is converted to a zeolite (e.g., having a SiO2/Al2O3 ratio of at least about 150) that remains deposited on these fibers. The fibrous substrates possess important properties, for example in terms of acidity, which are useful in hydroprocessing (e.g., hydrotreating or hydrocracking) applications.
    Type: Grant
    Filed: May 26, 2011
    Date of Patent: August 27, 2013
    Assignee: UOP LLC
    Inventors: Antoine Negiz, Hui Wang
  • Publication number: 20130153465
    Abstract: Systems and methods that include providing, e.g., obtaining or preparing, a material that includes a hydrocarbon carried by an inorganic substrate, and exposing the material to a plurality of energetic particles, such as accelerated charged particles, such as electrons or ions.
    Type: Application
    Filed: February 15, 2013
    Publication date: June 20, 2013
    Applicant: XYLECO, INC.
    Inventor: Marshall Medoff
  • Patent number: 8460540
    Abstract: A hydrocracking catalyst comprising zeolite crystallized as a layer on the surface of a porous alumina-containing matrix, said zeolite-layered matrix arranged in a configuration to provide macropores in which the zeolite layer is provided on the walls of the macropores. Hydrogenating metals can be incorporated into the catalyst.
    Type: Grant
    Filed: February 26, 2007
    Date of Patent: June 11, 2013
    Assignee: BASF Corporation
    Inventors: David M. Stockwell, Bruce A. Lerner
  • Publication number: 20130105360
    Abstract: The present invention is a method for synthesizing non-zeolitic molecular sieves which have a three dimensional microporous framework comprising [AlO2] and [PO2] units. In preparing the reaction mixture, a surfactant is used, coupled with non-aqueous impregnation to prevent acid sites from being destroyed by water during Pt impregnation. The superior SAPO exhibits higher activity and selectivity especially in catalytic hydroisomerization of waxy feeds, due to the presence of medium-sized silica islands distributed throughout the SAPO.
    Type: Application
    Filed: December 12, 2012
    Publication date: May 2, 2013
    Inventor: Stephen Joseph MILLER
  • Publication number: 20130015101
    Abstract: The present invention is a method for synthesizing non-zeolitic molecular sieves which have a three dimensional microporous framework comprising [AlO2] and [PO2] units. In preparing the reaction mixture, a surfactant is used, coupled with non-aqueous impregnation to prevent acid sites from being destroyed by water during Pt impregnation. The superior SAPO exhibits higher activity and selectivity especially in catalytic hydroisomerization of waxy feeds, due to the presence of medium-sized silica islands distributed throughout the SAPO.
    Type: Application
    Filed: September 14, 2012
    Publication date: January 17, 2013
    Applicant: Chevron U.S.A. Inc.
    Inventor: Stephen J. MILLER
  • Publication number: 20120298554
    Abstract: Catalysts are disclosed comprising fibrous substrates having silica-containing fibers with diameters generally from about 1 to about 50 microns, which act effectively as “micro cylinders.” Such catalysts can dramatically improve physical surface area, for example per unit length of a reactor or reaction zone. At least a portion of the silica, originally present in the silica-containing fibers of a fibrous material used to form the fibrous substrate, is converted to a zeolite (e.g., having a SiO2/Al2O3 ratio of at least about 150) that remains deposited on these fibers. The fibrous substrates possess important properties, for example in terms of acidity, which are useful in hydroprocessing (e.g., hydrotreating or hydrocracking) applications.
    Type: Application
    Filed: May 26, 2011
    Publication date: November 29, 2012
    Applicant: UOP LLC
    Inventors: ANTOINE NEGIZ, HUI WANG
  • Patent number: 8262904
    Abstract: This invention relates to a crystalline molecular sieve having, in its as-synthesized form, an X-ray diffraction pattern including d-spacing maxima at 13.18±0.25 and 12.33±0.23 Angstroms, wherein the peak intensity of the d-spacing maximum at 13.18±0.25 Angstroms is at least as great as 90% of the peak intensity of the d-spacing maximum at 12.33±0.23 Angstroms. This invention also relates to a method of making thereof.
    Type: Grant
    Filed: April 28, 2011
    Date of Patent: September 11, 2012
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Wieslaw J. Roth, Thomas Yorke, Michael C. Kerby, Simon C. Weston
  • Publication number: 20120205286
    Abstract: Process for hydrocracking and/or hydrotreatment of hydrocarbon feeds utilizing a catalyst comprising at least one hydro-dehydrogenating element of group VIB and of non-precious group VIII used alone or mixed, and a support comprising at least one porous mineral matrix and at least one dealuminated USY zeolite having an overall silicon-to-aluminium atomic ratio comprised between 2.5 and 10, a fraction by weight of extra-network aluminium atom greater than 10% relative to the total mass of the aluminium present in the zeolite, a mesopore volume measured by nitrogen porosimetry greater than 0.07 ml.g?1, and a crystal parameter a0 of the elemental mesh greater than 24.28 ?, in which a quantity of the element nickel comprised between 0.5 and 3% by weight relative to the total mass of the zeolite is deposited on said USY zeolite and in which said catalyst is in the sulphide form.
    Type: Application
    Filed: January 6, 2012
    Publication date: August 16, 2012
    Applicant: IFP ENERGIES NOUVELLES
    Inventors: Jeremy FRANCIS, Laurent Simon, Emmanuelle Guillon, Nicolas Bats, Avelino Corma, Christophe Pichon
  • Publication number: 20120193270
    Abstract: Provided is a catalyst for hydrocracking of heavy oil which is excellent in both functions of cracking activity and desulfurization activity with respect to heavy oil by striking a balance between the cracking activity and desulfurization activity and which includes a support including a crystalline aluminosilicate and a porous inorganic oxide excluding the crystalline aluminosilicate, with an active metal being supported on the support, in which (a) the support includes the crystalline aluminosilicate in an amount of 45% by mass or greater and smaller than 60% by mass and the porous inorganic oxide excluding the crystalline aluminosilicate in an amount of greater than 40% by mass and 55% by mass or smaller, based on the sum of an amount of the crystalline aluminosilicate and an amount of the porous inorganic oxide excluding the crystalline aluminosilicate, (b) the active metal is at least one kind of metal selected from metals belonging to Groups 6, 8, 9, and 10 of the Periodic Table, and (c) the catalyst fo
    Type: Application
    Filed: August 2, 2010
    Publication date: August 2, 2012
    Inventors: Kazuhiro Inamura, Akira Ilno, Nobuyuki Takahashi, Yoji Sunagawa, Mitsunori Watabe, Yuichi Yamahata, Shinya Eura, Yuji Shirahama
  • Publication number: 20120145595
    Abstract: A process for treating a hydrocarbon-containing feedstock is provided in which a hydrocarbon-containing feedstock comprising at least 20 wt. % of heavy hydrocarbons is mixed with hydrogen, hydrogen sulfide and a metal-containing catalyst at a temperature of 375° C. to 500° C. and a pressure of from 6.9 MPa to 27.5 MPa to produce a vapor comprising a first hydrocarbon-containing product, where the hydrogen sulfide is mixed with the feedstock, metal-containing catalyst, and hydrogen at a mole ratio of hydrogen sulfide to hydrogen of at least 1:10. The vapor comprising the first hydrocarbon-containing product is separated from the mixture, and, apart from the mixture, the first hydrocarbon-containing product is contacted with hydrogen and a catalyst containing a Column 6 metal at a temperature of 260° C.-425° C. and a pressure of from 3.4 MPa to 27.5 MPa to produce a second hydrocarbon-containing product.
    Type: Application
    Filed: December 8, 2011
    Publication date: June 14, 2012
    Applicant: SHELL OIL COMPANY
    Inventors: Stanley Nemec MILAM, Michael Anthony REYNOLDS, Scott Lee WELLINGTON, Frederik Arnold BUHRMAN
  • Patent number: 8142644
    Abstract: A process for hydrocracking and hydro-isomerization of a paraffinic feedstock obtained by Fischer-Tropsch hydrocarbon synthesis comprising at least 50 wt % of components boiling above 370° C. to obtain a hydro-isomerized feedstock, the process comprising contacting the feedstock, in the presence of hydrogen, at elevated temperature and pressure with a catalyst comprising a hydrogenating compound supported on a carrier comprising amorphous silica-alumina, the carrier having a pore volume of at least 0.8 ml/g, wherein at most 40% of the pore volume comes from pores having a pore diameter above 35 nm and wherein at most 20% of the pore volume comes from pores having a pore diameter below 50 ? and above 37 ?, the carrier having a median pore diameter of at least 85 ?, wherein the product of (surface area per pore volume) and (median pore diameter as measured by mercury intrusion porosimetry) of the carrier is at least 34,000 ?·m2/ml.
    Type: Grant
    Filed: September 10, 2008
    Date of Patent: March 27, 2012
    Assignee: Shell Oil Company
    Inventors: Focco Kornelis Bijlsma, Jan Lodewijk Maria Dierickx, Arend Hoek
  • Publication number: 20120061295
    Abstract: The present invention is a method for synthesizing non-zeolitic molecular sieves which have a three dimensional microporous framework comprising [AlO2] and [PO2] units. In preparing the reaction mixture, a surfactant is used, coupled with non-aqueous impregnation to prevent acid sites from being destroyed by water during Pt impregnation. The superior SAPO exhibits higher activity and selectivity especially in catalytic hydroisomerization of waxy feeds, due to the presence of medium-sized silica islands distributed throughout the SAPO.
    Type: Application
    Filed: October 4, 2011
    Publication date: March 15, 2012
    Applicant: CHEVRON U.S.A. INC.
    Inventor: Stephen J. MILLER
  • Publication number: 20120055846
    Abstract: Process of preparing a hydrocracking catalyst carrier comprising amorphous binder and zeolite Y, which process comprises subjecting zeolite Y having a silica to alumina molar ratio of at least 10 to calcination at a temperature of from 700 to 1000° C., hydrocracking catalyst carrier comprising amorphous binder and zeolite Y having a silica to alumina molar ratio of at least 10, the infrared spectrum of which catalyst has a peak at 3690 cm?1, substantially reduced peaks at 3630 cm?1 and 3565 cm?1 and no peak at 3600 cm?1, hydrocracking catalyst carrier comprising an amorphous binder and zeolite Y having a silica to alumina molar ratio of at least 10, which catalyst has an acidity as measured by exchange with perdeuterated benzene of at most 20 micro-mole/gram, hydrocracking catalyst derived from such carrier and hydrocracking process with the help of such catalyst.
    Type: Application
    Filed: April 15, 2010
    Publication date: March 8, 2012
    Inventors: László Domokos, Cornelis Ouwehand
  • Patent number: 8105397
    Abstract: Catalytic process for the transformation of carbon compounds into liquid fuel, in which the reaction is catalysed by an Alumino silicate catalyst comprising counter ion Na and/or K in a sufficient amount so that when mixing 0.2 g of catalyst in powder form with 20 ml water having a pH of 5.56 so as to form a water/catalyst mixture, the pH of the water/catalyst mixture comprised between 4 and 6, said catalytic system further comprising 0.005% to 1% by weight of Ba and/or Sr.
    Type: Grant
    Filed: June 13, 2008
    Date of Patent: January 31, 2012
    Assignee: Marcello Fieni and Andree Leroy
    Inventors: Marcello Fieni, Francois Collignon
  • Publication number: 20120000819
    Abstract: A method that efficiently produces an alkylbenzene with a high added value from a 1.5-cyclic aromatic hydrocarbon while suppressing excessive hydrocracking and nuclear hydrogenation, and preventing a decrease in catalytic activity due to deposition of carbon during a hydrocracking reaction, and a catalyst used therefor, are disclosed. A method of producing an alkylbenzene includes causing a hydrocarbon oil feedstock containing an alkylbenzene content of less than 20 vol %, a bicyclic aromatic hydrocarbon content of less than 30 vol %, and a 1.5-cyclic aromatic hydrocarbon content of 25 vol % or more to come in contact with a hydrocracking catalyst that includes a solid acid having a maximum acid strength of Brönsted acid of 110 kJ/mol or more and less than 140 kJ/mol.
    Type: Application
    Filed: March 3, 2010
    Publication date: January 5, 2012
    Applicants: JX NIPPON OIL & ENERGY CORPORATION, JAPAN PETROLEUM ENERGY CENTER
    Inventor: Koichi Matsushita
  • Patent number: 8080234
    Abstract: A method of manufacturing a molecular sieve of the MCM-22 family, said method comprising the steps of (a) providing a mixture comprising at least one source of ions of tetravalent element, at least one source of alkali metal hydroxide, at least one directing-agent (R), water, and optionally at least one source of ions of trivalent element, said mixture having the following mole composition: Y:X2=10 to infinity H2O:Y=1 to 20 OH?:Y=0.001 to 2 M+:Y=0.001 to 2 R:Y=0.001 to 0.34 wherein Y is a tetravalent element, X is a trivalent element, M is an alkali metal; (b) treating said mixture at crystallization conditions for less than 72 hr to form a treated mixture having said molecular sieve, wherein said crystallization conditions comprise a temperature in the range of from about 160° C. to about 250° C.; and (c) recovering said molecular sieve.
    Type: Grant
    Filed: August 13, 2010
    Date of Patent: December 20, 2011
    Assignee: ExxonMobil Chemical Patents, Inc.
    Inventors: Wenyih Frank Lai, Robert Ellis Kay
  • Patent number: 8053617
    Abstract: A new family of crystalline aluminosilicate zeolites has been synthesized. These zeolites are represented by the empirical formula. Mmn+Rr+Al(1-x)ExSiyOz where M represents a combination of potassium and sodium exchangeable cations, R is a singly charged organoammonium cation such as the propyltrimethylammonium cation and E is a framework element such as gallium. These zeolites are similar to MWW but are characterized by unique x-ray diffraction patterns and compositions and have catalytic properties for carrying out various hydrocarbon conversion processes.
    Type: Grant
    Filed: June 9, 2011
    Date of Patent: November 8, 2011
    Assignee: UOP LLC
    Inventors: Jaime G. Moscoso, Deng-Yang Jan
  • Patent number: 8025864
    Abstract: ITQ-34 (INSTITUTO DE TECNOLOGÍA QUÍMICA number 34) is a new crystalline microporous material with a framework of tetrahedral atoms connected by atoms capable of bridging the tetrahedral atoms, the tetrahedral atom framework being defined by the interconnections between the tetrahedrally coordinated atoms in its framework. ITQ-34 can be prepared in silicate compositions with an organic structure directing agent. It has a unique X-ray diffraction pattern, which identifies it as a new material. ITQ-34 is stable to calcination in air, absorbs hydrocarbons, and is catalytically active for hydrocarbon conversion.
    Type: Grant
    Filed: December 4, 2007
    Date of Patent: September 27, 2011
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Avelino Corma, Maria Jose Diaz, Fernando Rey, Jose Luis Jorda Moret
  • Patent number: 8021642
    Abstract: A porous crystalline composition having a molar composition as follows: YO2:m X2O3:n ZO, wherein Y is a tetravalent element selected from the group consisting of silicon, germanium, tin, titanium and combinations thereof, X is a trivalent element selected from the group consisting of aluminum, gallium, boron, iron and combinations thereof, Z is a divalent element selected from the group consisting of magnesium, zinc, cobalt, manganese, nickel and combinations thereof, m is between about 0 and about 0.5, n is between about 0 and about 0.5; and the composition has an x-ray diffraction pattern which distinguishes it from the materials. A process for making the composition, and a process using the composition to treat an organic compound are also provided.
    Type: Grant
    Filed: June 13, 2007
    Date of Patent: September 20, 2011
    Assignee: Intevep, S.A.
    Inventors: Andres Quesada Perez, Gerardo Vitale Rojas
  • Patent number: 8022003
    Abstract: A porous crystalline composition having a molar composition as follows: YO2:m X2O3:n ZO, wherein Y is a tetravalent element selected from the group consisting of silicon, germanium, tin, titanium and combinations thereof, X is a trivalent element selected from the group consisting of aluminum, gallium, boron, iron and combinations thereof, Z is a divalent element selected from the group consisting of magnesium, zinc, cobalt, manganese, nickel and combinations thereof, m is between about 0 and about 0.5, n is between about 0 and about 0.5; and the composition has an x-ray diffraction pattern which distinguishes it from the materials. A process for making the composition, and a process using the composition to treat an organic compound are also provided.
    Type: Grant
    Filed: August 6, 2010
    Date of Patent: September 20, 2011
    Assignee: Intevep, S.A.
    Inventors: Andres Quesada Perez, Gerardo Vitale Rojas
  • Patent number: 8017540
    Abstract: A method of preparing a crystalline molecular sieve is provided, which method comprises (a) providing a reaction mixture comprising at least one source of ions of tetravalent element Y, at least one source of alkali metal hydroxide, water, optionally at least one seed crystal, and optionally at least one source of ions of trivalent element X, said reaction mixture having the following mole composition: Y:X2=10 to infinity OH?:Y=0.001 to 2 M+:Y=0.001 to 2 ?wherein M is an alkali metal and the amount of water is at least sufficient to permit extrusion of said reaction mixture; (b) extruding said reaction mixture to form a pre-formed extrudate; and (c) crystallizing said pre-formed extrudate under vapor phase conditions in a reactor to form said crystalline molecular sieve whereby excess alkali metal hydroxide is removed from the pre-formed extrudate during crystallization. The crystalline molecular sieve product is useful as catalyst in hydrocarbon conversion processes.
    Type: Grant
    Filed: October 1, 2010
    Date of Patent: September 13, 2011
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Wenyih Frank Lai, Robert Ellis Kay
  • Patent number: 8007765
    Abstract: The present invention relates to a microporous crystalline material characterized in that it has the following chemical composition in the calcined from: xX2O3:nYO2:mGeO2 in which (n+m) is at least 5, X is one or more trivalent elements, Y corresponds to one or more tetravalent elements other than Ge, “x” may have any value, including zero, and the ratio Y/Ge is greater than 0.1, and it has a characteristic X-ray diffraction pattern. Its also relates to a method for preparing it and to its use in the conversion of organic-compounds supplies.
    Type: Grant
    Filed: February 22, 2007
    Date of Patent: August 30, 2011
    Assignees: Consejo Superior de Investigaciones Cientificas, Universidad Politecnica de Valencia
    Inventors: Manuel Moliner Marin, Maria Jose Diaz Cabanas, Angel Cantin Sanz, Avelino Corma Canos
  • Patent number: 7982084
    Abstract: A new family of crystalline aluminosilicate zeolites has been synthesized. These zeolites are represented by the empirical formula. Mmn+Rr+Al(1-x)ExSiyOz where M represents a combination of potassium and sodium exchangeable cations, R is a singly charged organoammonium cation such as the propyltrimethylammonium cation and E is a framework element such as gallium. These zeolites are similar to MWW but are characterized by unique x-ray diffraction patterns and compositions and have catalytic properties for carrying out various hydrocarbon conversion processes.
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: July 19, 2011
    Assignee: UOP LLC
    Inventors: Jaime G. Moscoso, Deng-Yang Jan
  • Patent number: 7959899
    Abstract: This invention relates to a crystalline molecular sieve having, in its as-synthesized form, an X-ray diffraction pattern including d-spacing maxima at 13.18±0.25 and 12.33±0.23 Angstroms, wherein the peak intensity of the d-spacing maximum at 13.18±0.25 Angstroms is at least as great as 90% of the peak intensity of the d-spacing maximum at 12.33±0.23 Angstroms. This invention also relates to a method of making thereof.
    Type: Grant
    Filed: June 27, 2007
    Date of Patent: June 14, 2011
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Wieslaw J. Roth, Thomas Yorke, Michael C. Kerby, Simon C. Weston
  • Publication number: 20110132807
    Abstract: The present invention is directed to a method for making a catalyst for hydroprocessing a carbonaceous feedstock under hydroprocessing conditions. More particularly, the present invention is directed to methods for inhibiting rapid decomposition of ammonium nitrate during calcination of the catalyst following metal impregnation, wherein ammonium nitrate is formed when a nitrate-containing composition and an ammonium-containing component is used in the deposition of metal onto the catalyst.
    Type: Application
    Filed: December 6, 2010
    Publication date: June 9, 2011
    Inventor: Bi-Zeng Zhan
  • Patent number: 7883686
    Abstract: This disclosure relates to a crystalline MCM-22 family molecular sieve having a platelet aggregates morphology wherein greater than 50 wt % of the molecular sieve having a crystal diameter greater than 1 ?m as measured by the SEM. The crystalline MCM-22 family molecular sieve of this disclosure, wherein the platelet aggregates morphology is rosette habit morphology, or multiple layer plate's morphology.
    Type: Grant
    Filed: June 28, 2007
    Date of Patent: February 8, 2011
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Wenyih Frank Lai, Robert Ellis Kay, Mohan Kalyanaraman
  • Patent number: 7863212
    Abstract: The present invention provides a process for the catalytic cracking of a hydrocarbon, characterized in that the catalytic cracking is carried out in the presence of a crystalline aluminosilicate zeolite catalyst carrying a rare earth element in an amount ranging from 0.4 to 20 in terms of atomic ratio relative to the aluminum of the zeolite using a reactor which permits continuous regeneration of the catalyst and which is of a fluidized bed type, a moving bed type, or a transfer line reaction type under reaction conditions involving a reaction temperature ranging from 500 to 700° C., a reaction pressure ranging from 50 to 500 kPa, a steam to hydrocarbon mass ratio ranging from 0.01 to 2, and a contacting time ranging from 0.1 to 10 seconds. With this process, the generation of by-products such as aromatic hydrocarbons and heavy hydrocarbons can be inhibited and light olefins such as ethylene and propylene can be selectively produced in a stable manner for a long period of time.
    Type: Grant
    Filed: January 20, 2004
    Date of Patent: January 4, 2011
    Assignee: Idemitsu Kosan Co., Ltd.
    Inventor: Kenichi Wakui
  • Patent number: 7846418
    Abstract: An MCM-22 family molecular sieve having an X-ray diffraction pattern of the as-synthesized MCM-22 family molecular sieve including d-spacing maxima at 12.4±0.25, 3.57±0.07 and 3.42±0.07 Angstroms and at least one peak between 26.6° and 29° (2?). The peak between 26.6° to 29° (2?) has a two theta (2?) of about 26.9°. A method of manufacturing an MCM-22 family molecular sieve, said method comprising the steps of (a) combining at least one silicon source, at least one source of alkali metal hydroxide, at least one directing-agent (R), water, and optionally one aluminum source, to form a mixture having the following mole composition: Si:Al2=10 to infinity H2O:Si=1 to 20 OH?:Si=0.001 to 2 M+:Si=0.001 to 2 R:Si=0.001 to 0.34 wherein M is an alkali metal; (b) treating said mixture at crystallization conditions for less than 72 hr to form a treated mixture having said MCM-22 family molecular sieve, wherein said crystallization conditions comprises a temperature range from about 160° C. to about 250° C.
    Type: Grant
    Filed: January 24, 2007
    Date of Patent: December 7, 2010
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Wenyih Frank Lai, Robert Ellis Kay
  • Patent number: 7790019
    Abstract: The invention relates to a catalyst including at least one hydro-dehydrogenating element chosen from the group formed by the group VIB and group VIII elements of the periodic table and a substrate based on a silica-alumina matrix with a reduced content of macropores containing a quantity greater than 5% by weight and less than or equal to 95% by weight of silica (SiO2) and based on at least one zeolite. The invention also relates to a substrate based on a silica-alumina matrix with a reduced content of macropores containing a quantity greater than 5% by weight and less than or equal to 95% by weight of silica (SiO2) and based on at least one zeolite. The invention also relates to hydrocracking and/or hydroconversion processes and hydrotreating processes utilizing a catalyst according to the invention.
    Type: Grant
    Filed: December 16, 2004
    Date of Patent: September 7, 2010
    Assignee: IFP Energies Nouvelles
    Inventors: Patrick Euzen, Patrick Bourges, Hugues Dulot, Christophe Gueret
  • Publication number: 20100122935
    Abstract: The present invention provides a method of producing a liquid fuel enabling production of middle distillate at a high yield from a feed oil containing paraffinic hydrocarbons having 20 to 100 carbon atoms as main components without losing the high cracking activity and also enabling provision of high quality gas oil included in the middle distillate. A feed oil containing paraffinic hydrocarbons having 20 to 100 carbon atoms as main components is subjected to hydrotreating in the present of a prespecified hydrotreating catalyst and under the conditions for hydrotreating including a temperature of 200 to 350° C., a liquid hourly space velocity of 0.1 to 5.0 h?1, and a partial pressure of hydrogen of 0.5 to 8 MPa to obtain an effluent oil, and then the effluent oil is fractionated to obtain middle distillate including a gas oil with a cetane number of 75 or over and a pour point of ?27.5° C. or below at a yield of 55% or over against a total weight of the feed oil.
    Type: Application
    Filed: April 26, 2008
    Publication date: May 20, 2010
    Applicants: NIPPON OIL CORPORATION, JGC CATALYSTS & CHEMICALS LTD.
    Inventors: Hiroyuki Seki, Masahiro Higashi, Sumio Saito, Ryuzo Kuroda, Takashi Kameoka
  • Patent number: 7704378
    Abstract: The invention relates to a process for preparing middle distillates from a paraffinic feedstock produced by Fischer-Tropsch synthesis, using a hydrocracking/hydroisomerization catalyst which comprises at least one hydrodehydrogenating element chosen from the group formed by the noble elements of Group VIII of the periodic table, a silica-alumina-based non-zeolitic support obtained from wherein the non-zeolitic silica-alumina based support was obtained from a process comprising starting from a mixture of a partially soluble alumina compound in an acid medium with a totally soluble silica compound or with a totally soluble combination of alumina and hydrated silica, the resultant moldable mixture is concentrated to form a moldable mixture, the resultant mixture is molded and the resultant molded article is subjected to a hydrothermal or thermal treatment.
    Type: Grant
    Filed: January 16, 2004
    Date of Patent: April 27, 2010
    Assignees: Institut Francais du Petrole, ENI S.p.A.
    Inventors: Eric Benazzi, Patrick Euzen
  • Patent number: 7700818
    Abstract: Provided is a process and catalyst for hydrocracking paraffinic hydrocarbons which provides satisfactorily high cracking activity and middle distillate yield as well as the low pour point of the resulting gas oil all together. The catalyst of the present invention comprises a crystalline aluminosilicate, alumina-boria and a noble metal of Group VIII of the Periodic Table.
    Type: Grant
    Filed: July 24, 2008
    Date of Patent: April 20, 2010
    Assignee: Nippon Oil Corporation
    Inventors: Nobuo Aoki, Hiroyuki Seki, Masahiro Higashi, Masakazu Ikeda, Toshio Waku
  • Patent number: 7641787
    Abstract: Compositions for reduction of NOx generated during a catalytic cracking process, preferably, a fluid catalytic cracking process, are disclosed. The compositions comprise a fluid catalytic cracking catalyst composition, preferably containing a Y-type zeolite, and a particulate NOx composition containing particles of a zeolite having a pore size ranging from about 3 to about 7.2 Angstroms and a SiO2 to Al2O3 molar ratio of less than about 500. Preferably, the NOx reduction composition contains NOx reduction zeolite particles bound with an inorganic binder. In the alternative, the NOx reduction zeolite particles are incorporated into the cracking catalyst as an integral component of the catalyst. Compositions in accordance with the invention are very effective for the reduction of NOx emissions released from the regenerator of a fluid catalytic cracking unit operating under FCC process conditions without a substantial change in conversion or yield of cracked products.
    Type: Grant
    Filed: November 7, 2008
    Date of Patent: January 5, 2010
    Assignee: W.R. Grace & Co.-Conn.
    Inventors: George Yaluris, Michael Scott Ziebarth, Xinjin Zhao
  • Publication number: 20090301929
    Abstract: The present invention relates to a catalyst composition for the reaction of hydrocarbons comprising a zeolite with has a faujasite structure and a fibrous zeolite which comprises essentially non-crossing one-dimensional channels. Further, the catalyst composition comprises in a preferred embodiment a metal component selected from metals of the group VIB and VIII of the periodic table of elements and their compounds. The invention relates further to a process for the synthesis of such a catalyst composition and to a process for hydrocracking hydrocarbon feedstocks by using said catalyst composition.
    Type: Application
    Filed: October 26, 2006
    Publication date: December 10, 2009
    Inventors: Götz Burgfels, Stephan Wellsch, Josef Schönlinner, Friedrich Schmidt, Volker Kurth, Vebjorn Knut Grande, Jorunn Steinsland Rosvoll, Per Aksel Skjølsvik
  • Patent number: 7594992
    Abstract: Silica-alumina catalyst compositions and to a process for converting hydrocarbonaceous feed using the catalyst are disclosed. The present invention relates to a highly homogeneous, amorphous silica-alumina cogel material, the attributes of which make it especially useful for the Hydroprocessing of hydrocarbonaceous feeds either alone or in combination with other catalysts. This invention relates to a highly homogeneous amorphous silica-alumina catalyst having a surface to bulk silica to alumina ratio (SB ratio) of from about 0.7 to about 1.3, preferably from about 0.8 to about 1.2, more preferably from about 0.9 to about 1.1, and most preferably 1.0 and a crystalline alumina phase present in an amount no more than about 10%, preferably no more than about 5%. A catalyst of the present invention exhibits higher activity and better product selectivity in comparison with other silica-alumina catalysts.
    Type: Grant
    Filed: December 28, 2005
    Date of Patent: September 29, 2009
    Assignee: Chevron U.S.A. Inc.
    Inventors: Hye Kyung C. Timken, Mohammad M. Habib
  • Patent number: 7582202
    Abstract: A Composition comprising one or more metal hydroxy salts and a matrix, binder or carrier material, wherein the metal hydroxy salt is a compound comprising (a) as metal either (i) one or more divalent metals, at least one of them being selected from the group consisting of Ni, Co, Ca, Zn, Mg, Fe, and Mn, or (ii) one or more trivalent metal(s), (b) framework hydroxide, and (c) a replaceable anion. This composition has various catalytic applications.
    Type: Grant
    Filed: February 10, 2004
    Date of Patent: September 1, 2009
    Assignees: Akzo Nobel N.V., Albemarle Netherlands B.V.
    Inventors: William Jones, Paul O'Connor, Dennis Stamires
  • Publication number: 20090200203
    Abstract: A process for hydrocracking and hydro-isomerisation of a paraffinic feedstock obtained by Fischer-Tropsch hydrocarbon synthesis comprising at least 50 wt % of components boiling above 370° C. to obtain a hydro-isomerised feedstock, the process comprising contacting the feedstock, in the presence of hydrogen, at elevated temperature and pressure with a catalyst comprising a hydrogenating compound supported on a carrier comprising amorphous silica-alumina, the carrier having a pore volume of at least 0.8 ml/g, wherein at most 40% of the pore volume comes from pores having a pore diameter above 35 nm and wherein at most 20% of the pore volume comes from pores having a pore diameter below 50 ? and above 37 ?, the carrier having a median pore diameter of at least 85 ?, wherein the product of (surface area per pore volume) and (median pore diameter as measured by mercury intrusion porosimetry) of the carrier is at least 34,000 ?·m2/ml.
    Type: Application
    Filed: September 10, 2008
    Publication date: August 13, 2009
    Inventors: Focco Kornelis Bijlsma, Jan Lodewijk Maria Dierickx, Arend Hoek
  • Patent number: 7563432
    Abstract: The invention concerns a solid crystalline designated COK-7, which has a particular X ray diffraction diagram. Said solid has a chemical composition, expressed on an anhydrous base in terms of moles of oxides by the formula XO2: mYO2, X representing one or more tetravalent element(s), Y representing at least one trivalent element. The invention also concerns a process for preparing said solid and the use of said solid in hydrocarbon transformation.
    Type: Grant
    Filed: March 6, 2006
    Date of Patent: July 21, 2009
    Assignee: Institut Francais du Petrole
    Inventors: Gaëlle Hastoy, Johan Martens, Emmanuelle Guillon
  • Patent number: 7534340
    Abstract: Process for the contemporaneous production of fuels and lubricating bases from synthetic paraffinic mixtures, which includes a hydrocracking step in the presence of a solid bi-functional catalyst comprising: (A) a support of an acidic nature consisting of a catalytically active porous solid, including silicon, aluminum, phosphorus and oxygen bonded to one another in such a way as to form a mixed amorphous solid characterized by an Si/Al atomic ratio of between 15 and 250, a P/Al ratio of at least 0.1, but lower than 5, a total pore volume ranging from 0.5 to 2.0 ml/g, with an average pore diameter ranging from 3 nm. to 40 nm, and a specific surface area ranging from 200 to 1000 M2/g; (B) at least one metal with a hydro-dehydrogenating activity selected from groups 6 to 10 of the periodic table of elements, dispersed on said support (A) in an amount of between 0.05 and 5% by weight with respect to the total weight of the catalyst.
    Type: Grant
    Filed: June 28, 2004
    Date of Patent: May 19, 2009
    Assignees: ENI S.p.A., Institute Francais du Petrole, Enitecnologie S.p.A.
    Inventors: Vincenzo Calemma, Cristina Flego, Luciano Cosimo Carluccio, Wallace Parker, Roberto Giardino, Giovanni Faraci
  • Patent number: 7459073
    Abstract: The present invention relates to new crystalline molecular sieve SSZ-47B prepared using a N-cyclopentyl-1,4-diazabicyclo[2.2.2] octane cation as a structure-directing agent and an amine too large to fit in the pores of the molecular sieve nonasil, methods for synthesizing SSZ-47B and processing employing SSZ-47B in a catalyst.
    Type: Grant
    Filed: December 23, 2003
    Date of Patent: December 2, 2008
    Assignee: Chevron U.S.A. Inc.
    Inventors: Allen W. Burton, Jr., Stacey I. Zones
  • Patent number: 7449169
    Abstract: The present invention refers to a microporous crystalline material of zeolitic nature (ITQ-22) which, in the calcined state, has the empirical formula x(M1/nX02):yYO2:zR:wH20 wherein M is H+ or at least one inorganic cation of charge +n; X is at least one chemical element of oxidation state +3, preferably selected from the group consisting of Al, Ga, B, Fe and Cr; Y is at least one chemical element with oxidation state +4 other than Si and Ge, preferably selected from the group consisting of Ti, Sn and V; x has a value less than 0.2, preferably less than 0.1 and can take the value zero, y has a value less than 0.1, preferably less than 0.05 and can take the value zero, z has a value less than 0.8, preferably between 0.005 and 0.5 and can take the value zero, with a characteristic X-ray diffraction pattern, to the method of preparation and to the use of the material in separation and transformation processes of organic compounds.
    Type: Grant
    Filed: November 23, 2004
    Date of Patent: November 11, 2008
    Assignees: Consejo Superior de Investigaciones Cientificas, Universidad Politecnica de Valencia
    Inventors: Avelino Corma Canós, Fernando Rey García, Susana Valencia Valencia, Luis Joaquín Martinez Triguero
  • Patent number: 7381321
    Abstract: Process for transforming a gas-oil fraction that makes it possible to produce a fuel that has a quality according to stringent requirements in terms of sulfur content, aromatic compound content, cetane number, boiling point, T95, of 95% of the compounds and density, d15/4, at 15° C. This process comprises a hydrorefining stage and a hydrocracking stage, whereby the latter uses a catalyst that contains at least one zeolite. The conversion of products that have a boiling point of less than 150° C. is, throughout the two stages of hydrocracking and hydrorefining, less than 40% by weight and, for the hydrorefining stage, between 1 and 15% by weight. The temperature, TR2, of the hydrocracking stage is less than the temperature, TR1, of the hydrorefining stage, and the variation between temperatures TR1 and TR2 is between 0 and 80° C.
    Type: Grant
    Filed: February 19, 2003
    Date of Patent: June 3, 2008
    Assignee: Institut Francais du Petrole
    Inventors: Eric Benazzi, Patrick Bourges, Christophe Gueret, Pierre Marion
  • Patent number: 7361264
    Abstract: The present invention is directed to methods for mitigating the deleterious effect of at least one metal on an FCC catalyst. This objective is achieved by using a mixed metal oxide compound comprising magnesium and aluminum, that has not been derived from a hydrotalcite compound, and having an X-ray diffraction pattern displaying at least a reflection at a two theta peak position at about 43 degrees and about 62 degrees, wherein the ratio of magnesium to aluminum in the compound is from about 0.6:1 to about 10:1. In one embodiment, the ratio of magnesium to aluminum in the compound is from about 1:1 to about 6:1. In one embodiment, the ratio of magnesium to aluminum in the compound is from about 1.5:1 to about 10:1. In another embodiment, the invention is directed to methods wherein the ratio of magnesium to aluminum in the compound is from about 1.5:1 to about 6:1.
    Type: Grant
    Filed: May 25, 2005
    Date of Patent: April 22, 2008
    Assignee: Intercat, Inc.
    Inventor: Albert A. Vierheilig
  • Patent number: 7311814
    Abstract: Hydrocarbon fluids are produced by hydrocracking a vacuum gas oil stream, fractionating and/or hydrogenating the hydrocracked vacuum gas oil. The fluids typically have ASTM D86 boiling point ranges within the range 100° C. to 400° C. the range being no more than 75° C., they also have a naphthenic content greater than 60%, the naphthenics containing polycyclic materials, an aromatic content below 2% and an aniline point below 100° C. The fluids are particularly useful as solvents, for printing inks, drilling fluids, metal working fluids and as silicone extenders.
    Type: Grant
    Filed: March 6, 2003
    Date of Patent: December 25, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Pierre-Yves Guyomar, Andre A. Theyskens
  • Patent number: 7270738
    Abstract: This invention relates to silico-aluminum substrates, catalysts, and the hydrocracking and hydrotreatment processes that use them. The catalyst comprises at least one hydro-dehydrogenating element that is selected from the group that is formed by elements of group VIB and group VIII of the periodic table and a non-zeolitic silica-alumina-based substrate that contains an amount of more than 5% by weight and less than or equal to 95% by weight of silica (SiO2) and has the following characteristics: A mean pore diameter, measured by mercury porosimetry, encompassed between 20 and 140 ?, a total pore volume, measured by mercury porosimetry, encompassed between 0.1 ml/g and 0.6 ml/g, a total pore volume, measured by nitrogen porosimetry, encompassed between 0.1 ml/g and 0.6 ml/g, a BET specific surface area encompassed between 100 and 550 m2/g, a pore volume, measured by mercury porosimetry, encompassed in the pores with diameters of more than 140 ?, of less than 0.
    Type: Grant
    Filed: October 30, 2003
    Date of Patent: September 18, 2007
    Assignee: Institut Francais du Petrole
    Inventors: Patrick Euzen, Carole Bobin, Magalie Roy-Auberger, Eric Benazzi, Patrick Bourges, Christophe Gueret
  • Patent number: 7192900
    Abstract: Hydrocracking catalyst composition comprising an optional metal hydrogenation component supported on a carrier comprising a zeolite of the faujasite structure having a unit cell size in the range of from 24.10 to 24.40 ?, a bulk silica to alumina ratio (SAR) above about 12, and a surface area of at least about 850 m2/g as measured by the BET method and ATSM D4365-95 with nitrogen adsorption at a p/po value of 0.03.
    Type: Grant
    Filed: November 24, 2003
    Date of Patent: March 20, 2007
    Assignee: Shell Oil Company
    Inventors: Edward Julius Creyghton, Cornelis Ouwehand
  • Patent number: 7173160
    Abstract: Hydroprocessing such as hydrocracking is advantageously employed in processes for the recovery and purification of higher diamondoids from petroleum feedstocks. Hydrocracking and other hydroprocesses degrade nondiamondoid contaminants.
    Type: Grant
    Filed: July 16, 2003
    Date of Patent: February 6, 2007
    Assignee: Chevron U.S.A. Inc.
    Inventors: Theo Maesen, Robert M. Carlson, Jeremy E. Dahl, Shenggao Liu, Hye Kyung C. Timken, Waqar R. Qureshi