Noble Metal (gold, Silver, Ruthenium, Rhodium, Palladium, Osmium, Iridium, Platinum) Patents (Class 252/514)
  • Publication number: 20150013764
    Abstract: The conductive composition contains at least (a) conductive metal fibers, and (b) at least one compound selected from a compound represented by the following Formula (1), a compound represented by the following Formula (2), and a compound having a partial structure represented by the following Formula (3). Each of R1 and R2 independently represents a hydrogen atom, an alkyl group, an alkenyl group, an aryl group, an acyl group, an aryloxycarbonyl group, an alkoxycarbonyl group, or a carbamoyl group. Each of R3, R4, R5, R6, R8, R9, R10, and R11 independently represents an alkyl group having 1 to 4 carbon atoms, and R7 represents a hydrogen atom or a substituent. R12 represents an alkyl group, an alkoxy group, an acyl group, or a hydrogen atom. * represents a bond.
    Type: Application
    Filed: September 22, 2014
    Publication date: January 15, 2015
    Applicant: FUJIFILM Corporation
    Inventors: Tokihiko MATSUMURA, Toyohisa OYA, Kazushi FURUKAWA
  • Publication number: 20150009606
    Abstract: A solid electrolytic capacitor that includes a valve action metal base, an insulating layer, a solid electrolyte layer, a carbon layer and an electrode layer sequentially formed in one of two parts of the valve action metal base. The electrode layer is formed from a conductive paste that includes at least a conductive filler, a thermosetting resin containing a phenoxy resin, and a curing agent.
    Type: Application
    Filed: September 23, 2014
    Publication date: January 8, 2015
    Inventors: Koutarou Mishima, Akihiro Nomura
  • Publication number: 20150007880
    Abstract: The present invention relates to a glass frit, a conductive paste composition comprising the glass frit, and a solar cell fabricated using the conductive paste composition. The glass frit of the present invention comprises SiO2, PbO, and at least one selected from the group consisting of Al2O3, ZrO2, ZnO, and Li2O. Further, the conductive paste composition of the present invention comprises a silver (Ag) powder, a lithium titanium oxide, a glass frit, a binder, and a solvent. The conductive paste composition of the present invention can be used to provide a solar cell having low contact resistance to enhance photoelectric efficiency.
    Type: Application
    Filed: January 11, 2013
    Publication date: January 8, 2015
    Inventors: Won Il Son, You-Jin Sim, Choong-Hoon Paik, Mi-Kyoung Kim
  • Publication number: 20150004359
    Abstract: An electroconductive hole plug paste comprising about 60-80 wt % of platinum particles, about 10-20 wt % of Al2O3, and about 10-20 wt % of organic vehicle, based upon 100% total weight of the paste, wherein the organic vehicle includes at least one viscosity-modifying component in an amount sufficient to provide the electroconductive hole plug paste with a viscosity of about 800-1,500 kcPs, is provided. A ceramic substrate assembly for an implantable medical device having the electroconductive hole plug paste of the invention, and a method of forming the same, are also provided.
    Type: Application
    Filed: May 5, 2014
    Publication date: January 1, 2015
    Applicant: Heraeus Precious Metals North America Conshohocken LLP
    Inventors: Samson Shahbazi, Steven Grabey, Mark Challingsworth
  • Publication number: 20150001452
    Abstract: The present invention provides silver nano-particles that are excellent in stability and develop excellent conductivity by low-temperature calcining, a producing method for same, and a silver coating composition comprising the silver nano-particles.
    Type: Application
    Filed: January 7, 2013
    Publication date: January 1, 2015
    Inventors: Masato Kurihara, Kazuki Okamoto, Yuki Iguchi
  • Publication number: 20150004325
    Abstract: An ink composition for making a conductive silver structure comprises a silver salt and a complex of (a) a complexing agent and a short chain carboxylic acid or (b) a complexing agent and a salt of a short chain carboxylic acid, according to one embodiment. A method for making a silver structure entails combining a silver salt and a complexing agent, and then adding a short chain carboxylic acid or a salt of the short chain carboxylic acid to the combined silver salt and a complexing agent to form an ink composition. A concentration of the complexing agent in the ink composition is reduced to form a concentrated formulation, and the silver salt is reduced to form a conductive silver structure, where the concentrated formulation and the conductive silver structure are formed at a temperature of about 120° C. or less.
    Type: Application
    Filed: December 20, 2012
    Publication date: January 1, 2015
    Inventors: Steven B. Walker, Jennifer A. Lewis
  • Patent number: 8920672
    Abstract: The present invention relates to negative active materials for rechargeable lithium batteries, manufacturing methods thereof, and rechargeable lithium batteries including the negative active materials. A negative active material for a rechargeable lithium battery includes a core including a material capable of carrying out reversible oxidation and reduction reactions and a coating layer formed on the core. The coating layer has a reticular structure.
    Type: Grant
    Filed: January 10, 2012
    Date of Patent: December 30, 2014
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Nam-Soon Choi, Sung-Soo Kim, Yong-Mook Kang, Kyoung-Han Yew
  • Publication number: 20140377457
    Abstract: A metal nanoparticle dispersion is made by mixing ingredients. The ingredients comprise a solvent; a plurality of metal nanoparticles, the metal nanoparticles comprising an oxide formed thereon; and a reducing agent. The reducing agent is included in an amount sufficient to react with the oxide to significantly increase a conductivity of a metal film that is formable from the nanoparticle dispersion using a deposition and heating process compared with the conductivity of a metal film formable from the same nanoparticle composition without the reducing agent using the same deposition and heating process. Methods for making the metal nanoparticle dispersion, as well as for making a film from the dispersion, are also disclosed.
    Type: Application
    Filed: June 24, 2013
    Publication date: December 25, 2014
    Inventors: Ping Liu, Yiliang Wu, Anthony James Wigglesworth
  • Publication number: 20140373913
    Abstract: Paste compositions, methods of making paste compositions, contacts, and methods of making contacts are disclosed. The paste compositions include a solid portion and a vehicle system. The solid portion includes a conductive metal component and a glass binder. The vehicle system includes organometallic compound containing zinc. The organometallic compounds containing zinc can be dissolved in the vehicle system and the vehicle system does not include particles that contain zinc. The paste compositions can be used to form contacts in solar cells or other related components.
    Type: Application
    Filed: January 16, 2013
    Publication date: December 25, 2014
    Inventors: Yi Yang, Srinivasan Sridharan, Aziz S. Shaikh, Kenneth A. Clark
  • Publication number: 20140374671
    Abstract: A conductive ink includes a conductive material, a thermoplastic binder including a polyvinylbutyral terpolymer and a polyvinylpyrrolidone, and a solvent. The conductive material may be a conductive material is a conductive particulate having an average size of from about 0.5 to about 10 microns and as aspect ratio of at least about 3 to 1, such as a silver flake.
    Type: Application
    Filed: June 24, 2013
    Publication date: December 25, 2014
    Inventors: Naveen CHOPRA, James D. MAYO, Gabriel IFTIME, Yiliang WU
  • Publication number: 20140373909
    Abstract: Paste compositions, methods of making a paste composition, photovoltaic cells, and methods of making a photovoltaic cell contact are disclosed. The paste composition can include a conductive metal component such as aluminum, phosphate glass, phosphorus compounds such as alky! phosphate, and a vehicle. The contact can be formed on a passivation layer on a silicon wafer by applying the paste on the passivation layer and firing the paste. During firing, the metal component can fire through the passivation layer, thereby electrically contacting the silicon substrate.
    Type: Application
    Filed: August 16, 2012
    Publication date: December 25, 2014
    Applicant: Heraeus Precious Metals North America Conshohocken LLC
    Inventors: Dongshe Zhang, Aziz S. Shaikh, Srinivasan Sridharan, Himal Khatri, Hong Jiang, George E. Graddy, JR.
  • Publication number: 20140373904
    Abstract: The present invention relates to a paste composition for a solar cell electrode and an electrode produced therefrom. The present invention relates to a paste composition for a solar cell electrode, and an electrode produced therefrom, the paste composition comprising conductive powders, a glass frit, and an organic vehicle, the glass frit including PbO, SiO2, and TeO2, wherein an amount of said TeO2 included in the glass frit is about 1-20% by weight.
    Type: Application
    Filed: March 30, 2012
    Publication date: December 25, 2014
    Inventors: Young Wook Choi, Dong Jun Kim, Eun Kyung Kim, Dae Seop Song
  • Publication number: 20140374905
    Abstract: A conductive circuit is formed by printing a pattern of an ink composition and curing the pattern. The ink composition is a substantially solvent-free, liquid, addition curable, ink composition comprising (A) an organopolysiloxane having at least two alkenyl groups, (B) an organohydrogenpolysiloxane having at least two SiH groups, (C) conductive particles having an average particle size ?5 ?m, (D) conductive micro-particles having an average particle size <5 ?m, (E) a thixotropic agent, and (F) a hydrosilylation catalyst.
    Type: Application
    Filed: June 17, 2014
    Publication date: December 25, 2014
    Applicant: SHIN-ETSU CHEMICAL CO., LTD.
    Inventor: Yoshitaka Hamada
  • Publication number: 20140374672
    Abstract: A conductive ink includes a conductive material, a thermoplastic polyvinylbutyral terpolymer binder and a glycol ether solvent. The conductive material may be a conductive material is a conductive particulate having an average size of from about 0.5 to about 10 microns and as aspect ratio of at least about 3 to 1, such as a silver flake.
    Type: Application
    Filed: June 24, 2013
    Publication date: December 25, 2014
    Inventors: Naveen CHOPRA, Gabriel IFTIME, James D. MAYO, Michael D'AMATO, Sandra J. Gardner, Cuong VONG, Ping LIU, Yiliang WU
  • Publication number: 20140374670
    Abstract: In an embodiment, there is a method of preparing a conductive ink formulation. The method can include dissolving a stabilizer in a first solvent, adding a reducing agent to the first solvent, adding a metal salt to the first solvent and forming a slurry by precipitating stabilized metal nanoparticles in the first solvent. The method can also include forming a wet cake of the stabilized metal nanoparticles and adding the wet cake to a second solvent. The second solvent can include at least one of a polyvinyl alcohol derivative. The wet cake may not be actively dried prior to being added to the second solvent.
    Type: Application
    Filed: June 19, 2013
    Publication date: December 25, 2014
    Inventors: Mahya Mokhtari, Tila Tahmoures-Zadeh, Roger E. Gaynor
  • Patent number: 8916069
    Abstract: The present invention is directed to an electrically conductive composition comprising (a) an electrically conductive metal; (b) a Rh-containing component; (c) a Pb—Te—O; and (d) an organic medium; wherein the electrically conductive metal, the Rh-containing compound, and the Pb—Te—O are dispersed in the organic medium. The present invention is further directed to an electrode formed from the composition and a semiconductor device and, in particular, a solar cell comprising such an electrode. Also provided is a process for forming such an electrode. The electrodes provide good adhesion and good electrical performance.
    Type: Grant
    Filed: August 13, 2012
    Date of Patent: December 23, 2014
    Assignee: E I du Pont de Nemours and Company
    Inventors: Kazutaka Ozawa, Lai-Ching Chou
  • Patent number: 8916068
    Abstract: Provided is a silver micropowder coated with a protective material and capable of more drastically reducing the sintering temperature than before. The silver micropowder comprises silver particles processed to adsorb hexylamine (C6H13—NH2) on the surfaces thereof and having a mean particle diameter DTEM of from 3 to 20 nm or an X-ray crystal particle diameter DX of from 1 to 20 nm. The silver micropowder has the property of forming a conductive film having a specific resistivity of not more than 25 ??·cm when it is mixed with an organic medium to prepare a silver coating material and when a coating film formed of it is fired in air at 120° C. Even when fired at 100° C., it may form a conductive film having a specific resistivity of not more than 25 ??·cm.
    Type: Grant
    Filed: December 25, 2008
    Date of Patent: December 23, 2014
    Assignee: Dowa Electronics Materials Co., Ltd.
    Inventors: Kimitaka Sato, Taku Okano, Taro Nakanoya
  • Publication number: 20140367145
    Abstract: A method of manufacturing an elongated electrically conducting element having functionalized carbon nanotubes and at least one metal, includes the steps of mixing functionalized carbon nanotubes with at least one metal, to obtain a composite mixture, and forming a solid mass from the composite mixture from step (i). A solid element obtained from the solid mass from step (ii) is inserted into a metal tube, and the metal tube from step (iii) is deformed, to obtain an elongated electrically conducting element.
    Type: Application
    Filed: June 6, 2014
    Publication date: December 18, 2014
    Inventors: Emilien Comoret, Christian-Eric Bruzek
  • Publication number: 20140370311
    Abstract: A composition comprises a metal powder. The composition further comprises a solder powder which has a lower melting temperature than a melting temperature of the metal powder. The composition further comprises a polymer and a carboxylated-polymer different from the polymer. The carboxylated-polymer is useful for fluxing the metal powder and cross-linking the polymer. The composition further comprises a dicarboxylic acid and a monocarboxylic acid. The acids are useful for fluxing the metal powder. The composition may be used for forming a conductor. The conductor may be used for current trans and/or electrical connection. An article comprises a substrate and the conductor disposed on and in electrical contact with the substrate. The article may be used for various applications, such as for converting light of many different wavelengths into electricity. Examples of such articles include photovoltaic (PV) cells and circuit boards.
    Type: Application
    Filed: December 13, 2012
    Publication date: December 18, 2014
    Inventors: Caroline Boulord, Pierre Maurice Chevalier, Nicholas E. Powell, Adriana Petkova Zambova
  • Publication number: 20140367620
    Abstract: A method is used to improve the conductivity of silver disposed on a substrate. This silver is generally in the form of silver metal particles. The silver is treated with an aqueous solution comprising a conductivity enhancing agent to provide treated silver metal particles that are increased in conductivity. The treated silver metal particles are then dried. These two essential steps of treating and drying are repeated in at least one additional treatment cycle, in sequence, using the same or different conductivity enhancing agent, thereby improving the conductivity of the silver metal particles from one treatment cycle to another. This method can be carried out using an apparatus having a series of stations for carrying out each step in each treatment cycle.
    Type: Application
    Filed: June 17, 2013
    Publication date: December 18, 2014
    Inventors: Ronald Anthony Gogle, Thomas Edward Lowe, Terrence Robert O'Toole, Michael Phillip Youngblood
  • Publication number: 20140360763
    Abstract: A conductive paste includes: composite particles (A) formed by coating a surface of a core material composed of an inorganic material with an antimony-containing compound; a compound (B) having an acid value of 30 to 250 mg KOH/g; and a conductive filler (C).
    Type: Application
    Filed: January 10, 2013
    Publication date: December 11, 2014
    Applicant: Toray Industries, Inc.
    Inventors: Tsukuru Mizuguchi, Kazutaka Kusano
  • Publication number: 20140363567
    Abstract: A method of fabricating a metal nanowire dispersion solution includes heating a first solution including a metal compound, a catalyst, an organic protection agent and menstruum, thereby forming metal nanowires in the first solution, performing a first cleaning process providing a first solvent into the metal nanowire, thereby separating the organic protection agent surrounding the metal nanowires from the metal nanowires, separating the metal nanowires from the first solution by vacuum-filtering, and dispersing the separated metal nanowires in a dispersion solvent.
    Type: Application
    Filed: December 23, 2013
    Publication date: December 11, 2014
    Applicants: Korea Advanced Institute of Science and Technology, Samsung Display Co., Ltd.
    Inventors: Hyun Woo KOO, Tae Woong KIM, Jung Yong LEE, Jae Min LEE
  • Publication number: 20140352778
    Abstract: Paste compositions, methods of making a paste composition, solar cells, and methods of making a solar cell contact are disclosed. The paste composition can include a conductive metal component, a glass component, and a vehicle. The glass component can include SiO2 at about 3 mole % or more and about 65 mole % or less of the glass component and one or more transition metal oxides at about 0.1 mole % or more and about 25 mole % or less of the glass component. The metal of the transition metal oxide is selected from the group consisting of Mn, Fe, Co, Ni, Cu, Ti, V, Cr, W, Nb, Ta, Hf, Mo, Zr, Rh, Ru, Pd, and Pt.
    Type: Application
    Filed: December 21, 2012
    Publication date: December 4, 2014
    Inventors: Yi Yang, Srinvasan Sridharan, Umesh Kumar, Aziz Shaikh
  • Publication number: 20140356524
    Abstract: A nanostructure dispersion comprising a mixture of host metallic nanostructures and metallic nanoparticles is provided. The nanostructures and nanoparticles are attracted to each other and remain attracted upon deposition of the mixture onto a substrate to form a transparent conductor. Also provided is a method of fabricating a transparent conductor.
    Type: Application
    Filed: July 2, 2013
    Publication date: December 4, 2014
    Inventors: Xuerong Gao, Rui Zhang
  • Patent number: 8900487
    Abstract: A conductive paste composition contains a source of an electrically conductive metal, a lead-tellurium-based oxide, a discrete oxide of an adhesion promoting element, and an organic vehicle. An article such as a high-efficiency photovoltaic cell is formed by a process of deposition of the paste composition on a semiconductor substrate (e.g., by screen printing) and firing the paste to remove the organic vehicle and sinter the metal and lead-tellurium-based oxide.
    Type: Grant
    Filed: March 23, 2012
    Date of Patent: December 2, 2014
    Assignee: E I du Pont de Nemours and Company
    Inventors: Kenneth Warren Hang, Kurt Richard Mikeska, Raj G Rajendran, Carmine Torardi, Paul Douglas Vernooy, Yueli Wang
  • Patent number: 8900488
    Abstract: A conductive paste composition contains a source of an electrically conductive metal, an alkaline-earth-metal boron tellurium oxide, and an organic vehicle. An article such as a high-efficiency photovoltaic cell is formed by a process of deposition of the paste composition on a semiconductor device substrate (e.g., by screen printing) and firing the paste to remove the organic vehicle and sinter the metal and establish electrical contact between it and the device.
    Type: Grant
    Filed: September 3, 2013
    Date of Patent: December 2, 2014
    Assignee: E I du Pont de Nemours and Company
    Inventors: Zhigang Rick Li, Kurt Richard Mikeska, David Herbert Roach, Carmine Torardi, Paul Douglas Vernooy
  • Publication number: 20140345921
    Abstract: Disclosed are a nanowire composition and a method of fabricating a transparent electrode. The nanowire composition includes a metallic nanowire, an organic binder, a surfactant, and a solvent. The metallic nanowire has a diameter of 30 nm to 50 nm, and a length of 15 ?m to 40 ?m, and a weight percentage of the metallic nanowire is in a range of 0.01% to 0.4%. The method of fabricating the transparent electrode includes preparing a nanowire composition, coating the nanowire composition on a substrate, and performing heat treatment with respect to the nanowire composition. The nanowire composition includes a metallic nanowire, an organic binder, a surfactant, and a solvent, and the metallic nanowire has a diameter of 30 nm to 50 nm, a length of 15 ?m to 40 ?m, and a weight percentage of 0.01% to 0.4%.
    Type: Application
    Filed: December 12, 2012
    Publication date: November 27, 2014
    Inventors: Jong Woon Moon, Sun Young Lee, Bo Ra Kang, Young Sun You, Kyoung Hoon Chai
  • Publication number: 20140346412
    Abstract: The present invention provides silver nano-particles that are excellent in stability and develop excellent conductivity by low-temperature calcining, a producing method for same, and a silver coating composition comprising the silver nano-particles.
    Type: Application
    Filed: January 7, 2013
    Publication date: November 27, 2014
    Inventors: Kazuki Okamoto, Yuki Iguchi, Masato Kurihara
  • Publication number: 20140349025
    Abstract: A conductive composition is disclosed, In one embodiment, the composition comprises 40 to 90 wt % of silver particles having an average particle size in the range of 10 to 450 nm and having an aspect ratio of 3 to 1:1, 2 to 20 wt % of an alkyl carbonyl macromolecule resin having a weight-average molar mass of 4,000 to 200,000 and 10 to 58 wt % of a diluent for the resin. In one embodiment, the resin is ethyl cellulose.
    Type: Application
    Filed: May 2, 2014
    Publication date: November 27, 2014
    Applicant: E I DU PONT DE NEMOURS AND COMPANY
    Inventors: DAVE HUI, GARETH JAMES GRIFFITHS
  • Publication number: 20140346413
    Abstract: A silver-coated copper alloy powder, which has a low volume resistivity and excellent storage stability (reliability), is produced by coating a copper alloy powder, which has a chemical composition comprising 1 to 50 wt % of at least one of nickel and zinc and the balance being copper and unavoidable impurities (preferably a copper alloy powder wherein a particle diameter (D50 diameter) corresponding to 50% of accumulation in cumulative distribution of the copper alloy powder, which is measured by a laser diffraction particle size analyzer, is 0.1 to 15 ?m), with 7 to 50 wt % of a silver containing layer, preferably a layer of silver or an silver compound.
    Type: Application
    Filed: January 15, 2013
    Publication date: November 27, 2014
    Inventors: Kenichi Inoue, Kozo Ogi, Atsushi Ebara, Yuto Hiyama, Takahiro Yamada, Toshihiko Ueyama
  • Patent number: 8894888
    Abstract: A conductive paste composition contains a source of an electrically conductive metal, a fusible material, a synthetic clay additive, and an optional etchant additive, dispersed in an organic medium. An article such as a photovoltaic cell is formed by a process having the steps of deposition of the paste composition on a semiconductor substrate by a process such as screen printing and firing the paste to remove the organic medium and sinter the metal and fusible material. The synthetic clay additive aids in establishing a low resistance electrical contact between the front side metallization and underlying semiconductor substrate during firing.
    Type: Grant
    Filed: December 21, 2011
    Date of Patent: November 25, 2014
    Assignee: E I du Pont de Nemours and Company
    Inventors: Steven Dale Ittel, John Graeme Pepin
  • Patent number: 8896117
    Abstract: A semiconductor device bonded by an anisotropic conductive film, the anisotropic conductive film including a conductive adhesive layer and an insulating adhesive layer stacked thereon, an amount of reactive monomers in the conductive adhesive layer being higher than an amount of reactive monomers in the insulating adhesive layer.
    Type: Grant
    Filed: November 16, 2012
    Date of Patent: November 25, 2014
    Assignee: Cheil Industries, Inc.
    Inventors: Youn Jo Ko, Jin Kyu Kim, Dong Seon Uh, Kil Yong Lee, Jang Hyun Cho
  • Patent number: 8895460
    Abstract: A glass composition according to the present invention comprises: phosphorus, vanadium and at least one transition metal selected from a group consisting of tungsten, iron, and manganese, the glass composition not containing substances included in the JIG level A and B lists, a softening point of the glass composition being 550° C. or lower.
    Type: Grant
    Filed: March 26, 2010
    Date of Patent: November 25, 2014
    Assignee: Hitachi Powdered Metals Co., Ltd.
    Inventors: Shinichi Tachizono, Kei Yoshimura, Yuji Hashiba, Takashi Naito, Takuya Aoyagi
  • Publication number: 20140342083
    Abstract: A paste composition includes a branched metal carboxylate, a solvent in which the branched metal carboxylate is soluble and a gelling agent, wherein the gelling agent is a linear metal carboxylate. The paste solvent may be an aromatic hydrocarbon solvent. The paste compositing may be free of polymeric binder. The paste may be used in forming conductive features on a substrate, including by screen printing or offset printing.
    Type: Application
    Filed: May 15, 2013
    Publication date: November 20, 2014
    Applicant: XEROX CORPORATION
    Inventors: Yiliang WU, Ping LIU
  • Publication number: 20140339479
    Abstract: The present invention provides a flake-form conductive filler which is easy and low-cost to produce and has a high conductivity. The flake-form conductive filler of the present invention includes a flake-form base material and a silver coating covering the entire surface of the flake-form base material. The flake-form base material contains copper. The flake-form conductive filler has a ratio a/b between a peak intensity “a” derived from a silver (111) plane and a peak intensity “b” derived from a silver (220) plane at 2 or less in the powder X-ray diffraction measurement.
    Type: Application
    Filed: January 10, 2013
    Publication date: November 20, 2014
    Inventors: Kazunori Koike, Miki Fujii, Hideaki Minamiyama, Kazuya Minami
  • Publication number: 20140341958
    Abstract: The present document describes a microcapsule having silica shells, processes for making the same, processes for functionalizing said microcapsules and processes for encapsulating active agent in said microcapsules.
    Type: Application
    Filed: November 30, 2012
    Publication date: November 20, 2014
    Applicant: LES INNOVATIONS MATERIUM INC.
    Inventors: Mathilde Gosselin, Shaoyong Yu, Nabil Ghezal, Cé Guinto Gamys
  • Patent number: 8889471
    Abstract: For solar cell fabrication, the addition of precursors to printable media to assist etching through silicon nitride or silicon oxide layer thus affording contact with the substance underneath the nitride or oxide layer. The etching mechanism may be by molten ceramics formed in situ, fluoride-based etching, as well as a combination of the two.
    Type: Grant
    Filed: May 7, 2012
    Date of Patent: November 18, 2014
    Assignee: Sichuan Yinhe Chemical Co., Ltd.
    Inventors: Ovadia Abed, Yunjun Li, James P. Novak, Samuel Kim, Patrick Ferguson
  • Patent number: 8889041
    Abstract: Formulations and methods of making solar cells are disclosed. In general, the invention presents a solar cell contact made from a mixture wherein the mixture comprises a solids portion and an organics portion, wherein the solids portion comprises from about 85 to about 99 wt % of silver, and from about 1 to about 15 wt % of a glass component wherein the glass component comprises from about 15 to about 75 mol % PbO, and from about 5 to about 50 mol % SiO2, and preferably with no B2O3.
    Type: Grant
    Filed: October 5, 2009
    Date of Patent: November 18, 2014
    Assignee: Heraeus Precious Metals North America Conshohocken LLC
    Inventors: Srinivasan Sridharan, Tung Pham, Chandrashekhar S. Khadilkar, Aziz S. Shaikh
  • Patent number: 8889039
    Abstract: It is provided a paste composition for a solar battery electrode, that includes electrically conductive powder, glass frit, and a vehicle, wherein the glass frit is made of glass that comprises, as amounts converted into those of oxides as ratios, Li2O within a range from 0.6 to 18 [mol %], PbO within a range from 20 to 65 [mol %], B2O3 within a range from 1 to 18 [mol %], and SiO2 within a range from 20 to 65 [mol %].
    Type: Grant
    Filed: September 2, 2010
    Date of Patent: November 18, 2014
    Assignee: Noritake Co., Limited
    Inventors: Yasushi Yoshino, Takahiro Sugiyama, Shinji Senda, Yuuko Suzuki
  • Publication number: 20140331912
    Abstract: An apparatus for friction reduction and biofouling prevention is invented, which consists of an anodic electro-catalytic layer and a cathodic electro-catalytic layer installed on the submerged surface of a carrier. There is an insulating filling between the anodic layer and the cathodic layer. The layered coatings are applied with the use of electric arc spraying technique. A first DC power supply unit is connected to the anodic layer and the cathodic layer. The anodic layer, the cathodic layer, the DC power supply unit, and water together form the conducting path for water electro-catalysis. Hydrogen and oxygen gases are produced to form a thin gas film on the submerged surface to reduce friction and prevent biofouling on the carrier. Alternatively, the apparatus produces hydroxyl radicals to kill marine microorganisms and reduce the risk of biofouling and biocorrosion.
    Type: Application
    Filed: April 30, 2014
    Publication date: November 13, 2014
    Inventors: KEE-RONG WU, YU-TSUEN SHYU, CHUNG-HSUANG HUNG, JIING-KAE WU, CHIUNG-WEI YEH, SHUN-HSYUNG CHANG
  • Publication number: 20140332733
    Abstract: Provided herein are nanofibers and processes of preparing nanofibers. In some instances, the nanofibers are metal and/or ceramic nanofibers. In some embodiments, the nanofibers are high quality, high performance nanofibers, highly coherent nanofibers, highly continuous nanofibers, or the like. In some embodiments, the nanofibers have increased coherence, increased length, few voids and/or defects, and/or other advantageous characteristics. In some instances, the nanofibers are produced by electrospinning a fluid stock having a high loading of nanofiber precursor in the fluid stock. In some instances, the fluid stock comprises well mixed and/or uniformly distributed precursor in the fluid stock. In some instances, the fluid stock is converted into a nanofiber comprising few voids, few defects, long or tunable length, and the like.
    Type: Application
    Filed: August 30, 2012
    Publication date: November 13, 2014
    Applicant: CORNELL UNIVERSITY
    Inventors: Yong Lak Joo, Nathaniel S. Hansen, Daehwan Cho
  • Publication number: 20140332734
    Abstract: To provide a conductive pattern formation method capable of improving conductivity of a conductive pattern and a composition for forming a conductive pattern by means of photo irradiation or microwave heating. A composition for forming a conductive pattern that contains copper particles each having a copper oxide thin film formed on the entire or a part of a surface thereof, plate-like silver particles each being 10 to 200 nm thickness, and a binder resin is prepared. The composition for forming a conductive pattern is printed in a pattern having a desired shape on a substrate. Photo irradiation or microwave heating is applied to the printed pattern to thereby produce a copper/silver sintered body, to form a conductive film.
    Type: Application
    Filed: November 26, 2012
    Publication date: November 13, 2014
    Applicant: SHOWA DENKO K.K.
    Inventor: Hiroshi Uchida
  • Publication number: 20140332067
    Abstract: The present invention is directed toward a via fill material for use in solar applications that exhibits low series resistance and high shunt resistance. The via fill material according to the invention includes silver powder, a glass frit and a vehicle.
    Type: Application
    Filed: September 1, 2011
    Publication date: November 13, 2014
    Inventors: George E. Graddy, JR., Caroline M. McKinley, Aziz S. Shaikh
  • Publication number: 20140332071
    Abstract: Electrically conductive polymeric compositions adapted for use in forming electronic devices are disclosed. The compositions are thermally curable at temperatures less than about 250° C. Compositions are provided which may be solvent-free and so can be used in processing or manufacturing operations without solvent recovery concerns. Core-shell conductive particles provide the conductivity of the compositions and devices contemplated herein.
    Type: Application
    Filed: December 13, 2012
    Publication date: November 13, 2014
    Inventors: Hong Jiang, Aziz S. Shaikh
  • Patent number: 8883045
    Abstract: The present invention provides a metal nanowire-containing composition containing at a least metal nanowire and a heterocyclic compound having an interaction potential of less than ?1 mV.
    Type: Grant
    Filed: September 30, 2009
    Date of Patent: November 11, 2014
    Assignee: Fujifilm Corporation
    Inventors: Yoichi Hosoya, Naoharu Kiyoto, Nori Miyagishima, Takeshi Funakubo, Kenji Naoi, Ryoji Nishimura
  • Patent number: 8883046
    Abstract: The present invention relates to a conductive metal ink composition which is properly applied for roll-printing process to form conductive pattern, and the method of preparing a conductive pattern using the same. The conductive metal ink composition comprises a conductive metal powder; a non-aqueous solvent comprising a first non-aqueous solvent having a vapor pressure of 3 torr or lower at 25° C. and a second non-aqueous solvent having a vapor pressure of higher than 3 torr at 25° C.; and a coatability improving polymer and is coated for forming the conductive pattern by the roll printing method.
    Type: Grant
    Filed: August 24, 2010
    Date of Patent: November 11, 2014
    Assignee: LG Chem, Ltd.
    Inventors: Jie-Hyun Seong, Soo-Yeon Heo, Jong-Taik Lee, Kyoung-Su Jeon, Sang-Ho Kim, Ji-Young Hwang
  • Publication number: 20140329067
    Abstract: A dispersion includes metallic, metal oxide, or metal precursor nanoparticles; a thermally cleavable polymeric dispersant; an optional dispersion medium; and a thermally cleavable agent. Pastes, coated layers, and patterns may contain the dispersion. A method for producing the specific thermally cleavable dispersant and for producing the metallic nanoparticle dispersions. The dispersions allow the reduction or avoidance of organic residue in coated layers and patterns on substrates, the use substrates of low thermal resistance, and faster processing times.
    Type: Application
    Filed: December 18, 2012
    Publication date: November 6, 2014
    Inventors: Xavier André, Dirk Bollen
  • Publication number: 20140329054
    Abstract: The present invention relates to an aqueous formulation particularly for generating electrically conductive and/or reflective structures by microcontact printing, characterized in that the formulation contains at least a) ?15 to ?55 parts by weight water, b) ?10 to ?50 parts by weight alcohol, c) ?15 to ?45 parts by weight metal-based nanoparticles, d) 0.5 to ?10 parts by weight non-fluorinated surfactant, and e) ?0.5 to ?10 parts by weight fluorinated surfactant, wherein the above defined constituents a) to e) summarize to a concentration of ?100 parts by weight in the formulation. The wetting behavior especially of hydrophobic materials may significantly be improved. The present invention further relates to a method of generating structures, particularly being electrically conductive and/or reflective, on a substrate by microcontact printing and a substrate comprising such a structure.
    Type: Application
    Filed: September 25, 2012
    Publication date: November 6, 2014
    Applicant: CLARIANT INTERNATIONAL AG
    Inventors: Deivaraj Theivanayagam Chairman, Frank Sicking, Venkataramanan Balasubramanian, Daniel Rudhardt
  • Publication number: 20140319431
    Abstract: An electrically conductive printable composition comprises silver particles, a dispersing agent, a solvent, a first surfactant, comprising a hydrocarbon based surfactant, and a second surfactant, comprising a fluoro-based surfactant.
    Type: Application
    Filed: June 13, 2012
    Publication date: October 30, 2014
    Applicant: BAYER INTELLECTUAL PROPERTY GMBH
    Inventors: Daniel Rudhardt, Frank Sicking, Stefanie Eiden, Venkataramanan Balasubramaniam, Stefan Bahnmuller, Rachel Tessy Mathew, Fransiska Cecilia Kartawidjaja
  • Publication number: 20140322138
    Abstract: Disclosed is a method for making a colloidal suspension of precious metal nanoparticles. The method comprises providing a target material comprising a precious metal in a liquid dispersion medium in an ablation container. The dispersion medium has an electrical conductivity within a predetermined conductivity range. Laser pulses are used to generate the nanoparticles from the target in the container. While generating the nanoparticles the electrical conductivity of the dispersion medium is monitored and maintained within the predetermined range and thereby the generated nanoparticles are produced within a predetermined size range. The generated nanoparticles are used to form a colloidal suspension.
    Type: Application
    Filed: June 24, 2014
    Publication date: October 30, 2014
    Inventors: Yuki Ichikawa, Andrius Marcinkevicus