Methods Patents (Class 219/121.69)
  • Patent number: 11946672
    Abstract: An apparatus for waste heat recovery is provided. The apparatus includes a base block disposed adjacent to a heat source, a thermoelectric generator including a first end and a second end, the first end being thermally coupled to the base block and configured to receive heat from the heat source, and a thermoelectric cooler including a third end and a fourth end, the third end being thermally coupled to the second end. The thermoelectric cooler is configured to receive an electric current, which causes the third end to cool and the fourth end to heat such that the third end conducts heat from the second end. Related apparatus, systems, techniques, and articles are also described.
    Type: Grant
    Filed: May 29, 2019
    Date of Patent: April 2, 2024
    Assignee: Breakthrough Technologies, LLC
    Inventor: Kamal Jaffrey
  • Patent number: 11950489
    Abstract: A deposition mask for manufacturing a display panel includes a metallic base having a thickness of about 50 micrometers to about 200 micrometers and a plurality of openings defined therein, wherein at least some of the openings include a first opening having a first width and a second opening having a second width smaller than the first width respectively defined along a thickness direction of the metallic base, and wherein the metallic base includes a first part in which the first opening is defined, and a second part in which the second opening is defined, the second part having a width that increases in a direction downward from a top surface of the metallic base along the thickness direction of the metallic base.
    Type: Grant
    Filed: May 20, 2021
    Date of Patent: April 2, 2024
    Assignee: Samsung Display Co., Ltd.
    Inventors: Kyu Hwan Hwang, Jeongkuk Kim, Hwi Kim, Kanghyun Nam, Sangha Park, Areum Lee, Da-Hee Jeong, Eunbee Jo, Seungmin Jin, Jaemin Hong
  • Patent number: 11859153
    Abstract: A method for cleaning a substrate includes the following: exposing the substrate to a cleaning agent to remove impurities on a surface of the substrate; exposing the substrate to a dewetting chemical agent in a liquid phase to remove the cleaning agent on the surface of the substrate; solidifying the dewetting chemical agent in the liquid phase remaining on the surface of the substrate to obtain the dewetting chemical agent in a solid phase; and sublimating and removing the dewetting chemical agent in the solid phase.
    Type: Grant
    Filed: August 30, 2022
    Date of Patent: January 2, 2024
    Inventor: Shih-Hung Lee
  • Patent number: 11852772
    Abstract: A mail screening apparatus is provided to perform the inspection of mail or similar objects. Terahertz inspection is used to localize potential suspicious areas by imaging the contents inside the envelope or small parcel. The mail screening apparatus includes a primary and a secondary inspection zone, preferably allowing inspection of the mail in a normal and a zoomed mode, respectively. The same light source, image capture device and intervening optical components are used in both normal and zoomed modes. Metal detection may optionally be used to enhance awareness in the presence of metallic content. In one implementation, metal detection zones are provided in an orthogonal configuration with respect to the primary inspection zone used for terahertz imaging to accommodate for both manual and automatic inspection of mail.
    Type: Grant
    Filed: March 11, 2022
    Date of Patent: December 26, 2023
    Assignee: RAYSECUR INC.
    Inventors: Linda Marchese, Alain Bergeron, Eric Giroux, Marc Terroux
  • Patent number: 11807842
    Abstract: A system and method for array system for cells, organoids and organs culture and testing. The system includes a disposable chips and systems with actuators, sensors, software/firmware and smart device App. The disposable includes standard well plates, custom well plates, T-flasks, microfluidic chips. The system includes vascular fluidics using gravity-driven flow and pneumatic flow, media, reagents, protein and collagen dispensers in wells or surfaces, manufacturing techniques for multi-layer chips and plates and culture system with gas and media control.
    Type: Grant
    Filed: September 30, 2020
    Date of Patent: November 7, 2023
    Assignee: Biopico Systems Inc
    Inventor: John Collins
  • Patent number: 11780029
    Abstract: In various embodiments, workpieces are processed, e.g., via welding or cutting, while the shape and/or one or more other parameters of the laser processing beam are altered. The shape and/or one or more other parameters of the laser processing beam may be varied based on one or more characteristics of the workpiece.
    Type: Grant
    Filed: July 14, 2017
    Date of Patent: October 10, 2023
    Assignee: Panasonic Connect North America, Division of Panasonic Corporation of North America
    Inventors: Parviz Tayebati, Francisco Villarreal-Saucedo, Wang-Long Zhou, Bien Chann
  • Patent number: 11765999
    Abstract: A device and method for altering biochrome ratios in plant leaves is provided. The device and method generally include a light source; and means of directing the light source to deliver an altering spectrum to a group of cells. The altering spectrum alters the biochrome content of a group of cells to produce a contrasting color that creates a desired pattern on a leaf. The device may include a first light source that emits a main growth spectrum, a second light source that emits an altering spectrum; and means of directing the first and second light source to a group of cells, wherein the altering spectrum alters the biochrome content of a group of cells to create a desired pattern on a leaf.
    Type: Grant
    Filed: July 29, 2020
    Date of Patent: September 26, 2023
    Assignee: AeroFarms, Inc.
    Inventor: Roger Buelow
  • Patent number: 11700686
    Abstract: A method for manufacturing a wiring board capable of improving adhesion between an underlayer and a seed layer. An electrically conductive underlayer is disposed on the surface of an insulating substrate and a seed layer containing metal is disposed on the surface of the underlayer to prepare a substrate with seed-layer. A diffusion layer in which elements forming the underlayer and seed layer are mutually diffused is formed between the underlayer and the seed layer, by irradiating the seed layer with a laser beam. A metal layer is formed on the surface of the seed layer by disposing a solid electrolyte membrane between an anode and the seed layer as a cathode and applying voltage between the anode and the underlayer. An exposed portion without the seed layer of the underlayer is removed from the insulating substrate.
    Type: Grant
    Filed: July 2, 2021
    Date of Patent: July 11, 2023
    Inventors: Keiji Kuroda, Haruki Kondoh, Kazuaki Okamoto, Rentaro Mori, Hiroshi Yanagimoto
  • Patent number: 11685003
    Abstract: The invention provides a method for laser modification of a sample to form a modified region at a target location within the sample. The method comprises positioning a sample in a laser system for modification by a laser; measuring tilt of a surface of the sample through which the laser focusses; using at least the measured tilt to determine a correction to be applied to an active optical element of the laser system; applying the correction to the active optical element to modify wavefront properties of the laser to counteract an effect of coma on laser focus; and laser modifying the sample at the target location using the laser with the corrected wavefront properties to produce the modified region.
    Type: Grant
    Filed: August 7, 2018
    Date of Patent: June 27, 2023
    Inventors: Martin James Booth, Patrick Salter
  • Patent number: 11680366
    Abstract: A computer system of a finishing center, such as a mobile finishing center, includes a tool that allows a customer to preview or create new designs for apparel before purchase and before laser finishing. Software and lasers are used in finishing apparel to produce a desired wear pattern or other design. Based on a laser input file with a pattern, a laser will burn or ablate the pattern onto apparel. With the tool, the customer will be able to preview, create, make changes, and view images of a design, in real time, before purchase and burning or ablation by a laser. Input to the tool can include fabric template images, laser input files, and damage input. In an implementation, the customer or another user can also move, rotate, scale, and warp the image input.
    Type: Grant
    Filed: September 1, 2020
    Date of Patent: June 20, 2023
    Assignee: Levi Strauss & Co.
    Inventors: Christopher Schultz, Benjamin Bell, Debdulal Mahanty, Ozgur Taylan Kuzucu, James Barton Sights, Jeff Zens, Jennifer Schultz
  • Patent number: 11640157
    Abstract: A system for coordinated laser marking of mid-conveyance food includes a controller, multiple lasers, and one or more industrial components. The lasers are in network communication with the controller. The controller can send a first instruction set, having a first language, to a first laser, and a second instruction set, having a second language different from the first language, to a second laser, the first laser associated with a first conveyor of multiple conveyors, and the second laser associated with a second conveyor different from the first conveyor. During operation, the first laser applies a marking to a first product as the first product is conveyed along the first conveyor, based on the first instruction set. Also during operation, the second laser applies the marking to a second product as the second product is conveyed along the second conveyor, based on the second instruction set.
    Type: Grant
    Filed: September 10, 2019
    Date of Patent: May 2, 2023
    Assignee: NLL, LLC
    Inventor: Gregory P. Drouillard
  • Patent number: 11633804
    Abstract: A laser processing apparatus includes: a chuck table for holding a single-crystal SiC ingot on a holding surface thereof; a laser beam applying unit for applying a laser beam to the single-crystal SiC ingot held on the holding surface of the chuck table; and a camera unit configured to capture an image of the single-crystal SiC ingot held on the holding surface of the chuck table. The chuck table includes a porous material making up the holding surface and a glass frame made of a non-porous material and having a recess defined therein and receiving the porous material fitted therein, and a negative pressure transfer path for transferring a negative pressure to the porous material fitted in the recess.
    Type: Grant
    Filed: June 27, 2018
    Date of Patent: April 25, 2023
    Inventor: Setsuo Yamamoto
  • Patent number: 11559857
    Abstract: A laser cut-and-machined product made from a plated steel plate. A cut face of the plated steel plate is coated with plating-layer-containing metal of a top surface of the plated steel plate that is melted and/or evaporated at the time of laser cutting and machining.
    Type: Grant
    Filed: July 20, 2020
    Date of Patent: January 24, 2023
    Assignee: AMADA CO., LTD.
    Inventors: Hideo Hara, Masahito Ito, Masanori Uehara, Hiroshi Asada, Hirokazu Sasaki, Hiroshi Horikawa
  • Patent number: 11504805
    Abstract: A method for machining at least one workpiece surface to apply a texture pattern to at least one section of the workpiece surface using a laser, based on image data specifying an image of the texture pattern applied to the at least one section of the workpiece surface and model data specifying a three-dimensional geometry of a surface form corresponding to the at least one section of the workpiece surface. Control data and segment data are generated based on the image and model data. The control data specify one or more segment sequences for each track line. Each segment sequence has track segments where the laser guides the texture pattern application to the at least one section of the workpiece surface; wherein the track segments of a segment sequence include one or more laser track segments where the laser travels in the switched-on state at a constant machining setpoint speed.
    Type: Grant
    Filed: February 2, 2018
    Date of Patent: November 22, 2022
    Assignee: SAUER GmbH
    Inventors: Peter Hildebrand, Gottfried Reinicke
  • Patent number: 11448506
    Abstract: A gyro sensor includes a plurality of beams connected via a turnaround part. A groove is provided on a main surface of at least one beam of the plurality of beams. Wall thicknesses on the main surface of two sidewalls facing each other of the groove in a direction orthogonal to a longitudinal direction of the beam satisfy 0.9?T1/T2?1.1, where T1 is the wall thickness of one sidewall and T2 is the wall thickness of the other sidewall.
    Type: Grant
    Filed: February 16, 2021
    Date of Patent: September 20, 2022
    Inventor: Koichiro Komizo
  • Patent number: 11364689
    Abstract: The present invention is directed to a method of forming a bottom-gusseted package, wherein each package includes an inwardly-extending, pleat-like gusset at the bottom of the package. To permit heat-sealing formation of each package, the sleeve from which each gusset is formed comprises a lamination of two differing polymeric materials, a sealant layer and a non-sealant layer, so that only an exterior surface of each sleeve, at which the sealant layer is positioned, exhibits the desired heat-sealing characteristics. To facilitate package formation, the sleeves from which the bottom gussets are formed are maintained in a closed or sealed configuration during package formation by providing a heat-sealed bond at the edge of each sleeve. In one embodiment, portions of the non-sealant layer are vaporized to provide sealable surface regions of the sealant layer.
    Type: Grant
    Filed: April 8, 2019
    Date of Patent: June 21, 2022
    Assignee: Barry-Wehmiller, Inc.
    Inventors: Scott Romenesko, Thomas McGrane
  • Patent number: 11344973
    Abstract: Methods for forming holes in a substrate by reducing back reflections of a quasi-non-diffracting beam into the substrate are described herein. In some embodiments, a method of processing a substrate having a first surface and a second surface includes applying an exit material to the second surface of the substrate, wherein a difference between a refractive index of the exit material and a refractive index of the substrate is 0.4 or less, and focusing a pulsed laser beam into a quasi-non-diffracting beam directed into the substrate such that the quasi-non-diffracting beam enters the substrate through the first surface. The substrate is transparent to at least one wavelength of the pulsed laser beam. The quasi-non-diffracting beam generates an induced absorption within the substrate that produces a damage track within the substrate.
    Type: Grant
    Filed: April 8, 2019
    Date of Patent: May 31, 2022
    Assignee: Corning Incorporated
    Inventors: Bertrand Paris, Garrett Andrew Piech, Kristopher Allen Wieland
  • Patent number: 11346652
    Abstract: In cutting a band-shaped glass film along a longitudinal direction thereof and evaluating linearity of an end side formed in association with the cutting to inspect quality of a cut band-shaped glass film, the following steps are performed: an imaging step of dividing the end side into a plurality of segments and imaging each of the plurality of segments; a linear approximation step of calculating an approximate straight line of the end side based on a plurality of points different from each other on the end side in each of a plurality of images obtained in the imaging step; a variation calculation step of calculating a variation value of the plurality of points based on the approximate straight line; and an evaluation step of evaluating the linearity of the end side based on a plurality of variation values respectively corresponding to the plurality of images.
    Type: Grant
    Filed: November 30, 2017
    Date of Patent: May 31, 2022
    Inventors: Kaoru Mitsugi, Kazunari Noguchi
  • Patent number: 11340275
    Abstract: Various examples are provided related to anisotropic constitutive parameters (ACPs) that can be used to launch Zenneck surface waves. In one example, among others, an ACP system includes an array of ACP elements distributed over a medium such as, e.g., a terrestrial medium. The array of ACP elements can include one or more horizontal layers of radial resistive artificial anisotropic dielectric (RRAAD) elements positioned in one or more orientations over the terrestrial medium. The ACP system can include vertical lossless artificial anisotropic dielectric (VLAAD) elements distributed over the terrestrial medium in a third orientation perpendicular to the horizontal layer or layers. The ACP system can also include horizontal artificial anisotropic magnetic permeability (HAAMP) elements distributed over the terrestrial medium. The array of ACP elements can be distributed about a launching structure, which can excite the ACP system with an electromagnetic field to launch a Zenneck surface wave.
    Type: Grant
    Filed: December 9, 2019
    Date of Patent: May 24, 2022
    Assignee: CPG Technologies, LLC.
    Inventors: Buford Randall Jean, James D. Lilly, Benjamin J. Tinlin
  • Patent number: 11294285
    Abstract: A method for manufacturing the circuit board comprises following steps of forming a silver layer on each of two opposite surfaces of an insulating substrate, and forming a copper layer on each silver layer, thereby obtaining a middle structure; defining at least one through-hole on the middle structure, and each through-hole extending through each copper layer; forming a copper wiring layer on the copper layers to cover each through-hole and a portion region of the copper layers, the copper wiring layer comprising a copper conductive structure passing through each through-hole, the copper conductive structure connecting the copper layers; removing the copper layers not covered by the copper wiring layer; and etching the silver layers to form a silver wiring layer corresponding to the copper wiring layer, wherein a first etching liquid, which does not etch the copper wiring layer, is used for etching the silver layers.
    Type: Grant
    Filed: April 8, 2020
    Date of Patent: April 5, 2022
    Assignees: HongQiSheng Precision Electronics (QinHuangDao) Co., Ltd., Avary Holding (Shenzhen) Co., Limited.
    Inventors: Xian-Qin Hu, Mei Yang, Jun Dai
  • Patent number: 11289621
    Abstract: A method includes preparing a wafer including a substrate and a semiconductor structure, and irradiating an inner portion of the substrate at a predetermined depth in a thickness direction a plurality of times with laser pulses at a first time interval and a predetermined distance interval between irradiations. Each irradiation performed at the first time intervals in the step of irradiating the substrate with laser pulses includes irradiating the substrate at a first focal position in the thickness direction with a first laser pulse having a first pulse-energy; and after irradiating with the first laser pulse, irradiating the substrate with a second laser pulse performed after a second time interval, the second time interval being shorter than the first time interval and being in a range of 3 ps to 900 ps, and the second laser pulse having a second pulse-energy 0.5 to 1.5 times the first pulse-energy.
    Type: Grant
    Filed: November 26, 2018
    Date of Patent: March 29, 2022
    Inventors: Minoru Yamamoto, Naoto Inoue, Hiroaki Tamemoto, Yoshitaka Hotta, Hideyuki Ohtake
  • Patent number: 11285566
    Abstract: A laser machining apparatus 1 includes: a laser head that is supported by a laser moving device so as to be movable in X, Y, and Z directions above a motor driven conveyor that transports a workpiece loaded thereon. The laser head includes protection glass for protecting a laser focusing lens; an ultraviolet irradiation device disposed beside the conveyor such that a laser light axis and an ultraviolet ray axis are parallel to each other; and a control device that controls the components of the laser machining apparatus so that the ultraviolet irradiation device radiates UV rays on the protection glass in a state in which a UV irradiation port faces a laser irradiation port of the laser head, thus cleaning the protection glass without removing it from the laser head.
    Type: Grant
    Filed: February 8, 2018
    Date of Patent: March 29, 2022
    Assignee: Honda Motor Co., Ltd.
    Inventors: Toshiyuki Tanaka, Kazuhide Matsuo, Shinichi Miyasaka, Satoshi Oyama
  • Patent number: 11267072
    Abstract: Method for structuring a substrate (11) and comprising the following steps: —providing a device (100) comprising a light source (33), an optical system (2) for obtaining an outgoing light beam (7) spatially offset in relation to the incoming light beam (1), and capable of modifying this spatial offset, focusing means (9) for focusing the outgoing light beam (7), a substrate holder (59), a movement device (60) for generating a movement (41) between the outgoing light beam (7) and the substrate (11); —providing and placing the substrate (11) on the substrate holder (59); —etching the substrate with the focused outgoing light beam (7) having an angle of attack (107) greater than 1° for any spatial offset between outgoing light beam (7) and incoming light beam (1) imposed by the optical system (2).
    Type: Grant
    Filed: June 26, 2018
    Date of Patent: March 8, 2022
    Inventors: Paul-Etienne Martin, Anne Henrottin, Sébastien Estival, Axel Stefan M. Kupisiewicz, Jose Ramos De Campos
  • Patent number: 11260599
    Abstract: A control system for a three-dimensional printer includes an energy component interface, an agent depositing component interface, and control logic. The control logic controls the operation of an energy component through the energy component interface and an agent depositing component through the agent depositing component, in forming an output object that is specified in a print job. Additionally, in some examples, the control logic can implement a plurality of modes. Each mode, when selected modulate one or more operational parameters of a least one of the energy component or agent depositing component.
    Type: Grant
    Filed: July 28, 2017
    Date of Patent: March 1, 2022
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Vanessa Verzwyvelt, Matthew A. Shepherd, Arthur H. Barnes, Wesley R. Schalk, Hector Jose Lebron, Jake Wright
  • Patent number: 11260470
    Abstract: A laser machining device which condenses a laser light inside a wafer and forms modified regions in a plurality of layers in the wafer, includes an infrared imaging optical system configured to face one surface of the wafer. In a case where a modified region positioned on a side of another surface opposite to the one surface of the wafer is defined as a first modified region and another modified region is defined as a second modified region, among the modified regions in the plurality of layers, the infrared imaging optical system has a focusing range that includes the first modified region and the another surface, and simultaneously images the first modified region and the another surface, and the second modified region is positioned outside the focusing range.
    Type: Grant
    Filed: May 6, 2021
    Date of Patent: March 1, 2022
    Assignee: TOKYO SEIMITSU CO., LTD.
    Inventors: Takashi Shimanuki, Masanobu Koyata, Shuhei Oshida
  • Patent number: 11256039
    Abstract: A method of cleaving an optical fiber comprises inserting the optical fiber through a bore of a holding member, securing the optical fiber to the holding member with a bonding agent, operating at least one laser to emit at least one laser beam, and directing the at least one laser beam from the at least one laser to the end face of the holding member. At least a portion of the at least one laser beam reflects off the end face of the holding member and is thereafter incident on an end portion of the optical fiber. The at least one laser beam cleaves the end portion of the optical fiber less than 20 ?m from the end face of the holding member. Related systems are also disclosed.
    Type: Grant
    Filed: April 16, 2020
    Date of Patent: February 22, 2022
    Assignee: Corning Optical Communications LLC
    Inventors: Joel Patrick Carberry, Minghan Chen, Ming-Jun Li, Anping Liu, Barada Kanta Nayak
  • Patent number: 11247932
    Abstract: The liquid-assisted micromachining methods include methods of processing a substrate made of a transparent dielectric material. A working surface of the substrate is placed in contact with a liquid-assist medium that comprises fluorine. A focused pulsed laser beam is directed through a first substrate surface and through the opposite working surface to form a focus spot in the liquid-assist medium. The focus spot is then moved over a motion path from its initial position in the liquid-assist medium through the substrate body in the general direction from the working surface to the first surface to create a modification of the transparent dielectric material that defines in the body a core portion. The core portion is removed to form the substrate feature, which can be a through or closed fiber hole that supports one or more optical fibers. Optical components formed using the processed substrate are also disclosed.
    Type: Grant
    Filed: January 25, 2019
    Date of Patent: February 15, 2022
    Assignee: Corning Incorporated
    Inventors: Jeffery Alan DeMeritt, Davide Domenico Fortusini, Andrey Kobyakov, David Mark Lance, Leonard Thomas Masters, Ulrich Wilhelm Heinz Neukirch, Alexander Mikhailovich Streltsov, James Scott Sutherland
  • Patent number: 11224941
    Abstract: A liquid supply mechanism disposed at an upper portion of a holding unit includes a liquid chamber having a transparent plate positioned to form a gap between itself and an upper surface of a workpiece held on a holding table, a roller formed of a transparent member that is disposed in a non-contact state at a position proximate to an upper surface of the workpiece held on the holding table inside the liquid chamber and that produces a flow of a liquid on the workpiece; a motor rotating the roller, a liquid supply nozzle supplying the liquid into the gap from one side of the liquid chamber, and a liquid discharge nozzle discharging the liquid from the other side of the liquid chamber. A laser beam is applied to the workpiece through the transparent plate, the roller, and the liquid supplied into the gap.
    Type: Grant
    Filed: October 23, 2018
    Date of Patent: January 18, 2022
    Inventors: Keiji Nomaru, Yuji Hadano, Masatoshi Nayuki
  • Patent number: 11204506
    Abstract: In various embodiments, laser delivery systems feature variable polarizers and beam shapers for altering the polarization and/or shape of the output beam for processing of various materials. The polarization and/or shape of the beam may be varied based on one or more characteristics of the workpiece.
    Type: Grant
    Filed: September 9, 2016
    Date of Patent: December 21, 2021
    Assignee: TERADIODE, INC.
    Inventors: Parviz Tayebati, Bien Chann, Wang-Long Zhou, Francisco Villarreal-Saucedo, Robin Huang
  • Patent number: 11193183
    Abstract: The present invention relates to the technical field of material surface peening, and more particularly to an energy compensated equipower density oblique laser shock method. The method includes: acquiring a radius of curvature of a peening region of a part to be processed, and judging a range of a laser incident angle; determining laser parameters, such as laser pulse width, a spot diameter, and required laser energy under a vertical incidence condition; calculating the required laser energy at the minimum incident angle, and judging whether the energy falls within the technical indexes of a laser; and performing laser shock peening on the part by pulse laser beams with different energies. According to the present invention, the laser power or energy is compensated according to changes in the incident angle and the radius of curvature of the part to be processed.
    Type: Grant
    Filed: September 10, 2020
    Date of Patent: December 7, 2021
    Inventors: Yongkang Zhang, Chaohui Lin, Zeming Zhou, Zheng Zhang, Guoxin Lu
  • Patent number: 11161766
    Abstract: A method is provided that includes producing filamentary damages in a volume of a glass or glass ceramic element adjacently aligned along a separation line and extend obliquely relative to a surface of the glass or glass ceramic element; and separating a portion from the glass or glass ceramic element along the separation line. The step of producing the filamentary damages includes directing laser pulses of an ultrashort pulse laser obliquely on the surface so that the laser pulses have a light propagation direction that extends obliquely relative to the surface and so that the filamentary damages resulting from the laser pulses have the longitudinal extension that extends obliquely relative to the surface; generating a plasma within the volume with the laser pulses; and displacing the laser pulses at points of incidence over the surface along the separation line.
    Type: Grant
    Filed: January 15, 2018
    Date of Patent: November 2, 2021
    Assignee: SCHOTT AG
    Inventors: Andreas Ortner, Albrecht Seidl, Frank-Thomas Lentes, Fabian Wagner
  • Patent number: 11163110
    Abstract: The present disclosure provides a preparation method of an optical fiber device having a polymer micronano structure integrated in an optical fiber, the method comprising: welding a hollow optical fiber so that the hollow optical fiber is welded between two solid optical fibers, ablating the welded hollow optical fiber utilizing a femtosecond laser ablation technology so that a channel vertical to an inner wall is ablated on the hollow optical fiber, filling a colorless and transparent liquid photoresist material inside the hollow optical fiber which has been ablated so that the inside of the hollow optical fiber is filled with the photoresist material, and polymerizing on the photoresist material inside the hollow optical fiber utilizing a femtosecond laser two-photon polymerization technology.
    Type: Grant
    Filed: November 4, 2019
    Date of Patent: November 2, 2021
    Inventors: Changrui Liao, Yiping Wang, Chi Li, Lei Xu
  • Patent number: 11145048
    Abstract: An image processing method includes: detecting a plurality of feature lines from a first image captured from a first position; specifying, based on a positional relationship between the plurality of feature lines and a plurality of projection lines generated by projecting each of a plurality of line segments onto the first image, a feature line representing a defective portion of a shape of an object; setting a plurality of candidate positions based on the first position, each of the plurality of candidate positions being a candidate for a second position at which a second image is captured; calculating an evaluation value of each of the plurality of candidate positions; determining any of the plurality of candidate positions based on the evaluation value of each of the plurality of candidate positions; and outputting first information to be used in recognition of the determined candidate position.
    Type: Grant
    Filed: July 1, 2020
    Date of Patent: October 12, 2021
    Inventors: Atsunori Moteki, Yu Ishikawa, Toshiyuki Yoshitake
  • Patent number: 11130195
    Abstract: A laser ablation process can be configured to reduce the appearance of or eliminate a potentially objectionable diffraction effect that can occur when a workpiece or product that has been subjected to the ablation process interacts with light. The diffraction effect can be reduced by introducing irregularity into the arrangement of overlapping laser spots during the process. Other process parameters may be modified to reduce the diffraction effect, such as laser scan speed, laser pulse frequency, the position of the focal plane of the laser, the configuration of raster lines, or the energy profile of the laser beam, for example. The process modifications and configurations are particularly useful with products including an ablated surface that is intended to reflect light or to allow light to pass therethrough as part of its function.
    Type: Grant
    Filed: July 29, 2015
    Date of Patent: September 28, 2021
    Inventors: Kurtis L. Geerlings, David J. Cammenga, Donald L. Bareman, Henry A. Luten
  • Patent number: 11084319
    Abstract: A method is for producing an ornamental design (O) in a clearcoat layer (K). The ornamental design (O) is produced by a selective matting of the clearcoat layer (K) by working the clearcoat layer (K) by a laser. The working of the clearcoat layer may be performed by a UV laser. Additionally, the working of the clearcoat layer K may be performed by electromagnetic waves at a wavelength of about 355 nm. Furthermore, the working of the clearcoat layer K may be performed by a laser operating at a frequency of about 23 500 Hz. Still further, the working of the clearcoat layer (K) may be performed by a laser operating with a pulse duration of about 2 ?s. The working of the clearcoat layer (K) may be performed by a laser operating with a line spacing of about 0.03 mm.
    Type: Grant
    Filed: November 18, 2019
    Date of Patent: August 10, 2021
    Inventors: Matthias Ganter, Martin Grammer, Manuel Selinger
  • Patent number: 11073501
    Abstract: A system and method for the non-destructive testing of additively manufactured parts. An input mechanism excites with an excitation force (e.g., a vibration) an additive manufacturing build structure, which includes a part on a build platform, to induce a dynamic response in the part. An output mechanism (e.g., a non-contact transducer) senses the induced dynamic response in the part. A processor determines and examines the relationship between the response and excitation to identify an indication of a defect in the part, and communicates an alert if the indication is identified. The processor may compare the phase, magnitude, coherence, or time delay of the relationship to a reference relationship and/or may compare the modal frequency or the modal damping to a reference to identify a deviation greater than a pre-established threshold.
    Type: Grant
    Filed: September 20, 2019
    Date of Patent: July 27, 2021
    Assignee: Honeywell Federal Manufacturing & Technologies, LLC
    Inventors: Troy Juan Hartwig, Benjamin Ross Brown, David Soine
  • Patent number: 11045899
    Abstract: A laser beam positioning system of a laser-based specimen processing system produces at beam positioner stage, from a fully fiber-coupled optics phased array laser beam steering system, a steered laser input beam. System directs beam through one or more other beam positioner stages to form a processing laser beam that processes target features of a workpiece mounted on a support.
    Type: Grant
    Filed: August 30, 2017
    Date of Patent: June 29, 2021
    Assignee: Electro Scientific Industries, Inc.
    Inventor: Jan Kleinert
  • Patent number: 11028003
    Abstract: A method for laser-based machining of a flat substrate, to separate the substrate into a plurality of sections, in which the laser beam of a laser is directed at the substrate using an optical arrangement, which is positioned in the beam path of the laser. The optical arrangement forms a laser beam focal line that is extended as viewed along the beam direction and the substrate is positioned relative to the laser beam focal line such that an induced absorption is produced in the material of the substrate along a section of the laser beam focal line that is extended as viewed in the beam direction.
    Type: Grant
    Filed: January 14, 2014
    Date of Patent: June 8, 2021
    Inventors: Richard Grundmueller, Helmut Schillinger
  • Patent number: 11014197
    Abstract: The invention disclose a picosecond-nanosecond laser composite asynchronous ceramics polishing method. First, a picosecond laser is used to scan and irradiate the ceramic surface along the scanning path. At the same time, ceramic surface is initially flattened and the electronic state of materials is removed by picosecond laser to produce micro-nanoparticles. Micro-nanoparticles exist as ionized state in the adjacent space region of irradiated ceramics surface. Then, low energy density nanosecond laser is used according to a preset time to irradiate and melt these micro-nanoparticles which can easily form a dense and smooth fine crystal melting layer to achieve the polishing effect. The present disclosure fixes the generation of micro-cracks and pores in traditional laser polishing process. It overcomes the shortcomings of traditional laser polishing such as large thermal influence zone, easy to generate micro-cracks and pores on the surface, etc.
    Type: Grant
    Filed: December 26, 2019
    Date of Patent: May 25, 2021
    Inventors: Lingfei Ji, Ximin Zhang, Wenhao Wang, Tianyang Yan, Rui Ma
  • Patent number: 11011735
    Abstract: In a flexible OLED device production method, after an intermediate region and flexible substrate region of a plastic film of a multilayer stack are divided, the interface between the flexible substrate region and glass base is irradiated with laser light. The multilayer stack is separated into first and second portions while the multilayer stack is kept in contact with the stage. The first portion includes a plurality of OLED devices in contact with the stage. The OLED devices include a plurality of functional layer regions and the flexible substrate region. The second portion includes the glass base and intermediate region. The laser light is formed from a plurality of arranged laser light sources and irradiation intensity for at least part of the interface between the intermediate region and the glass base is lower than the irradiation intensity for the interface between the flexible substrate region and the glass base.
    Type: Grant
    Filed: January 21, 2020
    Date of Patent: May 18, 2021
    Assignee: Sakai Display Products Corporation
    Inventors: Katsuhiko Kishimoto, Kohichi Tanaka
  • Patent number: 11004743
    Abstract: According to one embodiment, a dicing method is provided. The dicing method includes detecting a first distance between a first portion of a substrate and a first substrate information detection unit. The method also includes detecting a second distance between a second portion of the substrate a second substrate information detection unit, the second portion different from the first portion. Distance information is calculated between the substrate and a processing lens, which is located farther from the second substrate information detection unit than from the first substrate information detection unit, based on the detected first distance and the detected second distance, and the substrate is irradiated with laser light from the processing lens based on the distance information.
    Type: Grant
    Filed: October 24, 2018
    Date of Patent: May 11, 2021
    Inventors: Tsutomu Fujita, Takanobu Ono
  • Patent number: 10994373
    Abstract: A method of cutting a web structure that is utilized in the manufacture of an absorbent article. The method of cutting the web structure can employ a laser having a pulse mode of operation. In various embodiments, the frequency of the beam of radiation pulsed from the laser can be patterned to correspond to the material of the web structure. In various embodiments, the frequency of the beam of radiation pulsed from the laser can be patterned to correspond to the speed at which the web structure is moving and can change with any change in speed of the web structure movement.
    Type: Grant
    Filed: December 5, 2016
    Date of Patent: May 4, 2021
    Assignee: Kimberly-Clark Worldwide, Inc.
    Inventors: Paul Milbrodt, Brian T. Anderson, Brittany Alissa Young
  • Patent number: 10978318
    Abstract: A laser beam applying unit of a laser processing apparatus includes a laser oscillator adapted to emit a laser beam, a condenser adapted to focus the laser beam emitted from the laser oscillator and to thereby apply the laser beam to the workpiece held by a holding unit, and a liquid layer former disposed at a lower end portion of the condenser and adapted to form a layer of a liquid on an upper surface of the workpiece. The liquid layer former includes a casing having a bottom wall that forms a gap between itself and the upper surface of the workpiece, a liquid supply section adapted to supply the liquid to the casing, and a transparent section that is formed at the bottom wall adjacently to the jet port and that permits transmission of the laser beam therethrough.
    Type: Grant
    Filed: October 18, 2018
    Date of Patent: April 13, 2021
    Inventors: Yuji Hadano, Masatoshi Nayuki, Keiji Nomaru
  • Patent number: 10968562
    Abstract: Disclosed are methods and apparatus for cleaning a substrate, such as a fabric material, involving the application of optical energy to the substrate, typically in the form of a beam of light, where the energy of the beam causes removal of the contaminant from substrate, such as from the fibres of a fabric material. The cleaning may occur via any mechanism, including one or more of, alone or in any combination, ablation, melting, heating or reaction with the substrate or contaminant or agent introduced to aid in the cleaning. The optical energy is typically applied to a selected area of the substrate (e.g., as a beam), and the substrate and beam or optical energy source moved relative to one another so as to clean a larger area of the substrate, either by moving the substrate or the beam, or both. Movement of the beam with respect to the substrate can be attained through a beam scanning mechanism or through movement of the optical source itself.
    Type: Grant
    Filed: May 6, 2019
    Date of Patent: April 6, 2021
    Inventor: John Redvers Clowes
  • Patent number: 10934635
    Abstract: There is provided a method of fabricating a trapped vacancy in a crystal lattice of a target comprising: positioning the target in a laser system, the target containing vacancy trapping elements within the crystal lattice; modifying the crystal lattice within the target by using a laser to generate a lattice vacancy; and annealing the target to cause the lattice vacancy to migrate and be captured by a vacancy trapping element to form the trapped vacancy in the crystal lattice.
    Type: Grant
    Filed: July 1, 2016
    Date of Patent: March 2, 2021
    Assignee: Oxford University Innovation Limited
    Inventors: Martin James Booth, Patrick Salter, Jason Smith, Yu-Chen Chen
  • Patent number: 10930561
    Abstract: An SiC substrate processing method includes a separation layer forming step of setting a focal point of a laser beam having a transmission wavelength to SiC inside an SiC substrate and next applying the laser beam to the SiC substrate to thereby form a separation layer inside the SiC substrate, the SiC substrate having a first surface and a second surface opposite to the first surface; a first plate attaching step of attaching a first plate to the first surface of the SiC substrate; a second plate attaching step of attaching a second plate to the second surface of the SiC substrate; and a separating step of applying an external force to the separation layer after performing the first plate attaching step and the second plate attaching step, thereby separating the SiC substrate into a first SiC substrate and a second SiC substrate along the separation layer.
    Type: Grant
    Filed: August 21, 2019
    Date of Patent: February 23, 2021
    Inventor: Kazuma Sekiya
  • Patent number: 10919794
    Abstract: A method having steps of placing a glass sheet having a front surface, a reverse surface and a thickness onto a sacrificial substrate; directing a beam from a laser at the front surface and through the glass sheet; pulsing the beam at a frequency of between 10 kHz and 30 kHz, and at the sacrificial substrate; moving the beam across the glass sheet at a rate of between 30 millimeters per second and 90 millimeters per second; ablating the sacrificial substrate with the beam; generating a superheated vapor in response to the ablating of the sacrificial substrate; and ablating the reverse surface of the glass sheet with the superheated vapor, whereby the glass sheet is cut.
    Type: Grant
    Filed: December 4, 2017
    Date of Patent: February 16, 2021
    Inventors: James Ross MacDonald, Esteban Balarezo Bagdy, Mark Aoraha Cacause, Jeffrey James Trial
  • Patent number: 10903392
    Abstract: A method of producing optoelectronic semiconductor components, the method includes: a) providing a composite comprising a semiconductor layer sequence including an active region that generates or receives radiation; b) determining a position of at least one defect region of the semiconductor layer sequence; c) forming a plurality of electrically contactable functional regions that each include a part of the semiconductor layer sequence and are free of a defect region; and d) separating the composite into a plurality of optoelectronic semiconductor components that each include at least one of the functional regions.
    Type: Grant
    Filed: April 6, 2017
    Date of Patent: January 26, 2021
    Assignee: OSRAM OLED GmbH
    Inventors: Jürgen Moosburger, Matthias Sabathil, Frank Singer
  • Patent number: 10870175
    Abstract: Microfluidic flow-through elements and methods for forming and using the same, particularly, low cost, easily sterilized, disposable microfluidic flow-through elements may include an orifice region suitable, for example, for fluid jet formation (such as in a droplet sorter or flow cell) or sample injection or hydrodynamic focusing (such as in a non-droplet flow cytometer). Laser drilling, for example laser ablation, may be used to form an orifice region extending through an orifice wall section of a base substrate. The base substrate may be unitarily-formed by injection molding a polymeric material. The orifice region may be advantageously configured to form a predetermined geometry by controlling the characteristics of the ablating beam.
    Type: Grant
    Filed: September 18, 2014
    Date of Patent: December 22, 2020
    Assignee: CYTONOME/ST, LLC
    Inventors: Kristopher Scott Buchanan, Johnathan Charles Sharpe
  • Patent number: 10861725
    Abstract: A laser marking device includes a laser emission unit configured to emit a laser beam to a first surface of an object to be processed, and a pressing unit configured to press a second surface that is opposite to the first surface of the object to be processed to make the first surface of the object to be flat. The pressing unit includes a first pressing portion configured to press an edge area of the second surface in a contact manner, and at least one second pressing portion configured to press a middle area of the second surface in a non-contact manner to maintain a separation distance from the second surface within a certain distance.
    Type: Grant
    Filed: April 27, 2016
    Date of Patent: December 8, 2020
    Assignee: EO TECHNICS CO., LTD.
    Inventors: Sung Beom Jung, Jea Ho Moon, Soo Young Kim, Doo Seok Lee