Etching Of Semiconductor Material To Produce An Article Having A Nonelectrical Function Patents (Class 216/2)
  • Patent number: 7306966
    Abstract: In a method for manufacturing a semiconductor component having a semiconductor substrate, a flat, porous diaphragm layer and a cavity underneath the porous diaphragm layer are produced to form unsupported structures for a component. In a first approach, the semiconductor substrate may receive a doping in the diaphragm region that is different from that of the cavity. This permits different pore sizes and/or porosities to be produced, which is used in producing the cavity for improved etching gas transport. Also, mesopores may be produced in the diaphragm region and nanopores may be produced as an auxiliary structure in what is to become the cavity region.
    Type: Grant
    Filed: July 25, 2002
    Date of Patent: December 11, 2007
    Assignee: Robert Bosch GmbH
    Inventors: Hubert Benzel, Heribert Weber, Hans Artmann, Thorsten Pannek, Frank Schäfer
  • Patent number: 7303935
    Abstract: A microelectromechanical (MEM) device per the present invention comprises a semiconductor wafer—typically an SOI wafer, a substrate, and a high temperature bond which bonds the wafer to the substrate to form a composite structure. Portions of the composite structure are patterned and etched to define stationary and movable MEM elements, with the movable elements being mechanically coupled to the stationary elements. The high temperature bond is preferably a mechanical bond, with the wafer and substrate having respective bonding pads which are aligned and mechanically connected to form a thermocompression bond to effect the bonding. A metallization layer is typically deposited on the composite structure and patterned to provide electrical interconnections for the device. The metallization layer preferably comprises a conductive refractory material such as platinum to withstand high temperature environments.
    Type: Grant
    Filed: September 8, 2005
    Date of Patent: December 4, 2007
    Assignee: Teledyne Licensing, LLC
    Inventors: Jeffrey F. DeNatale, Robert L. Borwick, III, Philip A. Stupar
  • Patent number: 7301692
    Abstract: Disclosed is a micro mirror having a structure improved to have an increased driving angle while being driven in high speed. The micro mirror comprises a rotatable mirror section that reflects light, a pair of spring sections for supporting the mirror section and serving as a rotational axis for the mirror section when the mirror section is rotationally driven, an oval adjoining section for connecting the mirror section and the pair of spring sections, and a driving section comprising mobile combs arranged on the adjoining section, and a fixed comb provided above and/or below the mobile combs to correspond to the mobile combs to generate electrostatic force. According to the present invention, by existence of the oval adjoining section, moment can be increased without increasing rotational inertia moment so largely. Therefore, a high-speed optical scanner with an increased driving angle can be provided, which is required for a high-resolution laser TV.
    Type: Grant
    Filed: January 30, 2007
    Date of Patent: November 27, 2007
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Young-chul Ko, Jin-ho Lee, Jin-woo Cho
  • Patent number: 7297568
    Abstract: A three-dimensional structure composed of highly-reliable silicon ultrafine wires, a method for producing the three-dimensional structure, and a device including the same are provided. The three-dimensional structure composed of silicon fine wires includes wires (2) on the order of nanometers to micrometers formed by wet etching utilizing the crystallinity of a single-crystal material.
    Type: Grant
    Filed: June 2, 2003
    Date of Patent: November 20, 2007
    Assignee: Japan Science and Technology Agency
    Inventors: Hideki Kawakatsu, Dai Kobayashi
  • Patent number: 7294280
    Abstract: The present invention concerns a design for an external cavity single mode laser wherein a short optical path length for the optical cavity (e.g., ˜3 to 25 mm) provides sufficient spacing of the longitudinal modes allowing a single wavelength selective element, such as a microfabricated etalon, to provide a single mode of operation, and optionally a selectable mode of operation.
    Type: Grant
    Filed: May 24, 2004
    Date of Patent: November 13, 2007
    Assignee: Shipley Company, L.L.C.
    Inventors: David W. Sherrer, Hui Luo
  • Patent number: 7294279
    Abstract: A method for releasing a micromechanical structure. A substrate is provided. At least one micromechanical structural layer is provided above the substrate, wherein the micromechanical structural layer is sustained by a sacrificial layer of a silicon material. An amine-based etchant is provided to etch the silicon material. That is, during performing a post-cleaning procedure with an amine-based etchant, polymer residue and the sacrificial layer of silicon can be simultaneously removed without any additional etching processes.
    Type: Grant
    Filed: March 17, 2005
    Date of Patent: November 13, 2007
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Fei-Yun Chen, Tzu-Yang Wu, Shih-Shiung Chen
  • Patent number: 7285844
    Abstract: A Multiple Internal Seal Ring (MISR) Micro-Electro-Mechanical System (MEMS) vacuum package that hermetically seals MEMS devices using MISR. The method bonds a capping plate having metal seal rings to a base plate having metal seal rings by wafer bonding the capping plate wafer to the base plate wafer. Bulk electrodes may be used to provide conductive paths between the seal rings on the base plate and the capping plate. All seals are made using only metal-to-metal seal rings deposited on the polished surfaces of the base plate and capping plate wafers. However, multiple electrical feed-through metal traces are provided by fabricating via holes through the capping plate for electrical connection from the outside of the package through the via-holes to the inside of the package. Each metal seal ring serves the dual purposes of hermetic sealing and providing the electrical feed-through metal trace.
    Type: Grant
    Filed: June 10, 2004
    Date of Patent: October 23, 2007
    Assignees: California Institute of Technology, The Boeing Company
    Inventors: Ken J. Hayworth, Karl Y. Yee, Kirill V. Shcheglov, Youngsam Bae, Dean V. Wiberg, A. Dorian Challoner, Chris S. Peay
  • Publication number: 20070241076
    Abstract: The invention relates to a method of fabrication of staggered vertical comb drive actuators with relaxed lateral alignment tolerances. A device layer of a wafer is first etched from a front side using a self-aligned two-layer mask to define interdigited fingers of both moving and stationary combs. A second etch step is used for vertically thinning one of the two sets of fingers by selectively removing their top portions. The front side of the wafer is then bonded to a carrier wafer. The wafer is then selectively etched from the back side of the device layer so as to remove lower portions of the second set of fingers, thereby forming interdigited moving and stationary combs having vertically offset fingers.
    Type: Application
    Filed: April 11, 2007
    Publication date: October 18, 2007
    Inventors: Steven H. Moffat, John M. Miller
  • Patent number: 7279112
    Abstract: A method of applying a universal coating for a medical device comprising a medical device component, the medical device component having an outer surface and an inner surface, the universal coating applied to at least the outer surface or the inner surface of the medical device component, wherein the coating is made from a material selected from the group consisting of diamond, diamond-like, borosilicate glass, carbides and nitrides. The medical device can further be a smart medical device by incorporating a sensor placed capable of measuring chemical and/or electrical conditions. A method of applying the coating inside complicated 3D structures without the need for bonding diamond to diamond or DLC to DLC layers is also provided.
    Type: Grant
    Filed: May 22, 2003
    Date of Patent: October 9, 2007
    Assignee: Medtronic, Inc.
    Inventor: Gonzalo Martinez
  • Patent number: 7279110
    Abstract: A method and apparatus for patterning an array of SLM mirrors with a phase step is disclosed. Additional embodiments of the present invention describe a method for processing a substrate, wherein the processed substrate is used in the apparatus for patterning an array of SLM mirrors with a phase step. The processed substrate is then placed in close proximity to the mirrors and the etching/deposition process is then done through openings in the substrate. In embodiments in which the processed substrate does not have a high enough density of openings, a stepping and repeating process is used in order to achieve complete process coverage of every mirror in an array of SLM mirrors.
    Type: Grant
    Filed: December 27, 2004
    Date of Patent: October 9, 2007
    Assignee: ASML Holding N.V.
    Inventor: Stephen Roux
  • Patent number: 7279113
    Abstract: A method of forming a lithographic template having an elastomer layer positioned between a body and an imprinting layer, the imprinting layer having a pattern formed thereon.
    Type: Grant
    Filed: December 9, 2005
    Date of Patent: October 9, 2007
    Assignee: Molecular Imprints, Inc.
    Inventors: Michael P. C. Watts, Ronald D. Voisin, Sidlgata V. Sreenivasan
  • Patent number: 7276172
    Abstract: The present invention relates to a method for preparing a nanowire crossbar structure, comprising: (a) providing a substrate; (b) depositing thereon a composite structure comprising a nucleic acid-block copolymer having equidistant nucleic acid-catalyst binding sites and at least one catalyst nanoparticle functionalized to bind specifically to nucleic acid segments of the copolymer; (c) applying a directed gas flow and/or an alternating electric field onto the composite structure; and (d) applying chemical vapor deposition techniques, a use of such a structure and a structure obtainable by such a method.
    Type: Grant
    Filed: August 7, 2003
    Date of Patent: October 2, 2007
    Assignee: Sony Deutschland GmbH
    Inventors: Jurina Wessels, William E. Ford, Akio Yasuda
  • Patent number: 7271105
    Abstract: A method of etching a semiconductor substrate. The method includes the steps of applying a photoresist etch mask layer to a device surface of the substrate. A select first area of the photoresist etch mask is masked, imaged and developed. A select second area of the photoresist etch mask layer is irradiated to assist in post etch stripping of the etch mask layer from the select second area. The substrate is etched to form fluid supply slots through a thickness of the substrate. At least the select second area of the etch mask layer is removed from the substrate, whereby mask layer residue formed from the select second area of the etch mask layer is significantly reduced.
    Type: Grant
    Filed: September 15, 2004
    Date of Patent: September 18, 2007
    Assignee: Lexmark International, Inc.
    Inventors: John W. Krawczyk, James M. Mrvos, Girish S. Patil, Jason T. Vanderpool, Brian C. Hart, Christopher J. Money, Jeanne M. Saldanha Singh, Karthik Vaideeswaran
  • Patent number: 7271104
    Abstract: A method of micro-machining a semiconductor substrate to form one or more through slots therein. The semiconductor substrate has a device side and a fluid side opposite the device side. The method includes diffusing a p-type doping material into the device side of the semiconductor substrate in one or more through slot locations to be etched through a thickness of the substrate. The semiconductor substrate is then etched with a dry etch process from the device side of the substrate to the fluid side of the substrate so that one or more through slots having a reentrant profile are formed in the substrate.
    Type: Grant
    Filed: June 30, 2005
    Date of Patent: September 18, 2007
    Assignee: Lexmark International, Inc.
    Inventors: David L. Bernard, John W. Krawczyk, Andrew L. McNees
  • Patent number: 7267779
    Abstract: A micromachined device for efficient thermal processing at least one fluid stream includes at least one fluid conducting tube having at least a region with wall thickness of less than 50 ?m. The device optionally includes one or more thermally conductive structures in thermal communication with first and second thermally insulating portions of the fluid conducting tube. The device also may include a thermally conductive region, and at least a portion of the fluid conducting tube is disposed within the region. A plurality of structures may be provided projecting from a wall of the fluid conducting tube into an inner volume of the tube. The structures enhance thermal conduction between a fluid within the tube and a wall of the tube. A method for fabricating, from a substrate, a micromachined device for processing a fluid stream allows the selective removal of portions of the substrate to provide desired structures integrated within the device.
    Type: Grant
    Filed: July 18, 2005
    Date of Patent: September 11, 2007
    Assignee: Massachusetts Institute of Technology
    Inventors: Leonel R. Arana, Aleksander J. Franz, Klavs F. Jensen, Samuel B. Schaevitz, Martin A. Schmidt
  • Patent number: 7267781
    Abstract: A method of fabricating optical filter is disclosed. The method includes providing the substrate and selectively etching the substrate to form a plurality of freestanding layers. A plurality of dielectric layers is disposed over an outer surface of each of the freestanding layers. The resultant optical filters may be used in a variety of applications including etalon applications.
    Type: Grant
    Filed: June 2, 2004
    Date of Patent: September 11, 2007
    Assignee: Shipley Company, L.L.C.
    Inventors: Dan A. Steinberg, Mindaugas F. Dautartas, David W. Sherrer
  • Patent number: 7261824
    Abstract: The present invention relates to a method of fabricating a microfluidic device including at least two substrates provided with a fluid channel, comprising the steps of: a) etching at least a channel and one or more fluid ports in a first and/or a second substrate; b) depositing a first layer on a surface of the second substrate; c) partially removing the first layer in accordance with a predefined geometry; d) depositing a second layer on top of the first layer and the substrate surface; e) planarizing the second layer so as to smooth the upper surface thereof; f) aligning the first and second substrate; g) bonding the first substrate on the planarized second layer of the second substrate.
    Type: Grant
    Filed: May 16, 2003
    Date of Patent: August 28, 2007
    Assignee: Micronit Microfluidics B.V.
    Inventors: Stefan Schlautmann, Albert Van den Berg, Johannes Gerardus Elisabeth Gardeniers
  • Patent number: 7261825
    Abstract: A method for producing a micromechanical device, e.g., a micromechanical oscillating mirror device, is provided. It is provided, starting from the front side of an SOI/EOI(epipoly on insulator) substrate, to penetrate to the desired depth of the silicon substrate layer in two successive, separate deep etching steps, and to use this in its upper region that is close to the oxide layer as sacrificial layer for vertically exposing the island structures that are positioned above the oxide layer in the functional layer. The method according to the present invention of a sacrificial layer process for generating large vertical deflections utilizes purely surface micromechanical process steps.
    Type: Grant
    Filed: February 21, 2003
    Date of Patent: August 28, 2007
    Assignee: Robert Bosch GmbH
    Inventors: Lars Metzger, Frank Fischer
  • Patent number: 7261826
    Abstract: A method and apparatus are described that may be used to provide decoupled rotation of structures about different pivot points. The apparatus may include one or more fixed blades mounted to a frame or substrate, one or more movable blades mounted to each structure to be moved, and flexures on which the structures are suspended. Separate movable blades may be provided for each degree of freedom. When voltage is applied between the fixed and movable blades, the electrostatic attraction generates a force attracting movable blades toward blades that are fixed relative to the moveable blades, causing a structure to rotate about the flexures. The angle of rotation that results may be related to the size, number and spacing of the blades, the stiffness of the flexures and the magnitude of the voltage difference applied to the blades. The blades are fabricated using deep silicon etching.
    Type: Grant
    Filed: January 27, 2004
    Date of Patent: August 28, 2007
    Assignee: Calient Networks, Inc.
    Inventors: Scott Adams, Tim Davis, Scott Miller, Kevin Shaw, John Matthew Chong, Seung Bok (Chris) Lee
  • Patent number: 7262068
    Abstract: A microneedle array module is disclosed comprising a multiplicity of microneedles affixed to and protruding outwardly from a front surface of a substrate to form the array, each microneedle of the array having a hollow section which extends through its center to an opening in the tip thereof. A method of fabricating the microneedle array module is also disclosed comprising the steps of: providing etch resistant mask layers to one and another opposite surfaces of a substrate to predetermined thicknesses; patterning the etch resistant mask layer of the one surface for outer dimensions of the microneedles of the array; patterning the etch resistant mask layer of the other surface for inner dimensions of the microneedles of the array; etching unmasked portions of the substrate from one and the other surfaces to first and second predetermined depths, respectively; and removing the mask layers from the one and the other surfaces.
    Type: Grant
    Filed: July 6, 2004
    Date of Patent: August 28, 2007
    Assignee: The Cleveland Clinic Foundation
    Inventors: Shuvo Roy, Aaron J. Fleischman
  • Patent number: 7258805
    Abstract: A micro-needle protrudes from a support member. The needle has a needle body portion, a closed pointed tip portion, and an inner lumen extending through the support member and into the protruding needle. The needle body portion has at least one side opening communicating with the inner lumen. The method of making the needle comprises providing a mask on the front side of an etchable wafer such that the vertical projection of the mask at least partially covers the extension of a hole made in the back side. The mask is isotropically underetched to remove wafer material. An anisotropic etch forms a protruding structure. Optionally a second isotropic etch on the protruding structure exposes the blind hole. Optionally a final anisotropic etch extends the needle without forming side openings.
    Type: Grant
    Filed: August 14, 2002
    Date of Patent: August 21, 2007
    Inventors: Göran Stemme, Patrick Griss
  • Patent number: 7258806
    Abstract: A method of fabricating a diaphragm of a capacitive microphone device. First, a substrate is provided, and a dielectric layer on a first surface of the substrate is formed. Than, a plurality of silicon spacers are formed on a surface of the dielectric layer, and a diaphragm layer is formed on a surface of the silicon spacers and the surface of the dielectric layer. Subsequently, a planarization layer is formed on the diaphragm layer, and a second surface of the substrate is etched to form a plurality of openings corresponding to the diaphragm layer disposed on the surface of the dielectric layer. Thereafter, the dielectric layer exposed through the openings is removed, and planarization layer is removed.
    Type: Grant
    Filed: June 23, 2006
    Date of Patent: August 21, 2007
    Assignee: Touch Micro-System Technology Inc.
    Inventor: Hsien-Lung Ho
  • Patent number: 7255799
    Abstract: On a die that has etchings on a surface, firstly a sheet of negative photoresist is laid down which, by means of an exposure and subsequent development, is left only above the etchings; then, upon the negative photoresist, a positive photoresist is applied, which is subjected to exposure and development to produce functional geometries deposited in thin film; subsequently the positive photoresist is removed in a “lift-off” operation, and the negative photoresist is taken off in a plasma operation, thus revealing the etchings.
    Type: Grant
    Filed: September 11, 2003
    Date of Patent: August 14, 2007
    Assignee: Telecom Italia S.p.A
    Inventors: Renato Conta, Irma Disegna
  • Patent number: 7255800
    Abstract: The present invention illustrates a bulk silicon etching technique that yields straight sidewalls, through wafer structures in very short times using standard silicon wet etching techniques. The method of the present invention employs selective porous silicon formation and dissolution to create high aspect ratio structures with straight sidewalls for through wafer MEMS processing.
    Type: Grant
    Filed: August 16, 2004
    Date of Patent: August 14, 2007
    Assignee: University of South Florida
    Inventors: Shekhar Bhansali, Abdu Rub Abdur, Sunny Kedia
  • Patent number: 7250113
    Abstract: A method for manufacturing a liquid ejection head having a substrate including an electro-thermal transducer for ejecting a liquid from an ejection opening, an electrode wiring section electrically connecting the electro-thermal transducer and driver element thereof, and a liquid supply port therethrough includes the steps of forming a sacrificial layer by using the same material as the electrode wiring section at a position at which the liquid supply port is to be formed during forming the electrode wiring section, forming an anti-etching layer covering the sacrificial layer, removing the sacrificial layer by etching the substrate from a surface thereof opposite to the surface on which the electro-thermal transducer is formed to expose the anti-etching layer of a portion to be the liquid supply port, and removing the exposed anti-etching layer to form the liquid supply port in the substrate.
    Type: Grant
    Filed: June 17, 2004
    Date of Patent: July 31, 2007
    Assignee: Canon Kabushiki Kaisha
    Inventors: Hirokazu Komuro, Fumio Murooka
  • Patent number: 7250112
    Abstract: A method for making an angular velocity sensor having two masses which are laterally disposed in an X-Y plane and indirectly connected to a frame is provided. The two masses are linked together by a linkage such that they necessarily move in opposite directions along Z. Angular velocity of the sensor about the Y axis can be sensed by driving the two masses into Z-directed antiphase oscillation and measuring the angular oscillation amplitude thereby imparted to the frame.
    Type: Grant
    Filed: July 28, 2005
    Date of Patent: July 31, 2007
    Assignee: InvenSense Inc
    Inventors: Steven S. Nasiri, Anthony Francis Flannery, Jr.
  • Patent number: 7250139
    Abstract: A dispensing device has a cantilever comprising a plurality of thin films arranged relative to one another to define a microchannel in the cantilever and to define at least portions of a dispensing microtip proximate an end of the cantilever and communicated to the microchannel to receive material therefrom. The microchannel is communicated to a reservoir that supplies material to the microchannel. One or more reservoir-fed cantilevers may be formed on a semiconductor chip substrate. A sealing layer preferably is disposed on one of the first and second thin films and overlies outermost edges of the first and second thin films to seal the outermost edges against material leakage. Each cantilever includes an actuator, such as for example a piezoelectric actuator, to impart bending motion thereto. The microtip includes a pointed pyramidal or conical shaped microtip body and an annular shell spaced about the pointed microtip body to define a material-dispensing annulus thereabout.
    Type: Grant
    Filed: March 16, 2004
    Date of Patent: July 31, 2007
    Assignee: Northwestern University
    Inventors: Horacio D. Espinosa, Nicolaie A. Moldovan, Keun-Ho Kim
  • Patent number: 7247247
    Abstract: A selective etching method with lateral protection function is provided. The steps includes: (a) providing a substrate; (b) forming a plurality of tunnels; (c) forming a lateral strengthening structure at a peripheral wall of the tunnels; (d) removing a bottom portion of the lateral strengthening structure, and a part of the substrate by an etching process so as to form a lower structure and expose an unstrengthened structure; and (f) etching the unstrengthened structure laterally so as to form an upper structure.
    Type: Grant
    Filed: May 6, 2004
    Date of Patent: July 24, 2007
    Assignee: Walsin Lihwa Corporation
    Inventors: Jerwei Hsieh, Huai-Yuan Chu, Julius Ming-Lin Tsai, Weileun Fang
  • Patent number: 7247246
    Abstract: A wafer-scale fabrication method for providing MEMS assemblies having a MEMS subassembly sandwiched between and bonded to a cap and a base is provided. The MEMS subassembly includes at least one MEMS device element flexibly connected to the MEMS assembly. The vertical separation between the MEMS device element and an electrode on the base is lithographically defined. Precise control of this critical vertical gap dimension is thereby provided. Fabrication cost is greatly reduced by wafer scale integration.
    Type: Grant
    Filed: February 2, 2004
    Date of Patent: July 24, 2007
    Assignee: Atmel Corporation
    Inventors: Steven S. Nasiri, Anthony Francis Flannery, Jr.
  • Patent number: 7245416
    Abstract: A method of fabricating a spatial light modulator. The method includes forming cavities in a first substrate and fabricating electrodes on a second substrate. The method also includes bonding the first substrate to the second substrate and forming a mirror plate from a portion of the first substrate. The mirror plate has an upper surface and a lower surface. The method further includes forming a hinge coupled to the mirror plate and forming a reflective surface coupled to the upper surface of the mirror plate.
    Type: Grant
    Filed: March 1, 2006
    Date of Patent: July 17, 2007
    Assignee: Miradia Inc.
    Inventors: Shaoher X Pan, Xiao Yang
  • Patent number: 7244367
    Abstract: A micromechanical device is provided, which includes at least one flexible member formed from an alloy, where the alloy is made up of one or more noble metals and one or more alloying elements, wherein each of the alloying elements has an equilibrium solid solubility in the noble metal, and wherein the one or more alloying elements are present in an amount that does not result in precipitates. A method for making a micromechanical device includes depositing an alloy on a substrate to form at least one flexible member, the alloy comprising one or more noble metals and one or more alloying elements, wherein the one or more alloying elements form a solid solution with the one or more noble metals; and removing a portion of the substrate or a sacrificial layer beneath the deposited alloy layer to obtain a flexible member.
    Type: Grant
    Filed: December 11, 2001
    Date of Patent: July 17, 2007
    Assignee: JDS Uniphase Corporation
    Inventors: Jonathan J. Bernstein, William P. Taylor
  • Patent number: 7241394
    Abstract: A process for fabricating a microelectrode is described that includes: a) providing a substrate comprising at least one polymer micro-ridge, where the polymer micro-ridge comprises an upper surface and two walls, and the two walls form an angle with a lower surface; b) depositing a metal thin film on the upper surface, the two walls, and the lower surface; and c) etching a predetermined amount of the deposited metal thin film on the lower surface to form the microelectrode.
    Type: Grant
    Filed: January 21, 2004
    Date of Patent: July 10, 2007
    Assignee: Lumera Corporation
    Inventors: Raluca Dinu, Jeffrey K. Kressbach
  • Patent number: 7238621
    Abstract: A method for fabricating an optical device and micromechanical device, wherein both devices are monolithically-integrated with a substrate. The optical surfaces and micromechanical devices are each formed in an etch step that is well-suited for forming that device. In addition, the embodiments of the present invention enable the optical surface and micromechanical device to be fabricated irrespective of severe topography on the surface of the substrate.
    Type: Grant
    Filed: May 17, 2005
    Date of Patent: July 3, 2007
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Uma Krishnamoorthy, Daesung Lee, Olav Solgaard, Kyoungsik Yu
  • Patent number: 7238291
    Abstract: This invention relates to a method for removing oxides from the surface of a Ge semiconductor substrate comprising the step of subjecting the surface to a Ge oxide etching solution characterized in that the Ge oxide etching solution removes Ge oxides and Ge sub-oxides from the surface.
    Type: Grant
    Filed: September 17, 2004
    Date of Patent: July 3, 2007
    Assignee: Interuniversitair Microelektronica Centrum (IMEC)
    Inventors: Bart Onsia, Ivo Teerlinck
  • Patent number: 7235184
    Abstract: A solid state device is formed through thin film deposition techniques which results in a self-supporting thin film layer that can have a precisely defined channel bored therethrough. The device is useful in the chacterization of polymer molecules by measuring changes in various electrical characteristics as molecules pass through the channel. To form the device, a thin film layer having various patterns of electrically conductive leads are formed on a silicon substrate. Using standard lithography techniques, a relatively large or micro-scale aperture is bored through the silicon substrate which in turn exposes a portion of the thin film layer. This process does not affect the thin film. Subsequently, a high precision material removal process is used (such as a focused ion beam) to bore a precise nano-scale aperture through the thin film layer that coincides with the removed section of the silicon substrate.
    Type: Grant
    Filed: June 13, 2003
    Date of Patent: June 26, 2007
    Assignee: Advanced Research Corporation
    Inventors: Matthew P. Dugas, Gregory L. Wagner
  • Patent number: 7221495
    Abstract: This invention provides a precursor film stack for use in the production of MEMS devices. The precursor film stack comprises a carrier substrate, a first layer formed on the carrier substrate, a second layer of an insulator material formed on the first layer, and a third layer of a sacrificial material formed on the second layer.
    Type: Grant
    Filed: June 24, 2003
    Date of Patent: May 22, 2007
    Assignee: IDC LLC
    Inventors: Mark W. Miles, Brian J. Gally, Clarence Chui
  • Patent number: 7217369
    Abstract: A meso-electromechanical system (900, 1100) includes a substrate (215), a standoff (405, 1160) disposed on a surface of the substrate, a first electrostatic pattern (205, 1105, 1110, 1115, 1120) disposed on the surface of the substrate, and a glass beam (810). The glass beam (810) has a fixed region (820) attached to the standoff and has a second electrostatic pattern (815, 1205, 1210, 1215, 1220) on a cantilevered location of the glass beam. The second electrostatic pattern is substantially co-extensive with and parallel to the first electrostatic pattern. The second electrostatic pattern has a relaxed separation (925) from the first electrostatic pattern when the first and second electrostatic patterns are in a non-energized state. In some embodiments, a mirror is formed by the electrostatic materials that form the second electrostatic pattern. The glass beam may be patterned using sandblasting (140).
    Type: Grant
    Filed: May 1, 2006
    Date of Patent: May 15, 2007
    Assignee: Motorola, Inc.
    Inventors: Jovica Savic, Manes Eliacin, Junhua Liu, Aroon V. Tungare
  • Patent number: 7214324
    Abstract: A technique for manufacturing a micro-electro mechanical structure includes a number of steps. Initially, a cavity is formed into a first side of a handling wafer, with a sidewall of the cavity forming a first angle greater than about 54.7 degrees with respect to a first side of the handling wafer at an opening of the cavity. Then, a bulk etch is performed on the first side of the handling wafer to modify the sidewall of the cavity to a second angle greater than about 90 degrees, with respect to the first side of the handling wafer at the opening of the cavity. Next, a second side of a second wafer is bonded to the first side of the handling wafer.
    Type: Grant
    Filed: April 15, 2005
    Date of Patent: May 8, 2007
    Assignee: Delphi Technologies, Inc.
    Inventor: Dan W. Chilcott
  • Patent number: 7208094
    Abstract: A semiconductor nanowire is grown laterally. A method of growing the nanowire forms a vertical surface on a substrate, and activates the vertical surface with a nanoparticle catalyst. A method of laterally bridging the nanowire grows the nanowire from the activated vertical surface to connect to an opposite vertical surface on the substrate. A method of connecting electrodes of a semiconductor device grows the nanowire from an activated device electrode to an opposing device electrode. A method of bridging semiconductor nanowires grows nanowires between an electrode pair in opposing lateral directions. A method of self-assembling the nanowire bridges the nanowire between an activated electrode pair. A method of controlling nanowire growth forms a surface irregularity in the vertical surface. An electronic device includes a laterally grown nano-scale interconnection.
    Type: Grant
    Filed: December 17, 2003
    Date of Patent: April 24, 2007
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: M. Saif Islam, Theodore I. Kamins, Shashank Sharma
  • Patent number: 7204932
    Abstract: An improved method is provided for fabricating a polarisation rotator in a rib waveguide having a propagation axis and opposite side walls. The method includes etching a pit in the substrate surface to form a recess in one of the side walls of the waveguide, during formation of the waveguide on the substrate surface, so as to provide an asymmetric waveguide section for imparting polarisation rotation to radiation propagated along the propagation axis. Preferably the pit is formed by a wet etching step forming an upper side surface within the recess that is inclined relative the waveguide side walls, and the waveguide side walls are formed by a dry etching step to extend perpendicularly to the substrate surface. In addition the dry etching step forms a lower side surface adjoining the upper side surface within the recess and tilted relative to the upper side surface.
    Type: Grant
    Filed: October 26, 2004
    Date of Patent: April 17, 2007
    Assignee: Bookham Technology plc
    Inventors: Robert Ian Johnstone, Robert Graham Walker, Robert Anthony Griffin
  • Patent number: 7201846
    Abstract: An anti-microbial filter (105) for a micro-fluidic system (100) includes a silicon-based filter membrane (213) having holes (218) formed therein. The membrane (213) is formed on a substrate (211). One side of the filter membrane (213) has an anti-microbial coating (216) between the holes (218) on the filter membrane (213) and the other side can include filter supports formed from a silicon substrate. A method for making the anti-microbial filter (105) includes forming a filter membrane (213) on a substrate (211), forming holes (218) in the membrane (213) by providing a filter mask (215) and etching holes (218) through holes (222) in the mask (215). Then portions of the substrate (211) are removed from the filter membrane (213) using a masking and etching process to expose the holes (218). An anti-microbial coating is applied to the membrane (213) adjacent the holes (218).
    Type: Grant
    Filed: January 23, 2004
    Date of Patent: April 10, 2007
    Assignee: Hospira, Inc.
    Inventors: Steven T. Cho, Harlow B. Christianson
  • Patent number: 7198725
    Abstract: A method for making a SAW device package includes the steps of: forming a pattern of a metal layer, that defines transmitting and receiving transducers of a SAW die, on a wafer; forming a pattern of a first photo sensitive layer, which defines a peripheral wall of a cap of the SAW die, on the metal layer and the wafer through lithography techniques; forming a pattern of a second photo sensitive layer, which defines a cover wall of the cap of the SAW die, on the first photo sensitive layer through lithography techniques; curing the first and second photo sensitive layers; dicing the wafer into SAW dies; and encapsulating the SAW dies with a molding compound.
    Type: Grant
    Filed: November 5, 2004
    Date of Patent: April 3, 2007
    Inventor: Chi-Yen Shen
  • Patent number: 7196338
    Abstract: In accordance with the invention, there is a method of fabricating a material for transmission electron microscopy comprising removing a first portion from a material having a thickness of (d1) to form a thinned material having a thickness of (d2), contacting the thinned material to a sacrificial layer having a thickness of (s1), and removing a second portion from the thinned material so the thinned material has a thickness of (d3), wherein (d3)<(d2).
    Type: Grant
    Filed: March 31, 2005
    Date of Patent: March 27, 2007
    Assignee: Texas Instruments Incorporated
    Inventor: Nathan V. Holloway
  • Patent number: 7195862
    Abstract: Process for producing a tool insert for injection molding a microstructured part fabricated of a synthetic material, a metal or a ceramic material and which comprises an arrangement of microchannels and which further comprises an arrangement of through-going orifices extending in a substantially perpendicular manner with respect to the outer surface of the part.
    Type: Grant
    Filed: November 24, 2003
    Date of Patent: March 27, 2007
    Assignee: Weidmann Plastics Technology AG
    Inventors: Max Gmür, Thomas Fässler
  • Patent number: 7195732
    Abstract: A method of fabricating a mold and a method of fabricating an article with the mold is disclosed that is capable of fabricating a high three-dimensional surface structure and extending the service life of the mold. A mold having a fine surface shape of a height less than an object height is fabricated, then the fine surface shape of the mold is transferred to an intermediate mold by dry-etching, and then the fine surface shape of the intermediate mold is further transferred to a final article material by dry-etching. In each transfer step by dry-etching, the etching selection ratio is appropriately adjusted to increase the height of the fine surface structure step by step, so that the fine surface shape of the final article material has the object height. On the surface of the final article material, a preliminary pattern of the object surface shape may be formed beforehand to reduce the required thickness of the curable resin.
    Type: Grant
    Filed: September 22, 2003
    Date of Patent: March 27, 2007
    Assignee: Ricoh Optical Industries Co., Ltd.
    Inventor: Kazuhiro Umeki
  • Patent number: 7196449
    Abstract: A two-axis device is provided. The two-axis device includes a first substrate having a plurality of electrodes, a first connecting layer located on the first substrate, an actuating layer, a second connecting layer and a cover. The actuating layer is connected to the first substrate via the first connecting layer and includes a circular portion, an actuating portion, a first shaft and a second shaft. The second connecting layer is connected to the actuating layer and the cover is connected to the actuating layer via the second connecting layer. In addition, a vacuum concavity is formed by the first substrate, the first connecting layer, the actuating layer, the second connecting layer and the cover. The actuating portion and the first shaft are located in the vacuum concavity, and the second shaft extends outside of the vacuum concavity.
    Type: Grant
    Filed: September 28, 2004
    Date of Patent: March 27, 2007
    Assignee: Walsin Lihwa Corp.
    Inventors: Mingching Wu, Hsueh-An Yang, Hung-Yi Lin, Weileun Fang
  • Patent number: 7195714
    Abstract: A method for producing a system with a substrate with a surface and a component applied to a predetermined location of the surface of the substrate includes a step of generating a liquid volume containing the component and a step of applying the liquid volume containing the component on the surface of the substrate. At that, the liquid volume is sized so that it wets only a partial area of the surface of the substrate after its application. In the step of applying the liquid volume is placed on the surface of the substrate so that the partial area of the surface includes the predetermined location. The component or the predetermined location of the surface of the substrate is implemented so that after the application of the liquid volume a force acts on the component which is sufficient to drive the component within the liquid volume to the predetermined location. The method is completely independent of the speed of a gripper and its capability to grip and align a very small component.
    Type: Grant
    Filed: June 4, 2004
    Date of Patent: March 27, 2007
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der Angewandten Forschung E.V.
    Inventor: Karlheinz Bock
  • Patent number: 7192533
    Abstract: In the method, semiconductor substrates are etched to provide nanowires, said substrates comprising a first layer of a first material and a second layer of a second material with a mutual interface, which first and second materials are different. They may be different in the doping type. Alternatively, the main constituent of the material may be different, for example SiGe or SiC versus Si, or InP versus InAs. In the resulting nanowires, the interface is atomically sharp. The electronic devices having nanowires between a first and second electrode accordingly have very good electroluminescent and optoelectronic properties.
    Type: Grant
    Filed: March 23, 2003
    Date of Patent: March 20, 2007
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Erik Petrus Antonius Maria Bakkers, Freddy Roozeboom, Johannes Fransiscus Cornelis Maria Verhoeven, Paul Van Der Sluis
  • Patent number: 7189332
    Abstract: Processes for the removal of a layer or region from a workpiece material by contact with a process gas in the manufacture of a microstructure are enhanced by the ability to accurately determine the endpoint of the removal step. A vapor phase etchant is used to remove a material that has been deposited on a substrate, with or without other deposited structure thereon. By creating an impedance at the exit of an etching chamber (or downstream thereof), as the vapor phase etchant passes from the etching chamber, a gaseous product of the etching reaction is monitored, and the endpoint of the removal process can be determined. The vapor phase etching process can be flow through, a combination of flow through and pulse, or recirculated back to the etching chamber.
    Type: Grant
    Filed: October 11, 2002
    Date of Patent: March 13, 2007
    Assignee: Texas Instruments Incorporated
    Inventors: Satyadev R. Patel, Gregory P. Schaadt, Douglas B. MacDonald, Niles K. MacDonald, Hongqin Shi
  • Patent number: 7186349
    Abstract: A fluid ejection device includes a first substrate having a first crystal orientation, a second substrate having a second crystal orientation, bound to the first substrate, a manifold through the first and second substrates, a chamber formed in the second substrate, connected with the manifold, and a plurality of nozzles connecting to the chamber, wherein the first crystal orientation is different from the second crystal orientation. A method of fabricating the same is also disclosed.
    Type: Grant
    Filed: November 4, 2004
    Date of Patent: March 6, 2007
    Assignee: Benq Corporation
    Inventors: Hung-Sheng Hu, Wei-Lin Chen