Between Different Group Iv-vi Or Ii-vi Or Iii-v Compounds Other Than Gaas/gaalas Patents (Class 257/201)
  • Patent number: 8558242
    Abstract: A semiconductor structure includes a III-nitride substrate having a top surface and an opposing bottom surface and a first III-nitride layer of a first conductivity type coupled to the top surface of the III-nitride substrate. The semiconductor structure also includes a second III-nitride layer of a second conductivity type coupled to the first III-nitride layer along a vertical direction and a third III-nitride layer of a third conductivity type coupled to the second III-nitride layer along the vertical direction. The semiconductor structure further includes a first trench extending through a portion of the third III-nitride layer to the first III-nitride layer, a second trench extending through another portion of the third III-nitride layer to the second III-nitride layer, and a first metal layer coupled to the second and the third III-nitride layers.
    Type: Grant
    Filed: December 9, 2011
    Date of Patent: October 15, 2013
    Assignee: Avogy, Inc.
    Inventors: Richard J. Brown, Hui Nie, Andrew Edwards, Isik Kizilyalli, David Bour, Thomas Prunty, Linda Romano, Madhan Raj
  • Patent number: 8557644
    Abstract: According to one disclosed embodiment, a monolithic vertically integrated composite device comprises a double sided semiconductor substrate having first and second sides, a group IV semiconductor layer formed over the first side and comprising at least one group IV semiconductor device, and a group III-V semiconductor body formed over the second side and comprising at least one group III-V semiconductor device electrically coupled to the at least one group IV semiconductor device. The composite device may further comprise a substrate via and/or a through-wafer via providing electric coupling. In one embodiment, the group IV semiconductor layer may comprise an epitaxial silicon layer, and the at least one group IV semiconductor device may be a combined FET and Schottky diode (FETKY) fabricated on the epitaxial silicon layer. In one embodiment, the at least one group III-V semiconductor device may be a III-nitride high electron mobility transistor (HEMT).
    Type: Grant
    Filed: February 15, 2011
    Date of Patent: October 15, 2013
    Assignee: International Rectifier Corporation
    Inventor: Michael A. Briere
  • Patent number: 8558285
    Abstract: A method for fabricating an electronic device, comprising wafer bonding a first semiconductor material to a III-nitride semiconductor, at a temperature below 550° C., to form a device quality heterojunction between the first semiconductor material and the III-nitride semiconductor, wherein the first semiconductor material is different from the III-nitride semiconductor and is selected for superior properties, or preferred integration or fabrication characteristics in the injector region as compared to the III-nitride semiconductor.
    Type: Grant
    Filed: March 23, 2011
    Date of Patent: October 15, 2013
    Assignee: The Regents of the University of California
    Inventors: Umesh K. Mishra, Lee S. McCarthy
  • Publication number: 20130256759
    Abstract: A fin structure for a fin field effect transistor (FinFET) device is provided. The device includes a substrate, a first semiconductor material disposed on the substrate, a shallow trench isolation (STI) region disposed over the substrate and formed on opposing sides of the first semiconductor material, and a second semiconductor material forming a first fin and a second fin disposed on the STI region, the first fin spaced apart from the second fin by a width of the first semiconductor material. The fin structure may be used to generate the FinFET device by forming a gate layer formed over the first fin, a top surface of the first semiconductor material disposed between the first and second fins, and the second fin.
    Type: Application
    Filed: March 27, 2012
    Publication date: October 3, 2013
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Georgios Vellianitis, Mark van Dal, Blandine Duriez, Richard Oxland
  • Publication number: 20130240951
    Abstract: Gallium nitride high electron mobility transistor structures enable high breakdown voltages and are usable for high-power, and/or high-frequency switching. Schottky diodes facilitate high voltage applications and offer fast switching. A superjunction formed by p/n junctions in gallium nitride facilitates operation of the high electron mobility transistor structures and Schottky diodes as well as gated diodes formed by drain to gate connections of the transistor structures. Breakdown between the gate and drain of the high electron mobility transistor structures, through the substrate, or both is suppressed.
    Type: Application
    Filed: March 13, 2012
    Publication date: September 19, 2013
    Applicant: International Business Machines Corporation
    Inventors: Stephen W. Bedell, Bahman Hekmatshoartabari, Devendra K. Sadana, Ghavam G. Shahidi, Davood Shahrjerdi
  • Patent number: 8530257
    Abstract: Methods for improving the temperature performance of AlInGaP based light emitters. Nitrogen is added to the quantum wells in small quantities. Nitrogen is added in a range of about 0.5 percent to 2 percent. The addition of nitrogen increases the conduction band offset and increases the separation of the indirect conduction band. To keep the emission wavelength in a particular range, the concentration of In in the quantum wells may be decreased or the concentration of Al in the quantum wells may be increased. The net result is an increase in the conduction band offset and an increase in the separation of the indirect conduction band.
    Type: Grant
    Filed: August 27, 2012
    Date of Patent: September 10, 2013
    Assignee: Finisar Corporation
    Inventor: Ralph Herbert Johnson
  • Patent number: 8519380
    Abstract: Embodiments of a material having low cross-plane thermal conductivity are provided. Preferably, the material is a thermoelectric material. In general, the thermoelectric material is designed to block phonons, which reduces or eliminates heat transport due to lattice vibrations and thus cross-plane thermal conductivity. By reducing the thermal conductivity of the thermoelectric material, a figure-of-merit (ZT) of the thermoelectric material is improved. In one embodiment, the thermoelectric material includes multiple superlattice periods that block, or reflect, multiple phonon wavelengths.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: August 27, 2013
    Assignee: The Board of Regents of the University of Oklahoma
    Inventor: Patrick John McCann
  • Patent number: 8519443
    Abstract: The invention concerns a heterojunction bipolar transistor comprising a support, and epitaxially grown from said support, at least: one collecting, respectively emitting, layer; at least one base layer; and at least one emitting, respectively collecting, layer. The collecting, respectively emitting, layer comprises: at least one first undercoat contacted with said base layer, substantially of similar composition as said emitting, respectively collecting, layer; and at least one second undercoat on the side opposite said base layer relative to said first undercoat.
    Type: Grant
    Filed: July 18, 2006
    Date of Patent: August 27, 2013
    Assignees: Centre National de la Recherche Scientifique-CNRS, S.O.I. Tec Silicon on Insulator Technologies
    Inventors: Jean-Luc Pelouard, Melania Lijadi, Christophe Dupuis, Fabrice Pardo, Philippe Bove
  • Patent number: 8497553
    Abstract: A semiconductor device includes a first transistor formed on a first element region, and a first protecting element including a second transistor formed on a second element region. A second protecting element ohmic electrode is connected to a first gate electrode, a first protecting element ohmic electrode is connected to a first ohmic electrode, and a first protecting element gate electrode is connected to at least one of the first protecting element ohmic electrode and the second protecting element ohmic electrode. The second element region is smaller in area than the first element region.
    Type: Grant
    Filed: October 15, 2010
    Date of Patent: July 30, 2013
    Assignee: Panasonic Corporation
    Inventors: Hiroto Yamagiwa, Shingo Hashizume, Ayanori Ikoshi, Manabu Yanagihara, Yasuhiro Uemoto
  • Patent number: 8482037
    Abstract: Some exemplary embodiments of a semiconductor device using a III-nitride heterojunction and a novel Schottky structure and related method resulting in such a semiconductor device, suitable for high voltage circuit designs, have been disclosed. One exemplary structure comprises a first layer comprising a first III-nitride material, a second layer comprising a second III-nitride material forming a heterojunction with said first layer to generate a two dimensional electron gas (2DEG) within said first layer, an anode comprising at least a first metal section forming a Schottky contact on a surface of said second layer, a cathode forming an ohmic contact on said surface of said second layer, a field dielectric layer on said surface of said second layer for isolating said anode and said cathode, and an insulating material on said surface of said second layer and in contact with said anode.
    Type: Grant
    Filed: September 11, 2012
    Date of Patent: July 9, 2013
    Assignee: International Rectifier Corporation
    Inventor: Zhi He
  • Patent number: 8476639
    Abstract: There is provided a surface treatment method of a group III nitride semiconductor including: providing a group III nitride semiconductor including a first surface having a group III polarity and a second surface opposing the first surface and having a nitrogen polarity; and irradiating a laser beam onto the second surface to change the nitrogen polarity of the second surface to the group III polarity.
    Type: Grant
    Filed: December 12, 2011
    Date of Patent: July 2, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jong In Yang, Sang Bum Lee, Sang Yeob Song, Si Hyuk Lee, Tae Hyung Kim
  • Publication number: 20130146907
    Abstract: A contact including an ohmic layer and a reflective layer located on the ohmic layer is provided. The ohmic layer is transparent to radiation having a target wavelength, while the reflective layer is at least approximately eighty percent reflective of radiation having the target wavelength. The target wavelength can be ultraviolet light, e.g., having a wavelength within a range of wavelengths between approximately 260 and approximately 360 nanometers.
    Type: Application
    Filed: December 12, 2012
    Publication date: June 13, 2013
    Applicant: Sensor Electronic Technology, Inc.
    Inventor: Sensor Electronic Technology, Inc.
  • Patent number: 8450776
    Abstract: Epitaxial devices are described that include a textured surface on a substrate. Geometry of the textured surface provides a reduced lattice mismatch between an epitaxial material and the substrate. Devices exhibit better interfacial adhesion and lower defect density than devices formed without texture. Silicon substrates are shown with gallium nitride epitaxial growth and devices such as LEDs are formed within the gallium nitride.
    Type: Grant
    Filed: June 20, 2012
    Date of Patent: May 28, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Anton deVilliers, Erik Byers, Scott Sills
  • Patent number: 8450774
    Abstract: In one example, we describe a new high performance AlGaN/GaN metal-insulator-semiconductor heterostructure field-effect transistor (MISHFET), which was fabricated using HfO2 as the surface passivation and gate insulator. The gate and drain leakage currents are drastically reduced to tens of nA, before breakdown. Without field plates, for 10 ?m of gate-drain spacing, the off-state breakdown voltage is 1035V with a specific on-resistance of 0.9 m?-cm2. In addition, there is no current slump observed from the pulse measurements. This is the best performance reported on GaN-based, fast power-switching devices on sapphire, up to now, which efficiently combines excellent device forward, reverse, and switching characteristics. Other variations, features, and examples are also mentioned here.
    Type: Grant
    Filed: July 12, 2010
    Date of Patent: May 28, 2013
    Assignee: Cornell University
    Inventors: Junxia Shi, Lester Fuess Eastman
  • Publication number: 20130119404
    Abstract: Methods and apparatuses for forming a device structure including a high-thermal-conductivity substrate are disclosed herein. A method forming such a device structure may comprise forming an active layer over a first substrate in a manner such that a frontside of the active layer faces the first substrate and a backside of the active layer faces away from the first substrate, forming a second substrate over the backside of the active layer, and removing the first substrate to expose the frontside of the active layer. Other embodiments are described and claimed.
    Type: Application
    Filed: January 7, 2013
    Publication date: May 16, 2013
    Applicant: TRIQUINT SEMICONDUCTOR, INC.
    Inventor: TRIQUINT SEMICONDUCTOR, INC.
  • Patent number: 8441037
    Abstract: An objective is to provide a semiconductor device capable of utilizing properties of a high-mobility electron transport layer with a thin film stacked structure having large ?Ec, high electron mobility, and simplified element fabrication process even when the substrate material and the electron transport layer greatly differ in lattice constant. The semiconductor device includes: a semiconductor substrate (1); a first barrier layer (2) on the substrate (1); an electron transport layer (3) on the first barrier layer (2); and a second barrier layer (4) on the electron transport layer (3). The first barrier layer (2) has an InxAl1-xAs layer. At least one of the first barrier layer (2) and the second barrier layer (4) has a stacked structure having an AlyGa1-yAszSb1-z layer in contact with the electron transport layer (3) and an InxAl1-xAs layer in contact with the AlyGa1-yAszSb1-z layer. The stacked structure is doped with a donor impurity.
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: May 14, 2013
    Assignee: Asahi Kasei Microdevices Corporation
    Inventor: Hirotaka Geka
  • Patent number: 8426883
    Abstract: Provided are a light emitting device, a method for fabricating the light emitting device, a light emitting device package, and a lighting unit. The light emitting device includes a conductive support substrate, a protection layer on the conductive support substrate, the protection layer having an inclined top surface, a light emitting structure layer including a first conductive type semiconductor layer, a second conductive type semiconductor layer, and an active layer between the first conductive type semiconductor layer and the second conductive type semiconductor layer on the conductive support substrate and the protection layer, and an electrode on the light emitting structure layer. A portion of the protection layer is disposed between the conductive support substrate and the light emitting structure layer.
    Type: Grant
    Filed: February 24, 2011
    Date of Patent: April 23, 2013
    Assignee: LG Innotek Co., Ltd.
    Inventors: Kyung Wook Park, Myung Hoon Jung
  • Patent number: 8421089
    Abstract: A light emitting device includes a substrate, a first lead frame and a second lead frame on the substrate, an installation portion electrically connected to the first lead frame or the second lead frame, the installation portion being thinner than the first lead frame or the second lead frames, a light emitting diode on the installation portion, and a conductive member electrically connecting at least one of the lead frames to the light emitting diode.
    Type: Grant
    Filed: August 11, 2008
    Date of Patent: April 16, 2013
    Assignee: LG Innotek Co., Ltd.
    Inventor: Wan Ho Kim
  • Patent number: 8415684
    Abstract: An apparatus includes a wafer with a number of openings therein. For each opening, an LED device is coupled to a conductive carrier and the wafer in a manner so that each of the coupled LED device and a portion of the conductive carrier at least partially fill the opening. A method of fabricating an LED device includes forming a number of openings in a wafer. The method also includes coupling light-emitting diode (LED) devices to conductive carriers. The LED devices with conductive carriers at least partially fill each of the openings.
    Type: Grant
    Filed: November 12, 2010
    Date of Patent: April 9, 2013
    Assignee: TSMC Solid State Lighting Ltd.
    Inventors: Hsing-Kuo Hsia, Chih-Kuang Yu, Gordon Kuo, Chyi Shyuan Chern
  • Patent number: 8410523
    Abstract: Exemplary embodiments provide high-quality layered semiconductor devices and methods for their fabrication. The high-quality layered semiconductor device can be formed in planar with low defect densities and with strain relieved through a plurality of arrays of misfit dislocations formed at the interface of highly lattice-mismatched layers of the device. The high-quality layered semiconductor device can be formed using various materials systems and can be incorporated into various opto-electronic and electronic devices. In an exemplary embodiment, an emitter device can include monolithic quantum well (QW) lasers directly disposed on a SOI or silicon substrate for waveguide coupled integration. In another exemplary embodiment, a superlattice (SL) photodetector and its focal plane array can include a III-Sb active region formed over a large GaAs substrate using SLS technologies.
    Type: Grant
    Filed: December 10, 2008
    Date of Patent: April 2, 2013
    Inventors: Diana L. Huffaker, Larry R. Dawson, Ganesh Balakrishnan
  • Patent number: 8405128
    Abstract: A method for enhancing growth of device-quality planar semipolar nitride semiconductor thin films via metalorganic chemical vapor deposition (MOCVD) by using an (Al, In, Ga)N nucleation layer containing at least some indium. Specifically, the method comprises loading a substrate into a reactor, heating the substrate under a flow of nitrogen and/or hydrogen and/or ammonia, depositing an InxGa1-xN nucleation layer on the heated substrate, depositing a semipolar nitride semiconductor thin film on the InxGa1-xN nucleation layer, and cooling the substrate under a nitrogen overpressure.
    Type: Grant
    Filed: March 3, 2010
    Date of Patent: March 26, 2013
    Assignee: The Regents of the University of California
    Inventors: Hitoshi Sato, John F. Kaeding, Michael Iza, Benjamin A. Haskell, Troy J. Baker, Steven P. DenBaars, Shuji Nakamura
  • Publication number: 20130043508
    Abstract: The present invention is related to a method for manufacturing a low defect interface between a dielectric material and an III-V compound. More specifically, the present invention relates to a method for manufacturing a passivated interface between a dielectric material and an III-V compound. The present invention is also directed to a device comprising a low defect interface between a dielectric material and an III-V compound that has improved performance.
    Type: Application
    Filed: October 17, 2012
    Publication date: February 21, 2013
    Inventor: Clement Merckling
  • Publication number: 20130037858
    Abstract: This invention relates to a semiconductor device and a manufacturing method thereof for reducing stacking faults caused by high content of Ge in an embedded SiGe structure. The semiconductor device comprises a Si substrate with a recess formed therein. A first SiGe layer having a Ge content gradually increased from bottom to top is formed on the recess bottom, a SiGe seed layer is formed on sidewalls of the recess and a second SiGe layer having a constant content of Ge is formed on the first SiGe layer. The thickness of the first SiGe layer is less than the depth of the recess. The Ge content in the SiGe seed layer is less than the Ge content in the second SiGe layer and the Ge content at the upper surface of the first SiGe layer is less than or equal to the Ge content in the second SiGe layer.
    Type: Application
    Filed: December 9, 2011
    Publication date: February 14, 2013
    Applicant: SEMICONDUCTOR MANUFACTURING INTERNATIONAL (BEIJING) CORPORATION
    Inventors: ZHONGSHAN HONG, Huojin Tu
  • Patent number: 8373200
    Abstract: Disclosed herein is a nitride based semiconductor device. The nitride based semiconductor device includes: a base substrate; an epitaxial growth layer disposed on the base substrate and having a defect generated due to lattice disparity with the base substrate; a leakage current barrier covering the epitaxial growth layer while filling the defect; and an electrode part disposed on the epitaxial growth layer.
    Type: Grant
    Filed: July 23, 2010
    Date of Patent: February 12, 2013
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Woo Chul Jeon, Ki Yeol Park, Young Hwan Park, Jung Hee Lee
  • Patent number: 8350298
    Abstract: A Ge and Si hybrid material inversion mode GAA (Gate-All-Around) CMOSFET includes a PMOS region having a first channel, an NMOS region having a second channel and a gate region. The first channel and the second channel have a racetrack-shaped cross section and are formed of n-type Ge and p-type Si, respectively; the surfaces of the first channel and the second channel are substantially surrounded by the gate region; a buried oxide layer is disposed between the PMOS region and the NMOS region and between the PMOS or NMOS region and the Si substrate to isolate them from one another. In an inversion mode, the devices have hybrid material, GAA structure with the racetrack-shaped, high-k gate dielectric layer and metal gate, so as to achieve high carrier mobility, prevent polysilicon gate depletion and short channel effects.
    Type: Grant
    Filed: February 11, 2010
    Date of Patent: January 8, 2013
    Assignee: Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences
    Inventors: Deyuan Xiao, Xi Wang, Miao Zhang, Jing Chen, Zhongying Xue
  • Publication number: 20130001648
    Abstract: Some exemplary embodiments of a semiconductor device using a III-nitride heterojunction and a novel Schottky structure and related method resulting in such a semiconductor device, suitable for high voltage circuit designs, have been disclosed. One exemplary structure comprises a first layer comprising a first III-nitride material, a second layer comprising a second III-nitride material forming a heterojunction with said first layer to generate a two dimensional electron gas (2DEG) within said first layer, an anode comprising at least a first metal section forming a Schottky contact on a surface of said second layer, a cathode forming an ohmic contact on said surface of said second layer, a field dielectric layer on said surface of said second layer for isolating said anode and said cathode, and an insulating material on said surface of said second layer and in contact with said anode.
    Type: Application
    Filed: September 11, 2012
    Publication date: January 3, 2013
    Inventor: Zhi He
  • Patent number: 8344395
    Abstract: A method for manufacturing a light-emitting diode includes the steps of: growing a light-emitting diode structure-forming semiconductor layer of a compound semiconductor having a zincblende crystal structure on a first substrate formed of a compound semiconductor having a zincblende crystal structure and that has a principal surface tilted in a [110] direction with respect to a (001) plane; bonding the first substrate to a second substrate on the side of the semiconductor layer; removing the first substrate so as to expose the semiconductor layer; forming an etching mask on the exposed surface of the semiconductor layer in a rectangular planar shape so that a longer side extends in a [110] or [?1-10] direction, and that a shorter side extends in a [?110] or [1-10] direction; and patterning the semiconductor layer by wet etching using the etching mask.
    Type: Grant
    Filed: May 7, 2010
    Date of Patent: January 1, 2013
    Assignee: Sony Corporation
    Inventor: Kensuke Kojima
  • Patent number: 8330036
    Abstract: A method of fabricating a multi-junction solar cell on a separable substrate, and structure formed thereby are provided. The method comprises establishing a substrate having a semiconductive composition and forming a sacrificial layer upon the substrate. A solar cell portion is formed upon the sacrificial layer, such that the solar cell portion includes a plurality of multi junction layers. A stabilizing cell layer of semiconductor material is then formed on the solar cell portion, with the stabilizing cell layer having a predetermined thickness greater than a thickness of any individual one of the III-V multi junction layers. Etching is thereafter carried out to remove the sacrificial layer for releasing the solar cell portion from the substrate.
    Type: Grant
    Filed: August 31, 2009
    Date of Patent: December 11, 2012
    Inventor: Seoijin Park
  • Patent number: 8330187
    Abstract: A GaN-based field effect transistor (MOSFET) is comprised of a channel layer comprised of p-type GaN, an electron supply layer, a surface layer having band gap energy smaller than that of the electron supply layer, sequentially laminated on a substrate, and recess section is formed by removing a part of the drift layer, the electron supply layer, and the surface layer down to a depth that reaches to the channel layer. A source electrode and a drain electrode are formed so that the recess section positions between them, a gate insulation film is formed on the surface layer and on inner-surface of the recess section including the channel layer, and a gate electrode is formed on the gate insulating film in the recess section.
    Type: Grant
    Filed: November 30, 2009
    Date of Patent: December 11, 2012
    Assignee: Furukawa Electric Co., Ltd.
    Inventors: Nomura Takehiko, Sato Yoshihiro, Kambayashi Hiroshi, Kaya Shusuke, Iwami Masayuki, Kato Sadahiro
  • Patent number: 8319253
    Abstract: The device including an active layer composed of AlGaInP, and an n-type clad layer and a p-type clad layer disposed so as to sandwich the active layer, the n-type clad layer and the p-type clad layer each having a bandgap greater than the bandgap of the active layer. The n-type clad layer includes a first n-type clad layer composed of AlGaInP and a second n-type clad layer composed of AlInP; and the second n-type clad layer has a thickness in the range from 40 nm to 200 nm.
    Type: Grant
    Filed: January 19, 2011
    Date of Patent: November 27, 2012
    Assignee: Stanley Electric Co., Ltd.
    Inventors: Wataru Tamura, Chiharu Sasaki
  • Publication number: 20120280281
    Abstract: A semiconductor device includes a first Group III/V layer and a second Group III/V layer over the first Group III/V layer. The first and second Group III/V layers are configured to form an electron gas layer. The semiconductor device also includes a Schottky electrical contact having first and second portions. The first portion is in sidewall contact with the electron gas layer. The second portion is over the second Group III/V layer and is in electrical connection with the first portion of the Schottky electrical contact. The first portion of the Schottky electrical contact and the first or second Group III/V layer can form a Schottky barrier, and the second portion of the Schottky electrical contact can reduce an electron concentration near the Schottky barrier under reverse bias.
    Type: Application
    Filed: May 5, 2011
    Publication date: November 8, 2012
    Applicant: NATIONAL SEMICONDUCTOR CORPORATION
    Inventor: Sandeep R. Bahl
  • Patent number: 8304790
    Abstract: A nitride semiconductor device has a nitride semiconductor layer structure. The structure includes an active layer of a quantum well structure containing an indium-containing nitride semiconductor. A first nitride semiconductor layer having a band gap energy larger than that of the active layer is provided in contact with the active layer. A second nitride semiconductor layer having a band gap energy smaller than that of the first layer is provided over the first layer. Further, a third nitride semiconductor layer having a band gap energy larger than that of the second layer is provided over the second layer.
    Type: Grant
    Filed: December 8, 2006
    Date of Patent: November 6, 2012
    Assignee: Nichia Corporation
    Inventors: Shuji Nakamura, Shinichi Nagahama, Naruhito Iwasa
  • Patent number: 8299564
    Abstract: Formation of transistors, such as, e.g., PMOS transistors, with diffusion regions having different depths for equalization of performance among transistors of an integrated circuit is described. Shallow-trench isolation structures are formed in a substrate formed at least in part of silicon for providing the transistors with at least substantially equivalent channel widths and lengths. A series of masks and etches is performed to form first recesses and second recesses defined in the silicon having different depths and respectively associated with first and second transistors. The second recesses are deeper than the first recesses. A silicon germanium film is formed in the first recesses and the second recesses. The silicon germanium film in the second recesses is thicker than the silicon germanium film in the first recesses, in order to increase performance of the second transistor so it is closer to the performance of the first transistor.
    Type: Grant
    Filed: September 14, 2009
    Date of Patent: October 30, 2012
    Assignee: Xilinx, Inc.
    Inventors: Yun Wu, Bei Zhu, Zhiyuan Wu, Michael J. Hart
  • Patent number: 8299565
    Abstract: Prototype semiconductor structures each including a semiconductor link portion and two adjoined pad portions are formed by lithographic patterning of a semiconductor layer on a dielectric material layer. The sidewalls of the semiconductor link portions are oriented to maximize hole mobility for a first-type semiconductor structures, and to maximize electron mobility for a second-type semiconductor structures. Thinning by oxidation of the semiconductor structures reduces the width of the semiconductor link portions at different rates for different crystallographic orientations. The widths of the semiconductor link portions are predetermined so that the different amount of thinning on the sidewalls of the semiconductor link portions result in target sublithographic dimensions for the resulting semiconductor nanowires after thinning.
    Type: Grant
    Filed: March 30, 2011
    Date of Patent: October 30, 2012
    Assignee: International Business Machines Corporation
    Inventors: Lidija Sekaric, Tymon Barwicz, Dureseti Chidambarrao
  • Patent number: 8298840
    Abstract: Thin freestanding nitride films are used as a growth substrate to enhance the optical, electrical, mechanical and mobility of nitride based devices and to enable the use of thick transparent conductive oxides. Optoelectronic devices such as LEDs, laser diodes, solar cells, biomedical devices, thermoelectrics, and other optoelectronic devices may be fabricated on the freestanding nitride films. The refractive index of the freestanding nitride films can be controlled via alloy composition. Light guiding or light extraction optical elements may be formed based on freestanding nitride films with or without layers. Dual sided processing is enabled by use of these freestanding nitride films. This enables more efficient output for light emitting devices and more efficient energy conversion for solar cells.
    Type: Grant
    Filed: May 6, 2011
    Date of Patent: October 30, 2012
    Assignee: Goldeneye, Inc.
    Inventors: Scott M. Zimmerman, Karl W. Beeson, William R. Livesay
  • Patent number: 8288798
    Abstract: The present disclosure provides a method of fabricating a semiconductor device. The method includes forming a buffer layer over a substrate, the buffer layer containing a first compound semiconductor that includes elements from one of: III-V families of a periodic table; and II-VI families of the periodic table. The method includes forming a channel layer over the buffer layer. The channel layer contains a second compound semiconductor that includes elements from the III-V families of the periodic table. The method includes forming a gate over the channel layer. The method includes depositing impurities on regions of the channel layer on either side of the gate. The method includes performing an annealing process to activate the impurities in the channel layer.
    Type: Grant
    Filed: January 19, 2011
    Date of Patent: October 16, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Matthias Passlack
  • Publication number: 20120241821
    Abstract: A heterostructure that includes, successively, a support substrate of a material having an electrical resistivity of less than 10?3 ohm·cm and a thermal conductivity of greater than 100 W·m?1·K?1, a bonding layer, a first seed layer of a monocrystalline material of composition AlxInyGa(1-x-y)N, a second seed layer of a monocrystalline material of composition AlxInyGa(1-x-y)N, and an active layer of a monocrystalline material of composition AlxInyGa(1-x-y)N, and being present in a thickness of between 3 and 100 micrometers. The materials of the support substrate, the bonding layer and the first seed layer are refractory at a temperature of greater than 750° C., the active layer and second seed layer have a difference in lattice parameter of less than 0.005 ?, the active layer is crack-free, and the heterostructure has a specific contact resistance between the bonding layer and the first seed layer that is less than or equal to 0.1 ohm·cm2.
    Type: Application
    Filed: December 1, 2010
    Publication date: September 27, 2012
    Applicant: SOITEC
    Inventors: Jean-Marc Bethoux, Fabrice Letertre, Chris Werkhoven, Ionut Radu, Oleg Kononchuck
  • Patent number: 8269259
    Abstract: Some exemplary embodiments of a semiconductor device using a III-nitride heterojunction and a novel Schottky structure and related method resulting in such a semiconductor device, suitable for high voltage circuit designs, have been disclosed. One exemplary structure comprises a first layer comprising a first III-nitride material, a second layer comprising a second III-nitride material forming a heterojunction with said first layer to generate a two dimensional electron gas (2DEG) within said first layer, an anode comprising at least a first metal section forming a Schottky contact on a surface of said second layer, a cathode forming an ohmic contact on said surface of said second layer, a field dielectric layer on said surface of said second layer for isolating said anode and said cathode, and an insulating material on said surface of said second layer and in contact with said anode.
    Type: Grant
    Filed: December 7, 2009
    Date of Patent: September 18, 2012
    Assignee: International Rectifier Corporation
    Inventor: Zhi He
  • Publication number: 20120228626
    Abstract: In a semiconductor device including a stack structure having heterojunction units formed by alternately stacking GaN (gallium nitride) films and barrier films which are different in forbidden band width, a first electrode formed in a Schottky barrier contact with one sidewall of the stack structure, and a second electrode formed in contact with the other sidewall, an oxide film is interposed between the first electrode and the barrier films. Therefore, the reverse leakage current is prevented from flowing through defects remaining in the barrier films due to processing of the barrier films, so that a reverse leakage current of a Schottky barrier diode is reduced.
    Type: Application
    Filed: February 4, 2012
    Publication date: September 13, 2012
    Inventors: Kazuhiro Mochizuki, Takashi Ishigaki, Akihisa Terano, Tomonobu Tsuchiya
  • Patent number: 8263853
    Abstract: A method of forming a plurality of discrete, interconnected solar cells mounted on a carrier by providing a first semiconductor substrate; depositing on the first substrate a sequence of layers of semiconductor material forming a solar cell structure; forming a metal back contact layer over the solar cell structure; mounting a carrier on top of the metal back contact; removing the first substrate; and lithographically patterning and etching the solar cell structure to form a plurality of discrete solar cells mounted on the carrier.
    Type: Grant
    Filed: August 7, 2008
    Date of Patent: September 11, 2012
    Assignee: Emcore Solar Power, Inc.
    Inventor: Tansen Varghese
  • Patent number: 8258029
    Abstract: A non-volatile memory cell capable of storing two bits of information having a non-conducting charge trapping dielectric, such as silicon nitride, layered in association with at least one electrical dielectric layer, such as an oxide, with a P-type substrate and an N-type channel implanted in the well region of the substrate between two source/drain regions is disclosed. The N-type channel achieves an inversion layer without the application of bias voltage to the gate of the memory cell. A method that implants the N-type channel in the P-type substrate of the cell wherein the N-type channel lowers the un-programmed or programmed voltage threshold of the memory cell to a value lower than would exist without the N-type channel is disclosed. The N-type channel reduces the second bit effect such that the window of operation between the programmed and un-programmed voltage thresholds of the bits is widened.
    Type: Grant
    Filed: April 10, 2007
    Date of Patent: September 4, 2012
    Assignee: MACRONIX International Co., Ltd.
    Inventors: Chao-I Wu, Tzu-Hsuan Hsu
  • Patent number: 8253166
    Abstract: Systems and methods for improving the temperature performance of AlInGaP based light emitters. Nitrogen is added to the quantum wells in small quantities. Nitrogen is added in a range of about 0.5 percent to 2 percent. The addition of nitrogen increases the conduction band offset and increases the separation of the indirect conduction band. To keep the emission wavelength in a particular range, the concentration of In in the quantum wells may be decreased or the concentration of Al in the quantum wells may be increased. Because the depth of the quantum wells in the valence band is more than is required although the addition of nitrogen reduces the depth of the quantum wells in the valence band. The net result is an increase in the conduction band offset and an increase in the separation of the indirect conduction band.
    Type: Grant
    Filed: September 14, 2004
    Date of Patent: August 28, 2012
    Assignee: Finisar Corporation
    Inventor: Ralph Herbert Johnson
  • Publication number: 20120211801
    Abstract: There is provided a normally-off group III nitride semiconductor device having a high breakdown field strength and minimal crystal defects, and a group III nitride laminated semiconductor wafer used to make the group III nitride semiconductor device. The group III nitride laminated semiconductor wafer 10 includes a substrate 27 which is made of AlN and has a main surface 27a along the c-axis of the AlN crystal, a first AlX1InY1Ga1-X1-Y1N layer 13 which is made of a group III nitride-based semiconductor containing Al and is provided on the main surface 27a, and a second AlX2InY2Ga1-X2-Y2N layer 15 which is provided on the main surface 27a, is made of a group III nitride-based semiconductor having a larger bandgap than the first AlX1InY1Ga1-X1-Y1N layer 13, and forms a heterojunction with the first AlX1InY1Ga1-X1-Y1N layer 13.
    Type: Application
    Filed: August 23, 2010
    Publication date: August 23, 2012
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Shin Hashimoto, Katsushi Akita, Hideaki Nakahata, Hiroshi Amano
  • Patent number: 8247843
    Abstract: An etched grooved GaN-based permeable-base transistor structure is disclosed, along with a method for fabrication of same.
    Type: Grant
    Filed: June 4, 2008
    Date of Patent: August 21, 2012
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: Liberty L Gunter, Kanin Chu, Charles R Eddy, Jr., Theodore D Moustakas, Enrico Bellotti
  • Patent number: 8237245
    Abstract: To provide a nitride semiconductor crystal, comprising: laminated homogeneous nitride semiconductor layers, with a thickness of 2 mm or more, wherein the laminated homogeneous nitride semiconductor layers are constituted so that a nitride semiconductor layer with low dopant concentration and a nitride semiconductor layer with high dopant concentration are alternately laminated by two cycles or more.
    Type: Grant
    Filed: August 27, 2010
    Date of Patent: August 7, 2012
    Assignee: Hitachi Cable, Ltd.
    Inventor: Hajime Fujikura
  • Patent number: 8237194
    Abstract: A nitride semiconductor substrate is featured in comprising: a GaN semiconductor layer grown on a base layer, which has a substantially triangular cross-section along the thickness direction thereof, a periodic stripe shapes, and uneven surfaces arranged on the stripes inclined surfaces; and an overgrown layer composed of AlGaN or InAlGaN on the GaN semiconductor layer.
    Type: Grant
    Filed: March 17, 2008
    Date of Patent: August 7, 2012
    Assignee: Hamamatsu Photonics K.K.
    Inventors: Harumasa Yoshida, Yasufumi Takagi, Masakazu Kuwabara
  • Publication number: 20120193637
    Abstract: The present disclosure provides a semiconductor structure. The semiconductor structure includes a gallium nitride (GaN) layer on a substrate; an aluminum gallium nitride (AlGaN) layer disposed on the GaN layer; and a gate stack disposed on the AlGaN layer. The gate stack includes a III-V compound n-type doped layer; a III-V compound p-type doped layer adjacent the III-V compound n-type doped layer; and a metal layer formed over the III-V compound p-type doped layer and the III-V compound n-type doped layer.
    Type: Application
    Filed: March 16, 2011
    Publication date: August 2, 2012
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Alexander Kalnitsky, Chih-Wen Hsiung, Chun Lin Tsai
  • Patent number: 8232577
    Abstract: A light emitting device according to the embodiment may include a light emitting structure including a first semiconductor layer, an active layer, and a second semiconductor layer; a first electrode on the light emitting structure; and a protection layer including a first metallic material on an outer peripheral region of one of the light emitting structure and the first electrode.
    Type: Grant
    Filed: February 16, 2011
    Date of Patent: July 31, 2012
    Assignee: LG Innotek Co., Ltd.
    Inventor: Hwan Hee Jeong
  • Publication number: 20120187454
    Abstract: The present invention provides nitride semiconductors having a moderate density of basal plane stacking faults and a reduced density of threading dislocations, various products based on, incorporating or comprising the nitride semiconductors, including without limitation substrates, template films, templates, heterostructures with or without integrated substrates, and devices, and methods for fabrication of templates and substrates comprising the nitride semiconductors.
    Type: Application
    Filed: July 25, 2011
    Publication date: July 26, 2012
    Applicant: INLUSTRA TECHNOLOGIES, LLC
    Inventors: Benjamin Haskell, Paul T. Fini
  • Patent number: RE44538
    Abstract: A gallium nitride-based HEMT device, comprising a channel layer formed of an InGaN alloy. Such device may comprise an AlGaN/InGaN heterostructure, e.g., in a structure including a GaN layer, an InGaN layer over the GaN layer, and a (doped or undoped) AlGaN layer over the InGaN layer. Alternatively, the HEMT device of the invention may be fabricated as a device which does not comprise any aluminum-containing layer, e.g., a GaN/InGaN HEMT device or an InGaN/InGaN HEMT device.
    Type: Grant
    Filed: August 24, 2005
    Date of Patent: October 15, 2013
    Assignee: Cree, Inc.
    Inventors: Joan M. Redwing, Edwin L. Piner