Etchant Contains Acid Patents (Class 216/106)
  • Patent number: 7666320
    Abstract: There is provided a method for removing molten and scattered Cu and overhang that are generated around a via opening during laser machining in a direct laser via forming method of directly machining an outer-layer copper foil. In a manufacturing method of a printed wiring board of machining the via by laser directly through the copper foil of a copper-clad laminate in which the copper foil is clad on a base material resin, a process for machining the via is carried out in a sequence of (a) a copper foil surface treatment step of forming an oxide film on the surface of said copper foil, (b) a laser via machining step, (c) an alkali treatment step and (d) a molten and scattered Cu etching step. It is desirable to carry out (e) a de-smearing treatment after the molten and scattered Cu etching.
    Type: Grant
    Filed: May 31, 2006
    Date of Patent: February 23, 2010
    Assignee: Hitachi Via Mechanics, Ltd.
    Inventors: Toshinori Kawamura, Haruo Akahoshi, Kunio Arai
  • Patent number: 7645393
    Abstract: A process is described for treating metal surfaces with roughening compositions that use poly(ethyleneamino propionitrile) polymer as an additive in the composition to improve adhesion of polymeric materials to the metal surfaces and to improve peel strength for thermal stability. The polymer of the invention may be added to compositions containing for example, cupric chloride and hydrochloric acid and is also usable in compositions containing an oxidizer/acid/azole mixture. Other additives, such as adiponitrile may also be beneficially added to compositions of the invention.
    Type: Grant
    Filed: April 27, 2007
    Date of Patent: January 12, 2010
    Inventors: Kesheng Feng, Ming De Wang, Steven A. Castaldi
  • Publication number: 20100000971
    Abstract: An object of the present invention is to provide an adhesive layer forming liquid about which deterioration in adhesive-layer-forming capability with the passage of time can be restrained and further the smoothness of an adhesive layer surface can be certainly kept. The adhesive layer forming liquid of the present invention is an adhesive layer forming liquid, which is a liquid for forming an adhesive layer for bonding copper and a resin to each other, and which is an aqueous solution comprising an acid, a stannic salt, a complexing agent, a stabilizer, and a complexing restrainer for restraining a complexing reaction between the complexing agent and copper.
    Type: Application
    Filed: June 30, 2009
    Publication date: January 7, 2010
    Applicant: MEC COMPANY LTD.
    Inventors: Mutsuyuki KAWAGUCHI, Satoshi SAITO, Tsuyoshi AMATANI, Yuko FUJII, Yoichi SENGOKU
  • Patent number: 7578889
    Abstract: Systematic and effective methodology to clean capacitively coupled plasma reactor electrodes and reduce surface roughness so that the cleaned electrodes meet surface contamination specifications and manufacturing yields are enhanced. Pre-cleaning of tools used in the cleaning process helps prevent contamination of the electrode being cleaned.
    Type: Grant
    Filed: March 30, 2007
    Date of Patent: August 25, 2009
    Assignee: Lam Research Corporation
    Inventors: Hong Shih, Yaobo Yin, Shun Jackson Wu, Armen Avoyan, John E. Daugherty, Linda Jiang
  • Patent number: 7563315
    Abstract: The invention is directed to a method and composition for providing chemically-resistant roughened copper surfaces suitable for subsequent multilayer lamination. In one embodiment, a smooth copper surface is contacted with an adhesion promoting composition under conditions effective to provide a roughened copper surface, the adhesion promoting composition comprising an oxidizer, a pH adjuster, a topography modifier, and a sulfur-containing coating stabilizer. In another embodiment, a smooth copper surface is contacted with an adhesion promoting composition under conditions effective to provide a roughened copper surface, the adhesion promoting composition comprising an oxidizer, a pH adjuster, and a topography modifier. Then, in a subsequent step, the roughened copper surface is contacted with an acid resistance promoting composition.
    Type: Grant
    Filed: June 8, 2006
    Date of Patent: July 21, 2009
    Assignee: OMG Electronic Chemicals, Inc.
    Inventors: Roger F. Bernards, Joseph Stanton Bowers, Jr., Benjamin T. Carroll, Alvin A. Kucera
  • Patent number: 7550092
    Abstract: A chemical mechanical polishing composition includes: an abrasive component, a corrosion inhibitor, a surfactant, a diacid compound, a metal residue inhibitor, and water. The metal residue inhibitor is selected from the group of compounds having the following formulas: and combinations thereof, wherein R1, R2, R3, and R4 are independently selected from H, C1-C6 alkyl, C2-C6 alkenyl, and C2-C6 alkylidyne; and R5, R6, R7, R8, R9, and R10 are independently selected from H and C1-C6 alkyl.
    Type: Grant
    Filed: June 19, 2006
    Date of Patent: June 23, 2009
    Assignee: Epoch Material Co., Ltd.
    Inventors: Hui-Fang Hou, Wen-Cheng Liu, Pao-Cheng Chen, Yen-Liang Chen, Jui-Ching Chen
  • Patent number: 7547642
    Abstract: A method of manufacturing a micro-structure includes dry-etching a sacrificial layer provided to a silicon substrate to form structures the sacrificial layer reacting with etching gas to generate reaction products including H2O, wherein the dry-etching includes etching the sacrificial layer and removing H2O as one of the reaction products generated through the etching step of the sacrificial layer, wherein the etching and the removing of H2O are repetitively performed.
    Type: Grant
    Filed: December 8, 2005
    Date of Patent: June 16, 2009
    Assignee: DENSO CORPORATION
    Inventor: Kazuhiko Sugiura
  • Patent number: 7456114
    Abstract: The present invention is directed to a microetching composition comprising a source of cupric ions, acid, a nitrile compound, and a source of halide ions. Other additive, including organic solvents, a source of molybdenum ions, amines, polyamines, and acrylamides may also be included in the composition of the invention. The present invention is also directed to a method of microetching copper or copper alloy surfaces to increase the adhesion of the copper surface to a polymeric material, comprising the steps of contacting a copper or copper alloy surface with the composition of the invention, and thereafter bonding the polymeric material to the copper or copper alloy surface.
    Type: Grant
    Filed: December 21, 2005
    Date of Patent: November 25, 2008
    Inventors: Kesheng Feng, Nilesh Kapadia, Steven A. Castaldi
  • Publication number: 20080254291
    Abstract: Disclosed is a method to construct a device that includes a plurality of nanowires (NWs) each having a core and at least one shell. The method includes providing a plurality of radially encoded NWs where each shell contains one of a plurality of different shell materials; and differentiating individual ones of the NWs from one another by selectively removing or not removing shell material within areas to be electrically coupled to individual ones of a plurality of mesowires (MWs). Also disclosed is a nanowire array that contains radially encoded NWs, and a computer program product useful in forming a nanowire array.
    Type: Application
    Filed: February 2, 2006
    Publication date: October 16, 2008
    Inventors: Andre Dehon, Charles M. Lieber, John E. Savage, Eric Rachlin
  • Patent number: 7404910
    Abstract: An etching solution which contains hydrogen fluoride (HF) and exhibits an etching rate ratio: etching rate for a boron-glass film (BSG) or boron-phosphorus-glass film (BPSG)/etching rate for a thermally oxidized film (THOX) of 10 or more at 25° C.
    Type: Grant
    Filed: November 22, 1999
    Date of Patent: July 29, 2008
    Assignee: Daikin Industries, Ltd.
    Inventors: Takehiko Kezuka, Makoto Suyama, Mitsushi Itano
  • Patent number: 7393461
    Abstract: The present invention related to an improved microetching solution and a method of using the improved composition for roughening a metal surface and increasing the adhesion strength of a metal layer to a subsequently applied layer. The microetching composition is an aqueous solution comprising cupric ion source, a pyridine derivative, multiethyleneamine, and an acid. In a preferred embodiment, the microetching solution of the invention also comprises a source of halide ions such as sodium chloride or hydrochloric acid.
    Type: Grant
    Filed: August 23, 2005
    Date of Patent: July 1, 2008
    Inventors: Kesheng Feng, Nilesh Kapadia, Steve Castaldi
  • Patent number: 7384871
    Abstract: The present invention provides an aqueous composition useful for polishing nonferrous metal interconnects on a semiconductor wafer comprising oxidizer, inhibitor for a nonferrous metal, complexing agent for the nonferrous metal, modified cellulose, 0.01 to 5% by weight copolymer of acrylic acid and methacrylic acid, and balance water, wherein the copolymer of acrylic acid and methacrylic acid has a monomer ratio (acrylic acid/methacrylic acid) in the range of 1:30 to 30:1 and the copolymer has a molecular weight in the range of 1K to 1000K.
    Type: Grant
    Filed: July 1, 2004
    Date of Patent: June 10, 2008
    Assignee: Rohm and Haas Electronic Materials CMP Holdings, Inc.
    Inventors: Francis J. Kelley, John Quanci, Joseph K. So, Hongyu Wang
  • Patent number: 7368065
    Abstract: Compositions and methods are provided for preparing a metal substrate having a uniform textured surface with a plurality of indentations with a diameter in the nanometer and micrometer range. The textured surface is produced by exposing the substrate to an etching fluid comprising a hydrohalic acid and a mixture of a hydrohalic acid and an oxyacid, a chloride containing compound, and an oxidant. The etching solution can be used at ambient temperature. This textured surface enhances adherence of coatings or cells onto the textured surface, improves the retention of proteins on the surface, and encourages bone in-growth.
    Type: Grant
    Filed: June 23, 2005
    Date of Patent: May 6, 2008
    Assignee: DePuy Products, Inc.
    Inventors: Xiaofan Yang, Panjian Li, Todd Smith
  • Patent number: 7357879
    Abstract: There is provided an etching solution comprised of a cupric chloride solution and a high-concentration triazole type compound added to the cupric chloride solution and capable of forming an etching-inhibiting coating. In a process of forming a circuit pattern by etching with the etching solution, an etching-inhibiting coating is selected formed on parts of a copper foil laid under the edge of an etching resist to effectively inhibit horizontal side-etching of the copper foil from the edge of the etching resist. Also, nonuniform irregularities formed on the side wall of the circuit pattern by the etching improves the adhesion between the circuit pattern and an insulating resin layer covering the circuit pattern.
    Type: Grant
    Filed: March 1, 2005
    Date of Patent: April 15, 2008
    Assignee: Ibiden Co., Ltd.
    Inventors: Tsunehisa Takahashi, Shigeki Sawa, Kazuhiko Matsui
  • Patent number: 7341958
    Abstract: The formation of devices in semiconductor material. In one embodiment, a method of forming a semiconductor device is provided. The method comprises forming at least one hard mask overlaying at least one layer of resistive material. Forming at least one opening to a working surface of a silicon substrate of the semiconductor device. Cleaning the semiconductor device with a diluted HF/HCL process. After cleaning with the diluted HF/HCL process, forming a silicide contact junction in the at least one of the opening to the working surface of the silicon substrate and then forming interconnect metal layers.
    Type: Grant
    Filed: April 8, 2005
    Date of Patent: March 11, 2008
    Assignee: Intersil Americas Inc.
    Inventors: John T. Gasner, John Stanton, Dustin A. Woodbury, James D. Beasom
  • Patent number: 7306681
    Abstract: A cleaning method and cleaning recipes are disclosed. The present invention relates to a method for cleaning a semiconductor substrate and cleaning recipes. The present invention utilizes a first cleaning solution including diluted hydrofluoric acid and a second cleaning solution including hydrogen chloride and hydrogen peroxide (H2O2) to clean a semiconductor substrate without using an alkaline solution including ammonium hydroxide. Accordingly, a clean surface of a semiconductor substrate is provided in selective epitaxial growth (SEG) process to grow an epitaxial layer with smooth surface.
    Type: Grant
    Filed: May 12, 2004
    Date of Patent: December 11, 2007
    Assignee: United Microelectronics Corp.
    Inventors: Ya-Lun Cheng, Yi-Chia Lee, Yu-Ren Wang, Neng-Hui Yang
  • Patent number: 7303993
    Abstract: The present invention provides an aqueous composition useful for CMP of a semiconductor wafer containing a metal comprising oxidizer, inhibitor for a nonferrous metal, complexing agent for the nonferrous metal, modified cellulose, 0.001 to 10% by weight copolymer blends of a first copolymer and a second copolymer and balance water.
    Type: Grant
    Filed: July 1, 2004
    Date of Patent: December 4, 2007
    Assignee: Rohm and Haas Electronic Materials CMP Holdings, Inc.
    Inventors: Francis J. Kelley, John Quanci, Joseph K. So, Hongyu Wang
  • Patent number: 7285229
    Abstract: An etchant of the present invention includes an aqueous solution containing hydrochloric acid, nitric acid, and a cupric ion source. An etching method of the present invention includes bringing the etchant into contact with at least one metal selected from nickel, chromium, nickel-chromium alloys, and palladium. Another etching method of the present invention includes bringing a first etchant that includes an aqueous solution containing at least the following components A to C (A. hydrochloric acid; B. at least one compound selected from the following (a) to (c): (a) compounds with 7 or less carbon atoms, containing a sulfur atom(s) and at least one group selected from an amino group, an imino group, a carboxyl group, a carbonyl group, and a hydroxyl group; (b) thiazole; and (c) thiazole compounds; and C.
    Type: Grant
    Filed: November 2, 2004
    Date of Patent: October 23, 2007
    Assignee: MEC Company, Ltd.
    Inventors: Masayo Kuriyama, Ryo Ogushi, Daisaku Akiyama, Kaoru Urushibata
  • Patent number: 7258808
    Abstract: A high-power BGA includes a printed circuit board with a through hole, connection pads formed on the bottom of the printed circuit board, matrix solder balls surrounding the through hole and adjacent to the connection pads, a heat spreader on the top surface of the printed circuit board that includes an insulating layer of a high thermal conductivity, a semiconductor chip mounted within the through hole on the bottom surface of the heat spreader that includes a number of contact pads for bonding with the connection pads using gold wires, and a passive film filling the through hole and around the semiconductor chip. By interposing a ceramic insulating layer between the semiconductor chip and the heat spreader, charge generation between the semiconductor chip and the heat spreader is sharply reduced, and defects such as ESD (electrostatic discharge) is reduced during testing and mounting of the package.
    Type: Grant
    Filed: June 10, 2003
    Date of Patent: August 21, 2007
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Heung-Kyu Kwon, Tae-Je Cho, Min-Ha Kim
  • Patent number: 7189336
    Abstract: An etchant and a method for roughening a copper surface each capable of permitting copper with roughened surface which exhibits acid resistance and permits a copper conductive pattern and an outer layer material to be firmly bonded to each other therethrough in manufacturing of a printed wiring board to simplify the manufacturing. The etchant may contain an oxo acid such as sulfuric acid, peroxide such as hydrogen peroxide and an auxiliary component such as an azole and chlorine. The azole may comprise benzotriazole (BTA). The chlorine may be in the form of sodium chloride (NaCl). The etchant permits a copper surface to be roughened in an acicular manner.
    Type: Grant
    Filed: March 21, 2003
    Date of Patent: March 13, 2007
    Assignee: Ebara Densan Ltd.
    Inventors: Yoshihiko Morikawa, Kazunori Senbiki, Nobuhiro Yamazaki
  • Patent number: 7163897
    Abstract: The invention provides a method of assaying at least one element in a material including silicon. The method includes the steps of decomposing a portion of the material with an etching agent to form a solution containing hexafluorosilicic acid and at least one element to be assayed, heating the solution to a temperature sufficient to transform a substantial portion of the hexafluorosilicic acid into silicon tetrafluoride and to cause at least some of the silicon tetrafluoride to evaporate, such that a solution for assaying is obtained in which the silicon content is reduced while and the elements to be assayed are conserved; and assaying at least one element contained in the solution. The invention is applicable to the field of manufacturing substrates or components for optics, electronics, or optoelectronics, and in particular to the field of quality control.
    Type: Grant
    Filed: August 6, 2003
    Date of Patent: January 16, 2007
    Assignee: S.O.I.Tec Silicon on Insulator Technologies S.A.
    Inventor: Laurent Viravaux
  • Patent number: 7153445
    Abstract: The invention is directed to a method and composition for providing roughened copper surfaces suitable for subsequent multilayer lamination. A smooth copper surface is contacted with an adhesion promoting composition under conditions effective to provide a roughened copper surface, the adhesion promoting composition consisting essentially of an oxidizer, a pH adjuster, a topography modifier, and a uniformity enhancer. A coating promoter may be used in place of the uniformity enhancer or in addition to the uniformity enhancer. The adhesion promoting composition does not require a surfactant. The process may further comprise the step of contacting the uniform roughened copper surface with a post-dip, wherein the post-dip comprises an azole or silane compound or a combination of said azole and said silane. The post-dip may further comprise, alone or in combination, a titanate, zirconate, and an aluminate. The pH adjuster is preferably sulfuric acid and the oxidizer is preferably hydrogen peroxide.
    Type: Grant
    Filed: December 18, 2001
    Date of Patent: December 26, 2006
    Assignee: Electrochemicals Inc.
    Inventors: Roger Bernards, Hector Gonzalez, Al Kucera, Mike Schanhaar
  • Patent number: 7108795
    Abstract: The invention is directed to a method and composition for providing chemically-resistant roughened copper surfaces suitable for subsequent multilayer lamination. In one embodiment, a smooth copper surface is contacted with an adhesion promoting composition under conditions effective to provide a roughened copper surface, the adhesion promoting composition comprising an oxidizer, a pH adjuster, a topography modifier, and a sulfur-containing coating stabilizer. In another embodiment, a smooth copper surface is contacted with an adhesion promoting composition under conditions effective to provide a roughened copper surface, the adhesion promoting composition comprising an oxidizer, a pH adjuster, and a topography modifier. Then, in a subsequent step, the roughened copper surface is contacted with an acid resistance promoting composition.
    Type: Grant
    Filed: June 23, 2005
    Date of Patent: September 19, 2006
    Assignee: Electrochemicals, Inc.
    Inventors: Roger F. Bernards, Joseph Stanton Bowers, Jr., Benjamin T. Carroll, Alvin A. Kucera
  • Patent number: 7087183
    Abstract: A method for removing a thin metallic layer using an etchant solution is provided for essentially eliminating undercutting in a thin metallic layer such as a seed layer in a magnetic recording head. The etchant solution has a suitable solvent additive such as glycerol or methyl cellulose. With suitable solvent additives, which generally increase solvent viscosity, lateral etching rates are similar to surface etch rates and undercutting is essentially eliminated.
    Type: Grant
    Filed: June 24, 2005
    Date of Patent: August 8, 2006
    Assignee: International Business Machines Corporation
    Inventor: Peter Beverley Powell Phipps
  • Patent number: 7067068
    Abstract: A lead-containing copper-based alloy is immersed into a weak acidic or neutral etching solution having a buffer effect which is formed by adding an organic acid into a complexing agent having a high ability to form a complexing ion with lead, and lead particles present on the surface of the lead-containing copper-based alloy are then removed. The complexing agent is one of an organic ammonium salt such as ammonium acetate, or ammonium citrate, or may be an organic sodium salt such as sodium acetate, sodium tartrate, and sodium citrate. Preferably, an immersion temperature of the alloy to the etching solution falls within a range of from 10 to 50° C. The etching solution is agitated with oxygen or a gas containing oxygen blown thereinto during the immersion of the alloy into the etching solution. An extremely low voltage of ?0.3 to +0.2 V vs. NHE is applied from outside to the lead-containing copper-based alloy as an anode.
    Type: Grant
    Filed: September 13, 2002
    Date of Patent: June 27, 2006
    Assignee: Chuetsu Metal Works Co., Ltd.
    Inventors: Sumiko Sanuki, Kunio Nakashima, Ryouichi Ishigane, Wataru Yago, Kenichi Ichida, Atsushi Yasukawa, Kazuo Takeuchi
  • Patent number: 7063800
    Abstract: The present invention sets forth an improved method of microetching a metal substrate by contacting the substrate with an aqueous composition comprising a sodium persulfate or hydrogen peroxide oxidizing agent, acid, and one or more additives. When the oxidizing agent is sodium persulfate, the one or more additives generally comprise an aliphatic saturated dicarboxylic acid. When the oxidizing agent is hydrogen peroxide, the one or more additives generally comprise a stabilizer and amino tris(methylene phosphonic acid).
    Type: Grant
    Filed: November 10, 2003
    Date of Patent: June 20, 2006
    Inventors: Ying Ding, Ronald N. Redline, Richard C. Retallick, Mark Wojtaszek
  • Patent number: 7060631
    Abstract: The invention encompasses a semiconductor processing method of cleaning a surface of a copper-containing material by exposing the surface to an acidic mixture comprising Cl?, NO3? and F?. The invention also includes a semiconductor processing method of forming an opening to a copper-containing substrate. Initially, a mass is formed over the copper-containing substrate. The mass comprises at least one of a silicon nitride and a silicon oxide. An opening is etched through the mass and to the copper-containing substrate. A surface of the copper-containing substrate defines a base of the opening, and is referred to as a base surface. The base surface of the copper-containing substrate is at least partially covered by at least one of a copper oxide, a silicon oxide or a copper fluoride.
    Type: Grant
    Filed: May 16, 2005
    Date of Patent: June 13, 2006
    Assignee: Micron Technology, Inc.
    Inventor: Paul A. Morgan
  • Patent number: 7037350
    Abstract: A composition for chemical-mechanical polishing, comprising an aqueous solution and an abrasive that comprises polymer particles, is described. The polymer particles carry an electrical charge, such that nearby particles repel one another. Accordingly, aggregation of polymer particles may be reduced, minimized or eliminated. The composition may additionally comprise an oxidizing agent. A method of using the composition to polish a substrate surface, such as a substrate surface having a metal surface feature or layer, is also described. A substrate so polished may exhibit good surface characteristics, such as a relatively smooth surface or a reduced number of, or a lack of, microscratches on the surface of the substrate.
    Type: Grant
    Filed: July 14, 2003
    Date of Patent: May 2, 2006
    Assignee: DA NanoMaterials L.L.C.
    Inventors: Robert J. Small, Zhefei J. Chen
  • Patent number: 7030033
    Abstract: Priorly, semiconductor devices wherein a flexible sheet with a conductive pattern was employed as a supporting substrate, a semiconductor element was mounted thereon, and the ensemble was molded have been developed. In this case, problems occur that a multilayer wiring structure cannot be formed and warping of the insulating resin sheet in the manufacturing process is prominent. In order to solve these problems, a laminated plate 10 in which a thin first conductive film 11 and a thick second conductive film 12 have been laminated via a third conductive film 13 is used.
    Type: Grant
    Filed: September 16, 2003
    Date of Patent: April 18, 2006
    Assignees: Sanyo Electric Co., Ltd., Kanto Sanyo Semiconductors Co., Ltd.
    Inventors: Yusuke Igarashi, Hideki Mizuhara, Noriaki Sakamoto
  • Patent number: 6949470
    Abstract: Priorly, semiconductor devices wherein a flexible sheet with a conductive pattern was employed as a supporting substrate, a semiconductor element was mounted thereon, and the ensemble was molded have been developed. In this case, problems occur that a multilayer wiring structure cannot be formed and warping of the insulating resin sheet in the manufacturing process is prominent. In order to solve these problems, a laminated plate 10 formed by laminating a first conductive film 11 and a second conductive film 12 is covered with a photoresist layer PR having opening portions 13 with inclined surfaces 13S, a conductive wiring layer 14 is formed in the opening portions by electrolytic plating to form inverted inclined surfaces 14R, and then, when covering the same with the sealing resin layer 21, an anchoring effect is produced by making the sealing resin layer 21 bite into the inverted inclined surfaces 14R so as to strengthen bonding of the sealing resin layer 21 with the conductive wiring layer 14.
    Type: Grant
    Filed: September 17, 2003
    Date of Patent: September 27, 2005
    Assignees: Sanyo Electric Co., Ltd., Kanto Sanyo Semiconductors Co., Ltd.
    Inventors: Yusuke Igarashi, Hideki Mizuhara, Noriaki Sakamoto
  • Patent number: 6946027
    Abstract: The invention is directed to a method and composition for providing chemically-resistant roughened copper surfaces suitable for subsequent multilayer lamination. In one embodiment, a smooth copper surface is contacted with an adhesion promoting composition under conditions effective to provide a roughened copper surface, the adhesion promoting composition comprising an oxidizer, a pH adjuster, a topography modifier, and a sulfur-containing coating stabilizer. In another embodiment, a smooth copper surface is contacted with an adhesion promoting composition under conditions effective to provide a roughened copper surface, the adhesion promoting composition comprising an oxidizer, a pH adjuster, and a topography modifier. Then, in a subsequent step, the roughened copper surface is contacted with an acid resistance promoting composition.
    Type: Grant
    Filed: February 17, 2004
    Date of Patent: September 20, 2005
    Assignee: Electrochemicals, Inc.
    Inventors: Roger F. Bernards, Joseph Stanton Bowers, Jr., Benjamin T. Carroll, Alvin A. Kucera
  • Patent number: 6902626
    Abstract: A liquid etchant and a method for roughening a copper surface each capable of providing copper with a roughened surface increased in acid resistance regardless of a chlorine ion in a short period of time, to thereby ensure firm adhesion between a copper conductive pattern and an outer layer material during manufacturing of a printed circuit board, resulting in the manufacturing being highly simplified. The liquid etchant includes a main component containing an oxo acid such as sulfuric acid and a peroxide such as hydrogen peroxide. Also, the liquid etchant includes an auxiliary component containing a tetrazole such as 5-aminotetrazole or the like, or a 1,2,3-azole. The liquid etchant permits a copper surface to be roughened in an acicular manner.
    Type: Grant
    Filed: October 29, 2003
    Date of Patent: June 7, 2005
    Assignee: Ebara Densan Ltd.
    Inventors: Yoshihiko Morikawa, Kazunori Senbiki, Nobuhiro Yamazaki
  • Patent number: 6902591
    Abstract: A polishing composition comprising an abrasive, water and an organic acid or a salt thereof, wherein the composition has a specified viscosity of from 1.0 to 2.0 mPa·s at a shearing rate of 1500 s?1 and 25° C.; a roll-off reducing agent comprising a Brönsted acid or a salt thereof, having an action of lowering viscosity so that the amount of viscosity lowered is 0.01 mPa·s or more, wherein the amount of viscosity lowered is expressed by the following equation: (Amount of Viscosity Lowered)=(Viscosity of Standard Polishing Composition)?(Viscosity of Roll-Off Reducing Agent-Containing Polishing Composition), wherein the standard polishing composition is prepared which comprises 20 parts by weight of an abrasive, said abrasive being high-purity alumina having Al2O3 purity of 98.
    Type: Grant
    Filed: July 24, 2003
    Date of Patent: June 7, 2005
    Assignee: Kao Corporation
    Inventors: Hiroaki Kitayama, Shigeo Fujii, Yoshiaki Oshima, Toshiya Hagihara
  • Patent number: 6899818
    Abstract: A method and composition for removing sodium-containing materials such as photoresist from microcircuit substrate material utilizes 1,2-Diaminocyclohexanetetracarboxylic Acid in an organic solvent.
    Type: Grant
    Filed: March 19, 2001
    Date of Patent: May 31, 2005
    Assignee: Mallinckrodt Inc.
    Inventor: George Schwartzkopf
  • Patent number: 6899814
    Abstract: In order to simplify the sequence of creating a mask, in particular for producing a printing plate, and at the same time to improve the quality of the printing plate produced by means of a mask, the use of laser-induced thermal transfer is provided. The structure information is applied directly to the surface of a printing plate carrier during the creation of a mask, by means of a thermal transfer film and a laser image-setting unit, so that by means of the structure information applied, differentiation with regard to image points and non-image points can be carried out directly in order to produce a printing plate.
    Type: Grant
    Filed: December 20, 2001
    Date of Patent: May 31, 2005
    Assignee: MAN Roland Druckmaschinen AG
    Inventors: Josef Schneider, Alfons Schuster, Michael Schönert, Rainer Stamme
  • Patent number: 6893578
    Abstract: An etching composition and method is disclosed for removing an oxide sacrificial material during manufacture of semiconductor devices including micromechanical, microelectromechanical or microfluidic devices. The etching composition and method are based on the combination of hydrofluoric acid (HF) and sulfuric acid (H2SO4). These acids can be used in the ratio of 1:3 to 3:1 HF:H2SO4 to remove all or part of the oxide sacrificial material while providing a high etch selectivity for non-oxide materials including polysilicon, silicon nitride and metals comprising aluminum. Both the HF and H2SO4 can be provided as “semiconductor grade” acids in concentrations of generally 40-50% by weight HF, and at least 90% by weight H2SO4.
    Type: Grant
    Filed: December 5, 2001
    Date of Patent: May 17, 2005
    Assignee: Sandia Corporation
    Inventors: Peggy J. Clews, Seethambal S. Mani
  • Patent number: 6861369
    Abstract: Disclosed is a method of manufacturing a semiconductor device. First, a silicidation blocking layer is formed on a semiconductor substrate by a plasma enhanced chemical vapor deposition process. Next, the silicidation blocking layer in a region in which a metal silicide contact is to be formed is removed by a wet etching process. Next, after a metal layer is formed on the resultant, the silicon in the region and the metal of the metal layer are reacted to form the metal silicide. Since the silicidation blocking layer consisting of PE-SiON is formed at a low temperature of less than 400 Celsius Degrees, it is possible to prevent diffusion and redistribution of impurities in gate and source/drain regions of a transistor during the deposition of the silicidation blocking layer.
    Type: Grant
    Filed: May 10, 2002
    Date of Patent: March 1, 2005
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Jung-Hoon Park
  • Patent number: 6818142
    Abstract: A solution comprising potassium hydrogen peroxymonosulfate containing an elevated level of KHSO5 and having a weight ratio of SO5 to SO4 of greater than 1.0:1, and its use in microetching metal substrates is disclosed.
    Type: Grant
    Filed: March 31, 2003
    Date of Patent: November 16, 2004
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Thomas Peter Tufano, Michael Brian Coxey
  • Patent number: 6793838
    Abstract: The present invention relates to a chemical milling solution and a chemical milling process for removing a desired depth of material from metal parts. The milling solution contains nitric acid, hydrofluoric acid, a wetting agent, such as a surfactant, dissolved titanium, and the balance water. The solution is maintained at a temperature in the range of from about 110° F. to about 130° F. The metal part to be milled is immersed in the milling solution for a time sufficient to remove a desired depth of material from at least one surface of the part.
    Type: Grant
    Filed: September 28, 2001
    Date of Patent: September 21, 2004
    Assignee: United Technologies Corporation
    Inventors: James O. Hansen, Kenneth C. Long, Michael A. Jackson, Henry M. Hodgens
  • Patent number: 6773476
    Abstract: A polishing composition comprising: (a) at least one abrasive selected from the group consisting of silicon dioxide and aluminum oxide, (b) at least one organic compound selected from the group consisting of a polyethylene oxide, a polypropylene oxide, a polyoxyethylene alkyl ether, a polyoxypropylene alkyl ether, a polyoxyethylenepolyoxypropylene alkyl ether and a polyoxyalkylene addition polymer having a C≡C triple bond, represented by the formula (1): wherein each of R1 to R6 is H or a C1-10 alkyl group, each of X and Y is an ethyleneoxy group or a propyleneoxy group, and each of m and n is a positive number of from 1 to 20, (c) at least one polishing accelerating compound selected from the group consisting of citric acid, oxalic acid, tartaric acid, glycine, &agr;-alanine and histidine, (d) at least one anticorrosive selected from the group consisting of benzotriazole, benzimidazole, triazole, imidazole and tolyltriazole, (e) hydrogen peroxide, and (f) water.
    Type: Grant
    Filed: July 23, 2002
    Date of Patent: August 10, 2004
    Assignee: Fujimi Incorporated
    Inventors: Kenji Sakai, Kazusei Tamai, Tadahiro Kitamura, Tsuyoshi Matsuda, Katsuyoshi Ina
  • Patent number: 6730605
    Abstract: A method to redistribute solid copper deposited by PVD on a wafer topography. The deposited copper is solubilized in a fluid for redistribution. The copper redistribution prevents inherent nonuniformity of the deposited copper film thickness by improving the uniformity of thickness of the copper film on the covered surfaces, such as vertical and bottom surfaces. The method provides the advantages of good adhesion and good grain growth and orientation that are achieved with copper deposited by PVD, and also provides the good step coverage as achieved with copper deposited by CVD.
    Type: Grant
    Filed: April 12, 2001
    Date of Patent: May 4, 2004
    Assignee: Tokyo Electron Limited
    Inventors: Chantal Arena-Foster, Robert F. Foster, Joseph T. Hillman, Thomas J. Licata, Tugrul Yasar
  • Patent number: 6716281
    Abstract: The invention is directed to a method and composition for providing chemically-resistant roughened copper surfaces suitable for subsequent multilayer lamination. In one embodiment, a smooth copper surface is contacted with an adhesion promoting composition under conditions effective to provide a roughened copper surface, the adhesion promoting composition comprising an oxidizer, a pH adjuster, a topography modifier, and a sulfur-containing coating stabilizer. In another embodiment, a smooth copper surface is contacted with an adhesion promoting composition under conditions effective to provide a roughened copper surface, the adhesion promoting composition comprising an oxidizer, a pH adjuster, and a topography modifier. Then, in a subsequent step, the roughened copper surface is contacted with an acid resistance promoting composition.
    Type: Grant
    Filed: May 10, 2002
    Date of Patent: April 6, 2004
    Assignee: Electrochemicals, Inc.
    Inventors: Roger F. Bernards, Joseph Stanton Bowers, Jr., Benjamin T. Carroll, Alvin A. Kucera
  • Patent number: 6706121
    Abstract: In a method of treating substrates a treatment fluid is fed into a collection vessel after treatment, at least a portion of the treatment fluid is withdrawn from the collection vessel and returned to respective reservoir and the collection vessel is rinsed before receiving another treatment fluid.
    Type: Grant
    Filed: October 23, 2002
    Date of Patent: March 16, 2004
    Assignee: Mattson Wet Products
    Inventors: Manfred Schenkl, Robert Pesce, John Oshinowo, Uwe Müller
  • Patent number: 6692580
    Abstract: A method of cleaning a dual damascene structure. A first metal layer, a cap layer, and a dielectric layer are formed on a substrate in sequence. Then a dual damascene opening is formed in the dielectric layer and the cap layer, exposing the first metal layer. Then, a post-etching cleaning step is carried out to clean the dual damascene opening, and there are two types of cleaning methods. The first method uses a fluorine-based solvent to clean the dual damascene opening. An alternative cleaning method uses a hydrogen peroxide based solvent at a high temperature, followed by a hydrofluoric acid solvent cleaning step. Then, an argon gas plasma is sputtered to clean the dual damascene opening before a second metal layer fills in the dual damascene opening.
    Type: Grant
    Filed: April 4, 2003
    Date of Patent: February 17, 2004
    Assignee: United Microelectronics Corp.
    Inventors: Chih-Ning Wu, Sun-Chieh Chien
  • Patent number: 6666987
    Abstract: A liquid etchant and a method for roughening a copper surface each capable of providing copper with a roughened surface increased in acid resistance regardless of a chlorine ion in a short period of time, to thereby ensure firm adhesion between a copper conductive pattern and an outer layer material during manufacturing of a printed circuit board, resulting in the manufacturing being highly simplified. The liquid etchant includes a main component containing an oxo acid such as sulfuric acid and a peroxide such as hydrogen peroxide. Also, the liquid etchant includes an auxiliary component containing a tetrazole such as 5-aminotetrazole or the like, or a 1,2,3-azole. The liquid etchant permits a copper surface to be roughened in an acicular manner.
    Type: Grant
    Filed: June 8, 1999
    Date of Patent: December 23, 2003
    Assignee: Ebara Densan Ltd.
    Inventors: Yoshihiko Morikawa, Kazunori Senbiki, Nobuhiro Yamazaki
  • Patent number: 6656294
    Abstract: It is an object of the present invention to provide a processing method for preventing elution of lead in a lead-containing copper alloy to prevent lead from eluting from a faucet metal, etc. made of a lead-containing copper alloy, and a drinking water service fitting made of a lead-containing copper alloy in which elution of lead has been prevented. By forming a chromate film on the surface of a lead-containing copper alloy material, it is possible to reduce elution of the lead left in a limited amount on the surface. A drinking water service fitting made of a lead-containing copper alloy is immersed in an alkaline etching solution in a pre-processing step for a nickel chromium plating step to selectively remove lead on the surface of the lead-containing copper alloy material and is then activated in a solution such as sulfuric acid and hydrochloric acid.
    Type: Grant
    Filed: June 2, 2000
    Date of Patent: December 2, 2003
    Assignee: Toto Ltd.
    Inventors: Masashi Kawamoto, Akira Gotou, Mituo Imamoto
  • Patent number: 6652659
    Abstract: A method of rinsing an electronic substrate recognizes that adding a buffer to a rinsing fluid eliminates fluctuations in the amount of residues on an electronic substrate, and a buffered rinsing fluid is prepared by (a) providing water from a water source; (b) deionizing the water to produce deionized water; (c) adding a buffer to the deionized water at a concentration effective to eliminate fluctuations in the amount of residues on the electronic substrate. The electronic substrate is rinsed with the buffered rinsing fluid.
    Type: Grant
    Filed: November 30, 1999
    Date of Patent: November 25, 2003
    Assignee: Honeywell International Inc.
    Inventors: Glen Roeters, Raj Kumar
  • Patent number: 6652993
    Abstract: The object of the present invention is to provide a copper clad laminate with a copper-plated circuit layer, and a method for manufacturing a printed wiring board that excels the conventional ones in the aspect ratio of a circuit pattern when processed to a printed wiring board comprising a fine-pitch circuit. The object of the present invention is achieved by manufacturing a printed wiring board with the use of a copper clad laminate with a copper-plated circuit layer characterized by a copper-plated circuit layer and an outer-layer copper foil layer that satisfied the relationship in a case where a specific etchant is used, the R v value (Vsc/Vsp), which is the ratio of the dissolution rate (Vsp) of deposited copper that constitutes said copper-plated circuit layer to the dissolution rate (Vsc) of copper that constitutes said outer-layer copper foil layer, is 1.0 or more.
    Type: Grant
    Filed: April 25, 2002
    Date of Patent: November 25, 2003
    Assignee: Mitsui Mining & Smelting Co., Ltd.
    Inventors: Takuya Yamamoto, Takashi Syoujiguchi
  • Patent number: 6653243
    Abstract: The invention encompasses a semiconductor processing method of cleaning a surface of a copper-containing material by exposing the surface to an acidic mixture comprising Cl+, NO3+ and F+. The invention also includes a semiconductor processing method of forming an opening to a copper-containing substrate. Initially, a mass is formed over the copper-containing substrate. The mass comprises at least one of a silicon nitride and a silicon oxide. An opening is etched through the mass and to the copper-containing substrate. A surface of the copper-containing substrate defines a base of the opening, and is referred to as a base surface. The base surface of the copper-containing substrate is at least partially covered by at least one of a copper oxide, a silicon oxide or a copper fluoride.
    Type: Grant
    Filed: May 25, 2000
    Date of Patent: November 25, 2003
    Assignee: Micron Technology, Inc.
    Inventor: Paul A. Morgan
  • Patent number: 6649077
    Abstract: A method and an apparatus for removing coating layers from the top of alignment marks on a wafer situated in a spin processor are described. The method may be carried out by first providing a spin process equipped with a rotatable wafer pedestal, then providing a wafer that has at least one alignment mark covered by a coating layer, mounting an edge ring on an outer periphery of the wafer pedestal, the edge ring has at least one tab section extending outwardly from an inner periphery of the edge ring, then positioning the wafer faced down and supported by an inert gas flow on the edge ring such that a narrow gap is formed between the tab section on the edge ring and the alignment marks and dispensing an etchant onto a backside of the wafer while rotating.
    Type: Grant
    Filed: December 21, 2001
    Date of Patent: November 18, 2003
    Assignee: Taiwan Semiconductor Manufacturing Co. Ltd
    Inventors: Pang-Yen Tsai, Tien-Chen Hu, Sen-Shan Yang, Wei-Cheng Ku