Avalanche Diode (e.g., So-called "zener" Diode Having Breakdown Voltage Greater Than 6 Volts, Including Heterojunction Impatt Type Microwave Diodes) Patents (Class 257/199)
  • Patent number: 11916119
    Abstract: Disclosed are embodiments of a transistor (e.g., a III-V high electron mobility transistor (HEMT), a III-V metal-insulator-semiconductor HEMT (MISHEMT), or the like) that has multiple self-aligned terminals. The self-aligned terminals include a self-aligned gate, a self-aligned source terminal and, optionally, a self-aligned drain terminal. By forming self-aligned terminals during processing, the separation distances between the terminals (e.g., between the gate and source terminal and, optionally, between the gate and drain terminal) can be reduced in order to reduce device size and to improve performance (e.g., to reduce on resistance and increase switching speeds). Also disclosed herein are method embodiments for forming such a transistor.
    Type: Grant
    Filed: November 3, 2021
    Date of Patent: February 27, 2024
    Assignee: GlobalFoundries U.S. Inc.
    Inventors: Zhong-Xiang He, Jeonghyun Hwang, Ramsey M. Hazbun, Brett T. Cucci, Ajay Raman, Johnatan A. Kantarovsky
  • Patent number: 11908900
    Abstract: The present disclosure relates to an integrated chip. The integrated chip includes a substrate having a first semiconductor material. A second semiconductor material is disposed on the first semiconductor material. The second semiconductor material is a group IV semiconductor or a group III-V compound semiconductor. A passivation layer is disposed on the second semiconductor material. The passivation layer includes the first semiconductor material. A first doped region and a second doped region extend through the passivation layer and into the second semiconductor material.
    Type: Grant
    Filed: July 21, 2022
    Date of Patent: February 20, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yin-Kai Liao, Sin-Yi Jiang, Hsiang-Lin Chen, Yi-Shin Chu, Po-Chun Liu, Kuan-Chieh Huang, Jyh-Ming Hung, Jen-Cheng Liu
  • Patent number: 11887854
    Abstract: The present application provides a semiconductor structure manufacturing method and two semiconductor structures. The manufacturing method includes: providing a substrate and a silicon layer, the substrate exposing a top surface of the silicon layer; performing deposition to form an alloy layer on the silicon layer, the deposition being performed in a nitrogen-containing atmosphere, and a concentration of nitrogen atoms in the nitrogen-containing atmosphere increasing with an increase in deposition time; and annealing the alloy layer and the silicon layer. In embodiments of the present application, an increase in the concentration of nitrogen atoms can control a silicification reaction of the alloy layer, thereby preventing a line width effect and reducing the resistance of the semiconductor structure.
    Type: Grant
    Filed: October 8, 2021
    Date of Patent: January 30, 2024
    Assignee: CHANGXIN MEMORY TECHNOLOGIES, INC.
    Inventor: Yuan Li
  • Patent number: 11869984
    Abstract: Embodiment relates to the field of semiconductor technologies, and proposes a semiconductor device and a fabrication method thereof. The semiconductor device includes: a substrate, a semiconductor structure, an insulating layer, and a conductive layer. The semiconductor structure is positioned on a side of the substrate and includes a first semiconductor structure and a second semiconductor structure, wherein the first semiconductor structure and the second semiconductor structure form a PN junction. The insulating layer is positioned on a side of the semiconductor structure facing away from the substrate. The conductive layer is positioned on a side of the insulating layer facing away from the substrate, and an orthographic projection of the conductive layer on the substrate at least partially overlaps an orthographic projection of the PN junction on the substrate.
    Type: Grant
    Filed: August 13, 2021
    Date of Patent: January 9, 2024
    Assignee: CHANGXIN MEMORY TECHNOLOGIES, INC.
    Inventors: Lianhong Wang, Er-Xuan Ping
  • Patent number: 11508817
    Abstract: The present disclosure relates to an integrated chip. The integrated chip includes a substrate having a first semiconductor material. A second semiconductor material is disposed on the first semiconductor material. The second semiconductor material is a group IV semiconductor or a group III-V compound semiconductor. A passivation layer is disposed on the second semiconductor material. The passivation layer includes the first semiconductor material. A first doped region and a second doped region extend through the passivation layer and into the second semiconductor material.
    Type: Grant
    Filed: September 29, 2020
    Date of Patent: November 22, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yin-Kai Liao, Sin-Yi Jiang, Hsiang-Lin Chen, Yi-Shin Chu, Po-Chun Liu, Kuan-Chieh Huang, Jyh-Ming Hung, Jen-Cheng Liu
  • Patent number: 11482438
    Abstract: A method for producing a 3D memory device, the method including: providing a first level including a first single crystal layer and control circuits; forming at least one second level above the first level; performing a first etch step including etching holes within the second level; forming at least one third level above the at least one second level; performing a second etch step including etching holes within the third level; and performing additional processing steps to form a plurality of first memory cells within the second level and a plurality of second memory cells within the third level, where each of the first memory cells include one first transistor, where each of the second memory cells include one second transistor, where at least one of the first or second transistors has a channel, a source, and a drain having a same doping type.
    Type: Grant
    Filed: June 5, 2021
    Date of Patent: October 25, 2022
    Assignee: MONOLITHIC 3D INC.
    Inventors: Zvi Or-Bach, Brian Cronquist, Deepak C. Sekar
  • Patent number: 11342214
    Abstract: A method for producing a 3D memory device, the method including: providing a first level including a first single crystal layer; forming a plurality of first transistors each including a single crystal channel; forming a first metal layer and a second metal layer, where the first level includes the plurality of first transistors, the first metal layer, and the second metal layer; forming at least one second level disposed above the second metal layer; performing a first etch step including etching first holes within the second level; forming at least one third level above the at least one second level; performing a second etch step including etching second holes within the third level; and performing additional processing steps to form a plurality of first memory cells within the second level and a plurality of second memory cells within the third level, where memory cells each include one memory transistor.
    Type: Grant
    Filed: March 10, 2022
    Date of Patent: May 24, 2022
    Assignee: MONOLITHIC 3D INC.
    Inventors: Zvi Or-Bach, Brian Cronquist, Deepak C. Sekar
  • Patent number: 11335731
    Abstract: A semiconductor device, the device comprising: a plurality of transistors, wherein at least one of said plurality of transistors comprises a first single crystal source, channel, and drain, wherein at least one of said plurality of transistors comprises a second single crystal source, channel, and drain, wherein said second single crystal source, channel, and drain is disposed above said first single crystal source, channel, and drain, wherein at least one of said plurality of transistors comprises a third single crystal source, channel, and drain, wherein said third single crystal source, channel, and drain is disposed above said second single crystal source, channel, and drain, wherein at least one of said plurality of transistors comprises a fourth single crystal source, channel, and drain, and wherein said first single crystal channel is self-aligned to said second single crystal channel being processed following the same lithography step.
    Type: Grant
    Filed: February 28, 2022
    Date of Patent: May 17, 2022
    Assignee: MONOLITHIC 3D INC.
    Inventors: Deepak C. Sekar, Zvi Or-Bach
  • Patent number: 11315980
    Abstract: A semiconductor device, the device including: a plurality of transistors, where at least one of the plurality of transistors includes a first single crystal source, channel, and drain, where at least one of the plurality of transistors includes a second single crystal source, channel, and drain, where the second single crystal source, channel, and drain is disposed above the first single crystal source, channel, and drain, where at least one of the plurality of transistors includes a third single crystal source, channel, and drain, where the third single crystal source, channel, and drain is disposed above the second single crystal source, channel, and drain, where at least one of the plurality of transistors includes a fourth single crystal source, channel, and drain, and where the first single crystal source or drain, and the second single crystal source or drain each include n+ doped regions.
    Type: Grant
    Filed: January 10, 2022
    Date of Patent: April 26, 2022
    Assignee: Monolithic 3D Inc.
    Inventors: Deepak C. Sekar, Zvi Or-Bach
  • Patent number: 11302865
    Abstract: A device includes a substrate, a first dielectric layer over the substrate, a bottom electrode extending through the first dielectric layer, a phase-change layer over the bottom electrode, and a top electrode over the phase-change layer. The phase-change layer includes a first portion extending into the bottom electrode and a second portion over the first portion and the first dielectric layer. A width of the first portion decreases as the first portion extends toward the substrate. The second portion has a first width. The top electrode has the first width.
    Type: Grant
    Filed: December 26, 2019
    Date of Patent: April 12, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Jau-Yi Wu
  • Patent number: 11271392
    Abstract: A protection circuit for a signal processor, a method of operating the protection circuit, and a method of forming the protection circuit. In one example, the protection circuit is couplable to a signal port and a first power bus for the signal processor. The protection circuit includes a first diode string couplable across the signal port and the first power bus. The first diode string includes a first diode and a second diode coupled in series in a same polarity sense. The protection circuit also includes a third diode coupled in parallel with one of the first diode and the second diode in an opposite polarity sense.
    Type: Grant
    Filed: September 3, 2019
    Date of Patent: March 8, 2022
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Ann Margaret Concannon, Vishwanath Joshi, Antonio Gallerano, Zhao Gao, Yanqing Li
  • Patent number: 11133351
    Abstract: A 3D semiconductor device, the device including: a first level including a first single crystal layer and first transistors, where the first transistors each include a single crystal channel; first metal layers interconnecting at least the first transistors; and a second level including a second single crystal layer and second transistors, where the second level overlays the first level, where the second transistors are horizontally oriented and include a gate dielectric, where the gate dielectric includes hafnium oxide, where the second level is bonded to the first level, and where the bonded includes oxide to oxide bonds.
    Type: Grant
    Filed: April 6, 2021
    Date of Patent: September 28, 2021
    Assignee: MONOLITHIC 3D INC.
    Inventors: Deepak C. Sekar, Zvi Or-Bach
  • Patent number: 11088270
    Abstract: A microwave transistor has a patterned region between a source and a drain on a barrier layer. Within the patterned region, the surface of the barrier layer partially recessed downwards in the thickness direction to form a plurality of grooves. A gate covers the patterned region. The length of the gate is greater than the lengths of the grooves in the length direction of the gate, so as to completely cover the grooves. In one aspect, by arranging the grooves, the gate control capability of a component is improved and the short-channel effect is suppressed; in another aspect, an original heterostructure below the gate is preserved; in this way, the reduction of the conductive capability due to the reduction of the two-dimensional electron gas density is avoided; and accordingly the current output capability of the component is ensured while the short-channel effect is suppressed.
    Type: Grant
    Filed: December 30, 2018
    Date of Patent: August 10, 2021
    Assignee: XIAMEN SANAN INTEGRATED CIRCUIT CO., LTD. .
    Inventors: Shenghou Liu, Nien-Tze Yeh, Hou-Kuei Huang
  • Patent number: 10910312
    Abstract: Devices and methods are provided for fabricating monolithic three-dimensional semiconductor integrated circuit devices which include power distribution networks that are implemented with power distribution planes disposed below a stack of device tiers, in between device tiers, and/or above the device tiers to distribute positive and negative power supply voltage to field-effect transistor devices of the device tiers.
    Type: Grant
    Filed: October 25, 2019
    Date of Patent: February 2, 2021
    Assignee: International Business Machines Corporation
    Inventors: Joshua M. Rubin, Terence B. Hook
  • Patent number: 10903165
    Abstract: Devices and methods are provided for fabricating monolithic three-dimensional semiconductor integrated circuit devices which include power distribution networks that are implemented with power distribution planes disposed below a stack of device tiers, in between device tiers, and/or above the device tiers to distribute positive and negative power supply voltage to field-effect transistor devices of the device tiers.
    Type: Grant
    Filed: November 8, 2019
    Date of Patent: January 26, 2021
    Assignee: International Business Machines Corporation
    Inventors: Joshua M. Rubin, Terence B. Hook
  • Patent number: 10896931
    Abstract: A 3D semiconductor device, the device including: a first level including a first single crystal layer and first transistors, where the first transistors each include a single crystal channel; first metal layers interconnecting at least the first transistors; and a second level including a second single crystal layer and second transistors, where the second level overlays the first level, where the second transistors are horizontally oriented and each include at least two side gates, where the second level is bonded to the first level, and where the bonded includes oxide to oxide bonds.
    Type: Grant
    Filed: September 7, 2020
    Date of Patent: January 19, 2021
    Assignee: Monolithic 3D Inc.
    Inventors: Deepak C. Sekar, Zvi Or-Bach
  • Patent number: 10825864
    Abstract: A 3D semiconductor device, the device including: a first level including a first single crystal layer; first transistors overlaying the first single crystal layer; second transistors overlaying the first transistors; and a second level including a second single crystal layer, the second level overlays the second transistors, where the first transistors and the second transistors each includes a polysilicon channel.
    Type: Grant
    Filed: May 11, 2019
    Date of Patent: November 3, 2020
    Assignee: Monolithic 3D Inc.
    Inventors: Deepak C. Sekar, Zvi Or-Bach
  • Patent number: 10720535
    Abstract: Disclosed is a SiC wide trench-type junction barrier Schottky diode. The Schottky diode includes a SiC N? epitaxial layer formed on a SiC N+-type substrate and a Schottky metal layer having a planar Schottky metal pattern layer and a downwardly depressed trench-type Schottky metal pattern layer, which are alternately formed at predetermined intervals and on the upper end part of the SiC N? epitaxial layer. The Schottky diode includes a P+ junction pattern formed so as to permeate from the lower part of the trench-type Schottky metal pattern layer to the SiC N? epitaxial layer and a cathode electrode formed on the lower part of the SiC N+-type substrate. The width of the P+ junction pattern is narrower than the width of the trench-type Schottky metal pattern layer, and the P+ junction pattern is not formed on a side wall vertical surface region of the trench-type Schottky metal pattern layer.
    Type: Grant
    Filed: February 21, 2020
    Date of Patent: July 21, 2020
    Assignee: PowerCubeSemi, INC.
    Inventors: Sin Su Kyoung, Tae Young Kang
  • Patent number: 10607938
    Abstract: Devices and methods are provided for fabricating monolithic three-dimensional semiconductor integrated circuit devices which include power distribution networks that are implemented with power distribution planes disposed below a stack of device tiers, in between device tiers, and/or above the device tiers to distribute positive and negative power supply voltage to field-effect transistor devices of the device tiers.
    Type: Grant
    Filed: October 26, 2018
    Date of Patent: March 31, 2020
    Assignee: International Business Machines Corporation
    Inventors: Joshua M. Rubin, Terence B. Hook
  • Patent number: 10401673
    Abstract: According to one embodiment, a liquid crystal display device includes a first substrate includes a first pixel electrode which comprises a first contact portion and a first strip electrode with a first length, a second pixel electrode which comprises a second contact portion located on a same straight line with the first contact portion and a second strip electrode with a second length equal to the first length, and a third pixel electrode which comprises a third contact portion disposed at a position displaced from the same straight line of the first contact portion and a third strip electrode with a third length different from the first length, a second substrate, and a liquid crystal layer held between the first substrate and the second substrate.
    Type: Grant
    Filed: October 10, 2017
    Date of Patent: September 3, 2019
    Assignee: JAPAN DISPLAY INC.
    Inventor: Jin Hirosawa
  • Patent number: 10374068
    Abstract: Tunnel field effect devices and methods of fabricating tunnel field effect devices are described. In one embodiment, the semiconductor device includes a first drain region of a first conductivity type disposed in a first region of a substrate, a first source region of a second conductivity type disposed in the substrate, the second conductivity type being opposite the first conductivity type, a first channel region electrically coupled between the first source region and the first drain region, the first source region underlying a least a portion of the first channel region, and a first gate stack overlying the first channel region.
    Type: Grant
    Filed: January 11, 2017
    Date of Patent: August 6, 2019
    Assignees: INFINEON TECHNOLOGIES AG, INDIAN INSTITUTE OF TECHNOLOGY BOMBAY
    Inventors: Harald Gossner, Ramgopal Rao, Ram Asra
  • Patent number: 10367101
    Abstract: A Schottky diode comprises: a substrate; a first semiconductor layer located on the substrate; a second semiconductor layer located on the first semiconductor layer, two-dimensional electron gas being formed at an interface between the first semiconductor layer and the second semiconductor layer; a cathode located on the second semiconductor layer and forming an ohmic contact with the second semiconductor layer; a first passivation dielectric layer located on the second semiconductor layer; a field plate groove formed in the first passivation dielectric layer; and an anode covering the field plate groove and a portion of the first passivation dielectric layer, wherein a distance between a bottom surface of the field plate groove and the two-dimensional electron gas in a height direction is greater than 5 nm.
    Type: Grant
    Filed: April 30, 2018
    Date of Patent: July 30, 2019
    Assignee: GPOWER SEMICONDUCTOR, INC.
    Inventor: Hongwei Chen
  • Patent number: 10074647
    Abstract: A semiconductor device and method. The device includes a first domain and a second domain each having a power rail and a ground rail. The device further includes a signal line connected between the first domain and the second domain. The device also includes an electrostatic discharge protection circuit for providing cross-domain ESD protection. The protection circuit includes a blocking transistor connected between the first domain power rail and the signal line. The protection circuit also includes a power rail clamp connected between the first domain power rail and the first domain ground rail. The power rail clamp is operable to apply a control signal to a gate of the blocking transistor to switch it on during normal operation and to switch it off during an ESD event. The power rail clamp is operable during the ESD event to conduct an ESD current.
    Type: Grant
    Filed: February 2, 2016
    Date of Patent: September 11, 2018
    Assignee: NXP B.V.
    Inventors: Da-Wei Lai, Dolphin Abessolo Bidzo
  • Patent number: 10068946
    Abstract: A magnetic memory of an embodiment includes: a first nonmagnetic layer including a first and second faces; a first and second wirings disposed on a side of the first face; a third wiring disposed on a side of the second face; a first transistor, one of the source and the drain being connected to the first wiring, the other one being connected to the first nonmagnetic layer; a second transistor, one of source and drain being connected to the second wiring, the other one being connected to the first nonmagnetic layer; a magnetoresistive element disposed between the first nonmagnetic layer and the third wiring, a first terminal of the magnetoresistive element being connected to the first nonmagnetic layer; and a third transistor, one of source and drain of the third transistor being connected to the second terminal, the other one being connected to the third wiring.
    Type: Grant
    Filed: September 13, 2016
    Date of Patent: September 4, 2018
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Naoharu Shimomura, Hiroaki Yoda, Tadaomi Daibou, Yuuzo Kamiguchi, Yuichi Ohsawa, Tomoaki Inokuchi, Satoshi Shirotori
  • Patent number: 10056301
    Abstract: A method for forming a transistor is provided. The method includes providing a semiconductor substrate, and forming a dielectric layer on the semiconductor substrate. The dielectric layer has a gate structure recess. The method also includes forming a work function layer on a bottom and sidewalls of the gate structure recess; performing an ion implantation on the work function layer; and forming a gate layer on the work function layer after the ion implantation.
    Type: Grant
    Filed: June 20, 2016
    Date of Patent: August 21, 2018
    Assignee: SEMICONDUCTOR MANUFACTURING INTERNATIONAL (SHANGHAI) CORPORATION
    Inventors: Fei Zhou, Yong Li, Jianhua Ju
  • Patent number: 10043925
    Abstract: Guided-wave photodetectors based on absorption of infrared photons by mid-bandgap states in non-crystal semiconductors. In one example, a resonant guided-wave photodetector is fabricated based on a polysilicon layer used for the transistor gate in a SOI CMOS process without any change to the foundry process flow (‘zero-change’ CMOS). Mid-bandgap defect states in the polysilicon absorb infrared photons. Through a combination of doping mask layers, a lateral p-n junction is formed in the polysilicon, and a bias voltage applied across the junction creates a sufficiently strong electric field to enable efficient photo-generated carrier extraction and high-speed operation. An example device has a responsivity of more than 0.14 A/W from 1300 to 1600 nm, a 10 GHz bandwidth, and 80 nA dark current at 15 V reverse bias.
    Type: Grant
    Filed: August 29, 2016
    Date of Patent: August 7, 2018
    Assignee: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Rajeev Jagga Ram, Jason Scott Orcutt, Huaiyu Meng, Amir H. Atabaki
  • Patent number: 9985143
    Abstract: A Schottky diode comprises: a substrate; a first semiconductor layer located on the substrate; a second semiconductor layer located on the first semiconductor layer, two-dimensional electron gas being formed at an interface between the first semiconductor layer and the second semiconductor layer; a cathode located on the second semiconductor layer and forming an ohmic contact with the second semiconductor layer; a first passivation dielectric layer located on the second semiconductor layer; a field plate groove formed in the first passivation dielectric layer; and an anode covering the field plate groove and a portion of the first passivation dielectric layer.
    Type: Grant
    Filed: December 16, 2016
    Date of Patent: May 29, 2018
    Assignee: Gpower Semiconductor, Inc.
    Inventor: Hongwei Chen
  • Patent number: 9536825
    Abstract: A semiconductor device and a method of fabricating the same are provided. The semiconductor device includes a substrate including a first region and a second region, a first transistor and a second transistor formed on the first region and the second region, respectively, a first contact formed on the first transistor, and a second contact formed on the second transistor. The first contact includes a first work function control layer having a first thickness and a first conductive layer formed on the first work function control layer, the second contact includes a second work function control layer having a second thickness different from the first thickness and a second conductive layer formed on the second work function control layer, and the first contact and the second contact have different work functions.
    Type: Grant
    Filed: May 14, 2015
    Date of Patent: January 3, 2017
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jung-Gun You, Wei-Hua Hsu, Choong-Ho Lee, Hyung-Jong Lee
  • Patent number: 9391058
    Abstract: A transient voltage suppressor and its manufacturing method are provided, which can easily control voltage withstanding characteristics of a Zener diode by analogizing growth of a buried layer by forming a portion of the buried layer by performing ion implantation on a first epitaxial layer and then forming the other portion of the buried layer while depositing a second epitaxial layer having the same impurity concentration with the first epitaxial layer, and which can improve a current distribution characteristic by forming a doping region in a ring shape to increase a current pass region by increasing a PN junction area of a Zener diode in a small area.
    Type: Grant
    Filed: October 1, 2014
    Date of Patent: July 12, 2016
    Assignee: KEC Corporation
    Inventors: Hyun Sik Kim, Hee Won Jang
  • Patent number: 9379246
    Abstract: Three-dimensional (3D) non-volatile memory arrays having a vertically-oriented thin film transistor (TFT) select device and method of fabricating such a memory are described. The vertically-oriented TFT may be used as a vertical bit line selection device to couple a global bit line to a vertical bit line. A select device pillar includes a body and upper and lower source/drain regions. At least one gate is separated horizontally from the select device pillar by a gate dielectric. Beneath each gate, a single gap fill dielectric layer extends vertically from a lower surface of the gate, at least partially separating the gate from the underlying global bit line. Between horizontally adjacent pillars, this same dielectric layer extends from its same lower level beneath the gates vertically to a level of the upper source/drain region.
    Type: Grant
    Filed: March 5, 2014
    Date of Patent: June 28, 2016
    Assignee: SanDisk Technologies Inc.
    Inventor: Seiji Shimabukuro
  • Patent number: 9269671
    Abstract: There is provided a technology by which the position of 1 pin in a tabless package can be recognized easily. The rear surfaces of plural leads are exposed on a rear surface of a resin-sealed body which seals a semiconductor chip etc., a image recognition area is further provided adjacent to 1 pin (lead with index 1), and a rear surface of an identification mark is exposed from the rear surface of the resin-sealed body of the image recognition area. This identification mark is made of the same conductive member as the plural leads.
    Type: Grant
    Filed: May 8, 2013
    Date of Patent: February 23, 2016
    Assignee: Renesas Electronics Corporation
    Inventor: Hiroaki Narita
  • Patent number: 9230916
    Abstract: There is provided a technology by which the position of 1 pin in a tabless package can be recognized easily. The rear surfaces of plural leads are exposed on a rear surface of a resin-sealed body which seals a semiconductor chip etc., a image recognition area is further provided adjacent to 1 pin (lead with index 1), and a rear surface of an identification mark is exposed from the rear surface of the resin-sealed body of the image recognition area. This identification mark is made of the same conductive member as the plural leads.
    Type: Grant
    Filed: May 8, 2013
    Date of Patent: January 5, 2016
    Assignee: Renesas Electronics Corporation
    Inventor: Hiroaki Narita
  • Patent number: 9190501
    Abstract: A semiconductor device includes an emitter region, a collector region and a base region. The emitter region is implanted in a semiconductor substrate. The collector region is implanted in the semiconductor substrate. The base region is disposed between the emitter region and collector region. The base region includes no more than one LDD region and no more than one halo region. The base region contacts directly with at least one of the emitter region and the collector region.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: November 17, 2015
    Assignee: Broadcom Corporation
    Inventors: Akira Ito, Kenneth Yau
  • Patent number: 9171857
    Abstract: There is provided a monolithic three dimensional array of charge storage devices which includes a plurality of device levels, wherein at least one surface between two successive device levels is planarized by chemical mechanical polishing.
    Type: Grant
    Filed: September 23, 2014
    Date of Patent: October 27, 2015
    Assignee: SANDISK 3D LLC
    Inventors: Thomas H. Lee, Vivek Subramanian, James M. Cleeves, Igor G. Kouznetsov, Mark G. Johnson, Paul Michael Farmwald
  • Patent number: 9041065
    Abstract: Planar Schottky diodes for which the semiconductor material includes a heterojunction which induces a 2DEG in at least one of the semiconductor layers. A metal anode contact is on top of the upper semiconductor layer and forms a Schottky contact with that layer. A metal cathode contact is connected to the 2DEG, forming an ohmic contact with the layer containing the 2DEG.
    Type: Grant
    Filed: August 22, 2013
    Date of Patent: May 26, 2015
    Assignee: Transphorm Inc.
    Inventors: Yifeng Wu, Umesh Mishra, Primit Parikh, Rongming Chu, Ilan Ben-Yaacov, Likun Shen
  • Patent number: 8981476
    Abstract: A semiconductor device includes: first and second n-type wells formed in p-type semiconductor substrate, the second n-type well being deeper than the first n-type well; first and second p-type backgate regions formed in the first and second n-type wells; first and second n-type source regions formed in the first and second p-type backgate regions; first and second n-type drain regions formed in the first and second n-type wells, at positions opposed to the first and second n-type source regions, sandwiching the first and the second p-type backgate regions; and field insulation films formed on the substrate, at positions between the first and second p-type backgate regions and the first and second n-type drain regions; whereby first transistor is formed in the first n-type well, and second transistor is formed in the second n-type well with a higher reverse voltage durability than the first transistor.
    Type: Grant
    Filed: December 11, 2012
    Date of Patent: March 17, 2015
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Kazuhiko Takada
  • Patent number: 8975661
    Abstract: An asymmetrical bidirectional protection component formed in a semiconductor substrate of a first conductivity type, including: a first implanted area of the first conductivity type; a first epitaxial layer of the second conductivity type on the substrate and the first implanted area; a second epitaxial layer of the second conductivity type on the first epitaxial layer, the second layer having a doping level different from that of the first layer; a second area of the first conductivity type on the outer surface of the epitaxial layer, opposite to the first area; a first metallization covering the entire lower surface of the substrate; and a second metallization covering the second area.
    Type: Grant
    Filed: August 16, 2011
    Date of Patent: March 10, 2015
    Assignee: STMicroelectronics (Tours) SAS
    Inventor: Benjamin Morillon
  • Patent number: 8963169
    Abstract: Photonic devices monolithically integrated with CMOS are disclosed, including sub-100 nm CMOS, with active layers comprising acceleration regions, light emission and absorption layers, and optional energy filtering regions. Light emission or absorption is controlled by an applied voltage to deposited films on a pre-defined CMOS active area of a substrate, such as bulk Si, bulk Ge, Thick-Film SOI, Thin-Film SOI, Thin-Film GOI.
    Type: Grant
    Filed: July 28, 2005
    Date of Patent: February 24, 2015
    Assignee: Quantum Semiconductor LLC
    Inventor: Carlos J. R. P. Augusto
  • Patent number: 8963252
    Abstract: Semiconductor devices and methods of forming the same are provided. The semiconductor device may include a semiconductor element disposed on a substrate and including an insulating layer and a gate electrode, a doped region having a first conductivity-type on the substrate, a conductive interconnection electrically connected to the gate electrode, and a first contact plug having a second conductivity-type and electrically connecting the conductive interconnection and the doped region to each other and constituting a Zener diode by junction with the doped region.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: February 24, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Moojin Kim, Jeongyun Lee
  • Patent number: 8889529
    Abstract: Heterojunction bipolar transistors are provided that include at least one contact (e.g., collector, and/or emitter, and/or base) formed by a heterojunction between a crystalline semiconductor material and a doped non-crystalline semiconductor material layer. A highly doped epitaxial semiconductor layer comprising a highly doped hydrogenated crystalline semiconductor material layer portion is present at the heterojunction between the crystalline semiconductor material and the doped non-crystalline semiconductor material layer. Minority carriers within the highly doped epitaxial semiconductor layer have a diffusion length that is larger than a thickness of the highly doped epitaxial semiconductor layer.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: November 18, 2014
    Assignee: International Business Machines Corporation
    Inventors: Bahman Hekmatshoar-Tabari, Tak H. Ning, Devendra K. Sadana, Ghavam G. Shahidi, Davood Shahrjerdi
  • Patent number: 8884336
    Abstract: A light emitting device according to the embodiment includes a first electrode; a light emitting structure including a first semiconductor layer over the first electrode, an active layer over the first semiconductor layer, and a second semiconductor layer over the second semiconductor layer; a second electrode over the second semiconductor layer; and a connection member having one end making contact with the first semiconductor layer and the other end making contact with the second semiconductor layer to form a schottky contact with respect to one of the first and second semiconductor layers.
    Type: Grant
    Filed: September 24, 2012
    Date of Patent: November 11, 2014
    Assignee: LG Innotek Co., Ltd.
    Inventor: Hwan Hee Jeong
  • Patent number: 8847257
    Abstract: A submount for a semiconductor light emitting device includes a semiconductor substrate having a cavity therein configured to receive the light emitting device. A first bond pad is positioned in the cavity to couple to a first node of a light emitting device received in the cavity. A second bond pad is positioned in the cavity to couple to a second node of a light emitting device positioned therein. Light emitting devices including a solid wavelength conversion member and methods for forming the same are also provided.
    Type: Grant
    Filed: February 14, 2012
    Date of Patent: September 30, 2014
    Assignee: Cree, Inc.
    Inventors: Bernd Keller, James Ibbetson, Peter Andrews, Gerald H. Negley, Norbert Hiller
  • Patent number: 8829650
    Abstract: A zener diode in a SiGe BiCMOS process is disclosed. An N-type region of the zener diode is formed in an active region and surrounded by an N-deep well. A pseudo buried layer is formed under each of the shallow trench field oxide regions on a corresponding side of the active region, and the N-type region is connected to the pseudo buried layers via the N-deep well. The N-type region has its electrode picked up by deep hole contacts. A P-type region of the zener diode is formed of a P-type ion implanted region in the active region. The P-type region is situated above and in contact with the N-type region, and has a doping concentration greater than that of the N-type region. The P-type region has its electrode picked up by metal contact. A method of fabricating zener diode in a SiGe BiCMOS process is also disclosed.
    Type: Grant
    Filed: January 4, 2013
    Date of Patent: September 9, 2014
    Assignee: Shanghai Hua Hong Nec Electronics Co., Ltd.
    Inventors: Donghua Liu, Jun Hu, Wenting Duan, Wensheng Qian, Jing Shi
  • Patent number: 8829566
    Abstract: A semiconductor waveguide based optical receiver is disclosed. An apparatus according to aspects of the present invention includes an absorption region including a first type of semiconductor region proximate to a second type of semiconductor region. The first type of semiconductor is to absorb light in a first range of wavelengths and the second type of semiconductor to absorb light in a second range of wavelengths. A multiplication region is defined proximate to and separate from the absorption region. The multiplication region includes an intrinsic semiconductor region in which there is an electric field to multiply the electrons created in the absorption region.
    Type: Grant
    Filed: March 15, 2007
    Date of Patent: September 9, 2014
    Assignee: Intel Corporation
    Inventors: Michael T. Morse, Olufemi I. Dosunmu, Ansheng Liu, Mario J. Paniccia
  • Patent number: 8822316
    Abstract: A semiconductor device including a semiconductor substrate having a first conductive type layer; a first diffusion region which has the first conductive type and is formed in the first conductive type layer; a second diffusion region which has a second conductive type and an area larger than an area of the first diffusion region and overlaps the first diffusion region; and a PN junction formed at an interface between the first and the second diffusion regions. The second diffusion region includes a ring shaped structure or a guard ring includes an inverted region which has the second conductive type. According to such a configuration, it is possible to provide a semiconductor device having the required Zener characteristics with good controllability.
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: September 2, 2014
    Assignee: Panasonic Corporation
    Inventors: Atsuya Masada, Mitsuo Horie
  • Patent number: 8823055
    Abstract: A method of forming a template on a silicon substrate includes providing a single crystal silicon substrate. The method further includes epitaxially depositing a layer of rare earth oxide on the surface of the silicon substrate. The rare earth oxide being substantially crystal lattice matched to the surface of the silicon substrate. The method further includes forming an aluminum oxide layer on the rare earth oxide, the aluminum oxide being substantially crystal lattice matched to the surface of the rare earth oxide and epitaxially depositing a layer of aluminum nitride (AlN) on the aluminum oxide layer substantially crystal lattice matched to the surface of the aluminum oxide.
    Type: Grant
    Filed: December 17, 2012
    Date of Patent: September 2, 2014
    Assignee: Translucent, Inc.
    Inventors: Erdem Arkun, Michael Lebby, Andrew Clark, Rytis Dargis
  • Patent number: 8816388
    Abstract: Disclosed is a semiconductor device including: a semiconductor substrate; a field effect transistor formed on the semiconductor substrate; and a diode forming area adjacent to a forming area of the field effect transistor, wherein the diode forming area is insulated from the forming area of the field effect transistor on the semiconductor substrate, the diode forming area includes an anode electrode and a cathode electrode arranged side by side in a multi-finger shape, and the anode electrode and the cathode electrode are formed in a direction different from directions of a gate electrode, a source electrode, and a drain electrode of the field effect transistor arranged side by side in a multi-finger shape.
    Type: Grant
    Filed: February 29, 2012
    Date of Patent: August 26, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Yoshiharu Takada
  • Patent number: 8796694
    Abstract: A semiconductor device includes a semiconductor substrate made of silicon carbide and having a surface, a normal vector for the surface having an off angle with respect to a <0001> direction or a <000-1> direction, a semiconductor layer of a first conductivity type formed on the semiconductor substrate, a first semiconductor region of a second conductivity type formed in a surface region of the semiconductor layer, a source region of a first conductivity type formed in a surface region of the first semiconductor region, a second semiconductor region of a second conductivity type formed in the surface region of the semiconductor layer, contacting the first semiconductor region, and having a bottom surface lower than a bottom surface of the first semiconductor region, wherein at least one end of the bottom surface of the second semiconductor region is perpendicular to an off angle direction.
    Type: Grant
    Filed: March 19, 2009
    Date of Patent: August 5, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tetsuo Hatakeyama, Takashi Shinohe
  • Patent number: 8785973
    Abstract: In an ultra high voltage lateral GaN structure having a 2DEG region extending between two terminals, an isolation region is provided between the two terminals to provide for reversible snapback.
    Type: Grant
    Filed: April 19, 2010
    Date of Patent: July 22, 2014
    Assignee: National Semiconductor Corporation
    Inventor: Vladislav Vashchenko
  • Patent number: 8759935
    Abstract: A power semiconductor device includes an active device region disposed in a semiconductor substrate, an edge termination region disposed in the semiconductor substrate between the active device region and a lateral edge of the semiconductor substrate and a trench disposed in the edge termination region which extends from a first surface of the semiconductor substrate toward a second opposing surface of the semiconductor substrate. The trench has an inner sidewall, an outer sidewall and a bottom. The inner sidewall is spaced further from the lateral edge of the semiconductor substrate than the outer sidewall, and an upper portion of the outer sidewall is doped opposite as the inner sidewall and bottom of the trench to increase the blocking voltage capacity. Other structures can be provided which yield a high blocking voltage capacity such as a second trench or a region of chalcogen dopant atoms disposed in the edge termination region.
    Type: Grant
    Filed: June 3, 2011
    Date of Patent: June 24, 2014
    Assignee: Infineon Technologies Austria AG
    Inventor: Gerhard Schmidt