Between Different Group Iv-vi Or Ii-vi Or Iii-v Compounds Other Than Gaas/gaalas Patents (Class 257/201)
  • Publication number: 20110180849
    Abstract: There is provided a semiconductor wafer having a base wafer, an insulating layer, and a SixGe1-x crystal layer (0?x<1) in the stated order. The semiconductor wafer includes an inhibition layer disposed on the SixGe1-x crystal layer, and a compound semiconductor that has a lattice match or a pseudo lattice match with the SixGe1-x crystal layer. Here, the inhibition layer has an opening penetrating therethrough to reach the SixGe1-x crystal layer, and inhibits crystal growth of the compound semiconductor.
    Type: Application
    Filed: October 1, 2009
    Publication date: July 28, 2011
    Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventor: Masahiko Hata
  • Patent number: 7981711
    Abstract: A manufacture method of a multilayer structure having a non-polar a-plane {11-22} III-nitride layer includes forming a nucleation layer on a r-plane substrate, wherein the nucleation layer is composed of multiple nitride layers; and forming a non-polar a-plane {11-20} III-nitride layer on the nucleation layer. The nucleation layer features reduced stress, reduced phase difference of lattice, blocked elongation of dislocation, and reduced density of dislocation. Thus, the non-polar a-plane {11-20} III-nitride layer with flat surface can be formed.
    Type: Grant
    Filed: May 19, 2009
    Date of Patent: July 19, 2011
    Assignee: National Chiao Tung University
    Inventors: Wei-I Lee, Jenn-Fang Chen, Chen-Hao Chiang
  • Patent number: 7968909
    Abstract: Reconditioned donor substrates that include a remainder substrate from a donor substrate wherein the remainder substrate has a detachment surface where a transfer layer was detached and an opposite surface; and an additional layer deposited upon the opposite surface of the remainder substrate to increase its thickness and to form the reconditioned substrate. The reconditioned substrate is recycled as a donor substrate for fabricating compound material wafers and is typically made from gallium nitride donor substrates.
    Type: Grant
    Filed: November 4, 2010
    Date of Patent: June 28, 2011
    Assignee: S.O.I.Tec Silicon on Insulator Technologies
    Inventor: Frederic Dupont
  • Patent number: 7968865
    Abstract: A heterostructure having a heterojunction comprising: a diamond layer; and a boron aluminum nitride (B(x)Al(1-x)N) layer disposed in contact with a surface of the diamond layer, where x is between 0 and 1.
    Type: Grant
    Filed: July 6, 2009
    Date of Patent: June 28, 2011
    Assignee: Raytheon Company
    Inventors: Jeffrey R. LaRoche, William E. Hoke, Steven D. Bernstein, Ralph Korenstein
  • Publication number: 20110150017
    Abstract: A relaxed InGaN template employs a GaN or InGaN nucleation layer grown at low temperatures on a conventional base layer (e.g., sapphire). The nucleation layer is typically very rough and multi-crystalline. A single-crystal InGaN buffer layer is then grown at normal temperatures. Although not necessary, the buffer layer is typically undoped, and is usually grown at high pressures to encourage planarization and to improve surface smoothness. A subsequent n-doped cap layer can then be grown at low pressures to form the n-contact of a photonic or electronic device. In some cases, a wetting layer—typically low temperature AlN—is grown prior to the nucleation layer. Other templates, such as AlGaN on Si or SiC, are also produced using the method of the present invention.
    Type: Application
    Filed: December 18, 2009
    Publication date: June 23, 2011
    Applicant: Palo Alto Research Center Incorporated
    Inventors: Christopher L. Chua, Zhihong Yang, Andre Strittmatter, Mark R. Teepe
  • Publication number: 20110133251
    Abstract: Some exemplary embodiments of a semiconductor device using a III-nitride heterojunction and a novel Schottky structure and related method resulting in such a semiconductor device, suitable for high voltage circuit designs, have been disclosed. One exemplary structure comprises a first layer comprising a first III-nitride material, a second layer comprising a second III-nitride material forming a heterojunction with said first layer to generate a two dimensional electron gas (2DEG) within said first layer, an anode comprising at least a first metal section forming a Schottky contact on a surface of said second layer, a cathode forming an ohmic contact on said surface of said second layer, a field dielectric layer on said surface of said second layer for isolating said anode and said cathode, and an insulating material on said surface of said second layer and in contact with said anode.
    Type: Application
    Filed: December 7, 2009
    Publication date: June 9, 2011
    Applicant: INTERNATIONAL RECTIFIER CORPORATION
    Inventor: Zhi He
  • Publication number: 20110127581
    Abstract: The present invention relates to a support for the epitaxy of a layer of a material of composition AlxInyGa(1-x-y)N, where 0?x?1, 0?y?1 and x+y?1, having successively from its base to its surface; a support substrate, a bonding layer, a monocrystalline seed layer for the epitaxial growth of the layer of material AlxInyGa(1-x-y)N. The support substrate is made of a material that presents an electrical resistivity of less than 10?3 ohm·cm and a thermal conductivity of greater than 100 W·m?1·K?1. The seed layer is in a material of the composition AlxInyGa(1-x-y)N, where 0?x?1, 0?y?1 and x+y?1. The seed and bonding layers provide a specific contact resistance that is less than or equal to 0.1 ohm·cm?2, and the materials of the support substrate, the bonding layer and the seed layer are refractory at a temperature of greater than 750° C. or even greater than 1000° C. The invention also relates to methods for manufacturing the support.
    Type: Application
    Filed: November 30, 2010
    Publication date: June 2, 2011
    Inventors: Jean-Marc Bethoux, Fabrice Letertre, Chris Werkhoven, Ionut Radu, Oleg Kononchuk
  • Publication number: 20110127544
    Abstract: A templated substate includes a base layer, and a template layer disposed on the base layer and having a composition including a single-crystal Group Ill nitride. The template layer includes a continuous sublayer on the base layer and a nanocolumnar sublayer on the first sublayer, wherein the nanocolumnar sublayer includes a plurality of nano-scale columns.
    Type: Application
    Filed: May 6, 2009
    Publication date: June 2, 2011
    Applicant: KYMA TECHNOLOGIES
    Inventors: Tanya Paskova, Edward A. Preble, Terry L. Clites, Andrew D. Hanser, Keith R. Evans
  • Patent number: 7948061
    Abstract: A characteristic feature of the invention is to form, in a Group III nitride-based compound semiconductor device, a negative electrode on a surface other than a Ga-polar C-plane. In a Group III nitride-based compound semiconductor light-emitting device, there are formed, on an R-plane sapphire substrate, an n-contact layer, a layer for improving static breakdown voltage, an n-cladding layer made of a multi-layer structure having ten stacked sets of an undoped In0.1Ga0.9N layer, an undoped GaN layer, and a silicon (Si)-doped GaN layer, a multi-quantum well (MQW) light-emitting layer made of a combination of In0.25Ga0.75N well layers and GaN barrier layers stacked alternatingly, a p-cladding layer made of a multi-layer structure including a p-type Al0.3Ga0.7N layer and a p-In0.08Ga0.92N layer, and a p-contact layer (thickness: about 80 nm) made of a stacked structure including two p-GaN layers having different magnesium concentrations.
    Type: Grant
    Filed: July 25, 2008
    Date of Patent: May 24, 2011
    Assignee: Toyoda Gosei Co., Ltd.
    Inventors: Yoshiki Saito, Yasuhisa Ushida
  • Patent number: 7943964
    Abstract: An AlxGayIn1-x-yN crystal substrate of the present invention has a main plane having an area of at least 10 cm2. The main plane has an outer region located within 5 mm from an outer periphery of the main plane, and an inner region corresponding to a region other than the outer region. The inner region has a total dislocation density of at least 1×102 cm?2 and at most 1×106 cm?2. It is thereby possible to provide an AlxGayIn1-x-yN crystal substrate having a large size and a suitable dislocation density for serving as a substrate for a semiconductor device, a semiconductor device including the AlxGayIn1-x-yN crystal substrate, and a method of manufacturing the same.
    Type: Grant
    Filed: October 16, 2006
    Date of Patent: May 17, 2011
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Shinsuke Fujiwara, Tomoki Uemura, Takuji Okahisa, Koji Uematsu, Manabu Okui, Muneyuki Nishioka, Shin Hashimoto
  • Patent number: 7935985
    Abstract: A method for fabricating nitrogen-face (N-face) nitride-based electronic devices with low buffer leakage, comprising isolating a buffer from a substrate with an AlGaInN nucleation layer to suppress impurity incorporation from the substrate into the buffer. A method for fabricating N-face nitride-based electronic devices with low parasitic resistance and high breakdown, comprising capping a device structure with a conductive layer to provide extremely low access and/or contact resistances, is also disclosed.
    Type: Grant
    Filed: March 31, 2008
    Date of Patent: May 3, 2011
    Assignee: The Regents of the University of Califonia
    Inventors: Umesh K. Mishra, Yi Pei, Siddharth Rajan, Man Hoi Wong
  • Patent number: 7935987
    Abstract: Group III nitride layers have a wide range of uses in electronics and optoelectronics. Such layers are generally grown on substrates such as sapphire, SiC and recently Si(111). For the purpose inter alia of integration with Si-CMOS electronics, growth on Si(001) is indicated, which is possible only with difficulty because of the different symmetries and is currently limited solely to misoriented Si(001) substrates, which restricts the range of use. In addition, the layer quality is not at present equal to that produced on Si(111) material. Growth on exactly oriented Si(001) and an improvement in material quality can now be simply achieved by a modification of the surface structure possible with a plurality of methods.
    Type: Grant
    Filed: November 28, 2007
    Date of Patent: May 3, 2011
    Assignee: AZZURO Semiconductors AG
    Inventors: Fabian Schulze, Armin Dadgar, Alois Krost
  • Publication number: 20110095336
    Abstract: In one embodiment a lateral HEMT has a first layer, the first layer including a semiconducting material, and a second layer, the second layer including a semiconducting material and being at least partially arranged on the first layer. The lateral HEMT further has a passivation layer and a drift region, the drift region including a lateral width wd. The lateral HEMT further has at least one field plate, the at least one field plate being arranged at least partially on the passivation layer in a region of the drift region and including a lateral width wf, wherein wf<wd.
    Type: Application
    Filed: October 26, 2009
    Publication date: April 28, 2011
    Applicant: INFINEON TECHNOLOGIES AUSTRIA AG
    Inventors: Markus Zundel, Franz Hirler, Walter Rieger
  • Patent number: 7932539
    Abstract: A method of fabricating AlGaN/GaN enhancement-mode heterostructure field-effect transistors (HFET) using fluorine-based plasma immersion or ion implantation. The method includes: 1) generating gate patterns; 2) exposing the AlGaN/GaN heterostructure in the gate region to fluorine-based plasma treatment with photoresist as the treatment mask in a self-aligned manner; 3) depositing the gate metal to the plasma treated AlGaN/GaN heterostructure surface; 4) lifting off the metal except the gate electrode; and 5) high temperature post-gate annealing of the sample. This method can be used to shift the threshold voltage of a HFET toward a more positive value, and ultimately convert a depletion-mode HFET to an enhancement-mode HFET (E-HFET).
    Type: Grant
    Filed: November 29, 2006
    Date of Patent: April 26, 2011
    Assignee: The Hong Kong University of Science and Technology
    Inventors: Jing Chen, Yong Cai, Kei May Lau
  • Publication number: 20110089469
    Abstract: The present invention is related to a method for manufacturing a low defect interface between a dielectric material and an III-V compound. More specifically, the present invention relates to a method for manufacturing a passivated interface between a dielectric material and an III-V compound. The present invention is also directed to a device comprising a low defect interface between a dielectric material and an III-V compound that has improved performance.
    Type: Application
    Filed: October 1, 2010
    Publication date: April 21, 2011
    Applicant: IMEC
    Inventor: Clement Merckling
  • Publication number: 20110089445
    Abstract: The invention concerns a method for preparing a NIII-V semiconductor. According to the invention, the method includes at least one step of doping a semiconductor of general formula AlxGa1-xN, wherein the atomic number x represents the number between 0 and 1 with a p-type electron-accepting dopant, as well as a co-doping step with a codopant capable of modifying the structure of the valency band. The invention also concerns a semiconductor as well as its use in electronics or optoelectronics. The invention further concerns a device as well as a diode using such a semiconductor.
    Type: Application
    Filed: March 6, 2007
    Publication date: April 21, 2011
    Applicant: COMMISSARIAT A L'ENERGIE ATOMIQUE
    Inventors: Bruno Daudin, Henri Mariette
  • Publication number: 20110084311
    Abstract: According to one exemplary embodiment, a group III-V semiconductor device includes at least one transition layer situated over a substrate. The group III-V semiconductor device further includes a first strain-relieving interlayer situated over the at least one transition layer and a second strain-relieving interlayer situated over the first strain-relieving interlayer. The group III-V semiconductor device further includes a first group III-V semiconductor body situated over the second strain-relieving interlayer. The first and second strain-relieving interlayers comprise different semiconductor materials so as to reduce a strain in the first group III-V semiconductor body. The second strain-relieving interlayer can be substantially thinner than the first strain-relieving interlayer.
    Type: Application
    Filed: October 14, 2009
    Publication date: April 14, 2011
    Applicant: INTERNATIONAL RECTIFIER CORPORATION
    Inventors: Scott Nelson, Ronald Birkhahn, Brett Hughes
  • Publication number: 20110073887
    Abstract: Optoelectronic devices, junctions and methods of fabricating a device or junction where the emitter layer is of an indirect-band-gap material and the base layer is of a direct-band-gap material. The device or junction may have, among other structures and layers, a base layer of a first semiconductor material having a first conductivity type and further having a direct band gap and an emitter layer forming a junction with the base layer. In this embodiment, the emitter layer may be of a second semiconductor material having a second conductivity type and further having an indirect band gap. The optoelectronic device may have the semiconductor material of the emitter layer substantially lattice mismatched with the semiconductor material of the base layer in bulk form. Alternatively, the emitter layer may be substantially lattice matched with the base layer.
    Type: Application
    Filed: September 25, 2009
    Publication date: March 31, 2011
    Applicant: ALLIANCE FOR SUSTAINABLE ENERGY, LLC
    Inventors: MARK W. WANLASS, Angelo Mascarenhas
  • Patent number: 7915645
    Abstract: According to one disclosed embodiment, a monolithic vertically integrated composite device comprises a double sided semiconductor substrate having first and second sides, a group IV semiconductor layer formed over the first side and comprising at least one group IV semiconductor device, and a group III-V semiconductor body formed over the second side and comprising at least one group III-V semiconductor device electrically coupled to the at least one group IV semiconductor device. The composite device may further comprise a substrate via and/or a through-wafer via providing electric coupling. In one embodiment, the group IV semiconductor layer may comprise an epitaxial silicon layer, and the at least one group IV semiconductor device may be a combined FET and Schottky diode (FETKY) fabricated on the epitaxial silicon layer. In one embodiment, the at least one group III-V semiconductor device may be a III-nitride high electron mobility transistor (HEMT).
    Type: Grant
    Filed: May 28, 2009
    Date of Patent: March 29, 2011
    Assignee: International Rectifier Corporation
    Inventor: Michael A. Briere
  • Patent number: 7915152
    Abstract: A boule formed by high rate vapor phase growth of Group III-V nitride boules (ingots) on native nitride seeds, from which wafers may be derived for fabrication of microelectronic device structures. The boule is of microelectronic device quality, e.g., having a transverse dimension greater than 1 centimeter, a length greater than 1 millimeter, and a top surface defect density of less than 107 defects cm?2. The Group III-V nitride boule may be formed by growing a Group III-V nitride material on a corresponding native Group III-V nitride seed crystal by vapor phase epitaxy at a growth rate above 20 micrometers per hour. Nuclear transmutation doping may be applied to an (Al,Ga,In)N article comprises a boule, wafer, or epitaxial layer.
    Type: Grant
    Filed: February 2, 2010
    Date of Patent: March 29, 2011
    Assignee: Cree, Inc.
    Inventors: Robert P. Vaudo, Jeffrey S. Flynn, George R. Brandes, Joan M. Redwing, Michael A. Tischler
  • Patent number: 7915620
    Abstract: Disclosed is a light-emitting device. The light-emitting device includes an EL layer and a heat dissipation layer. The EL layer includes a first semiconductor layer, a second semiconductor layer, and an active layer, the first semiconductor layer having a first conductivity type that is one of n type and p type, the second semiconductor layer having a second conductivity type that is opposite to the first conductivity type, the active layer being provided between the first semiconductor layer and the second semiconductor layer. The heat dissipation layer has the first conductivity type and is bonded to a side of the EL layer closer to the second semiconductor layer than the first semiconductor layer.
    Type: Grant
    Filed: February 11, 2009
    Date of Patent: March 29, 2011
    Assignee: Sony Corporation
    Inventors: Yuichi Ishida, Kazuaki Yazawa, Norikazu Nakayama
  • Patent number: 7903708
    Abstract: A nitride semiconductor laser device uses a substrate with low defect density, contains reduced strains inside a nitride semiconductor film, and thus offers a satisfactorily long useful life. On a GaN substrate (10) with a defect density as low as 106 cm?2 or less, a stripe-shaped depressed portion (16) is formed by etching. On this substrate (10), a nitride semiconductor film (11) is grown, and a laser stripe (12) is formed off the area right above the depressed portion (16). With this structure, the laser stripe (12) is free from strains, and the semiconductor laser device offers a long useful life. Moreover, the nitride semiconductor film (11) develops reduced cracks, resulting in a greatly increased yield rate.
    Type: Grant
    Filed: July 30, 2004
    Date of Patent: March 8, 2011
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Takeshi Kamikawa, Eiji Yamada, Masahiro Araki, Yoshika Kaneko
  • Patent number: 7903710
    Abstract: A nitride semiconductor light-emitting device wherein a substrate or nitride semiconductor layer has a defect concentration region and a low defect density region other than the defect concentration region. A portion including the defect concentration region of the nitride semiconductor layer or substrate has a trench region deeper than the low defect density region. Thus by digging the trench in the defect concentration region, the growth detection is uniformized, and the surface planarity is improved. The uniformity of the characteristic in the wafer surface leads to improvement of the yield.
    Type: Grant
    Filed: February 19, 2010
    Date of Patent: March 8, 2011
    Assignees: Sharp Kabushiki Kaisha, Sumitomo Electric Industries, Ltd.
    Inventors: Takeshi Kamikawa, Yoshika Kaneko, Kensaku Motoki
  • Patent number: 7903707
    Abstract: A nitride semiconductor light-emitting device wherein a substrate or nitride semiconductor layer has a defect concentration region and a low defect density region other than the defect concentration region. A portion including the defect concentration region of the nitride semiconductor layer or substrate has a trench region deeper than the low defect density region. Thus by digging the trench in the defect concentration region, the growth detection is uniformized, and the surface planarity is improved. The uniformity of the characteristic in the wafer surface leads to improvement of the yield.
    Type: Grant
    Filed: May 27, 2004
    Date of Patent: March 8, 2011
    Assignees: Sharp Kabushiki Kaisha, Sumitomo Electric Industries, Ltd.
    Inventors: Takeshi Kamikawa, Yoshika Kaneko, Kensaku Motoki
  • Publication number: 20110049571
    Abstract: Provided is an epitaxial substrate capable of achieving a semiconductor device that has excellent schottky contact characteristics as well as satisfactory device characteristics. On a base substrate, a channel layer formed of a first group III nitride that contains at least Al and Ga and has a composition of Inx1Aly1Gaz1N (x1+y1+z1=1) is formed. On the channel layer, a barrier layer formed of a second group III nitride that contains at least In and Al and has a composition of Inx2Aly2Gaz2N (x2+y2+z2=1) is formed such that an In composition ratio of a near-surface portion is smaller than an In composition ratio of a portion other than the near-surface portion.
    Type: Application
    Filed: August 13, 2010
    Publication date: March 3, 2011
    Applicant: NGK Insulators, Ltd.
    Inventors: Makoto MIYOSHI, Yoshitaka Kuraoka, Shigeaki Sumiya, Mikiya Ichimura, Tomohiko Sugiyama, Mitsuhiro Tanaka
  • Publication number: 20110049572
    Abstract: The present invention provides a semiconductor device including: a base substrate; a semiconductor layer which is disposed on the base substrate and has a 2-Dimensional Electron Gas (2DEG) formed therewithin; a first ohmic electrode disposed on a central region of the semiconductor layer; a second ohmic electrode which is formed on the edge regions of the semiconductor layer in such a manner to be disposed to be spaced apart from the first ohmic electrodes, and have a ring shape surrounding the first ohmic electrode; and a Schottky electrode part which is formed on the central region to cover the first ohmic electrode and is formed to be spaced apart from the second ohmic electrode.
    Type: Application
    Filed: January 8, 2010
    Publication date: March 3, 2011
    Applicant: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventors: Woo Chul Jeon, Jung Hee Lee, Young Hwan Park, Ki Yeol Park
  • Publication number: 20110049573
    Abstract: A group III nitride semiconductor device and a group III nitride semiconductor wafer are provided. The group III nitride semiconductor device has a channel layer comprising group III nitride-based semiconductor containing Al. The group III nitride semiconductor device can enhance the mobility of the two-dimensional electron gas and improve current characteristics. The group III nitride semiconductor wafer is used to make the group III nitride semiconductor device. The group III nitride semiconductor wafer comprises a substrate made of AlXGa1?XN (0<X?1), a first AlGaN layer made of group III nitride-based semiconductor containing Al and disposed on the substrate, and a second AlGaN layer made of group III nitride-based semiconductor having a bandgap greater than the first AlGaN layer and disposed thereon. The full width at half maximum values of X-ray rocking curves for (0002) and (10-12) planes of the first AlGaN layer are less than 1000 arcseconds.
    Type: Application
    Filed: March 26, 2010
    Publication date: March 3, 2011
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Shin HASHIMOTO, Tatsuya TANABE, Katsushi AKITA, Hideaki NAKAHATA, Hiroshi AMANO
  • Publication number: 20110049544
    Abstract: Described herein is a method for manufacturing a nitride semiconductor layer by stacking, on a silicon nitride layer, the first nitride semiconductor layer having a surface inclined with respect to the surface of the silicon nitride layer and then stacking the second nitride semiconductor layer on the first nitride semiconductor layer, a nitride semiconductor element and a nitride semiconductor light-emitting element each including the nitride semiconductor layer; and a method for manufacturing the nitride semiconductor element.
    Type: Application
    Filed: August 3, 2010
    Publication date: March 3, 2011
    Applicant: Sharp Kabushiki Kaisha
    Inventor: Satoshi KOMADA
  • Publication number: 20110049574
    Abstract: A semiconductor device includes a first group III-V nitride semiconductor layer, a second group III-V nitride semiconductor layer having a larger band gap than the first group III-V nitride semiconductor layer and at least one ohmic electrode successively formed on a substrate. The ohmic electrode is formed so as to have a base portion penetrating the second group III-V nitride semiconductor layer and reaching a portion of the first group III-V nitride semiconductor layer disposed beneath a two-dimensional electron gas layer. An impurity doped layer is formed in portions of the first group III-V nitride semiconductor layer and the second group III-V nitride semiconductor layer in contact with the ohmic electrode.
    Type: Application
    Filed: November 2, 2010
    Publication date: March 3, 2011
    Applicant: PANASONIC CORPORATION
    Inventors: Hiroaki UENO, Manabu Yanagihara, Yasuhiro Uemoto, Tsuyoshi Tanaka
  • Publication number: 20110042721
    Abstract: Implementations of quantum well photovoltaic devices are provided. In one embodiment, a photovoltaic device includes an active layer that includes a first barrier layer, a well layer located on the first barrier layer and made of a nitride semiconductor, and a second barrier layer located on the well layer. A metal layer is located adjacent to the active layer.
    Type: Application
    Filed: August 21, 2009
    Publication date: February 24, 2011
    Applicant: UNIVERSITY OF SEOUL INDUSTRY COOPERATION FOUNDATION
    Inventor: Doyeol Ahn
  • Patent number: 7893461
    Abstract: In an electronic device of the present invention a gate Schottky electrode is formed on an active layer constructed of a GaN layer and an AlGaN layer, and a source ohmic electrode and a drain ohmic electrode are further formed on both sides of the gate Schottky electrode on the active layer. A dielectric layer (TiO2 layer) of a stepwise laminate structure is formed on the AlGaN layer so that the electric field distribution between the gate Schottky electrode and the drain ohmic electrode is substantially uniformed. The dielectric constant of TiO2 of the dielectric layer is made higher than the dielectric constant of GaN and AlGaN of the active layer.
    Type: Grant
    Filed: June 15, 2009
    Date of Patent: February 22, 2011
    Assignee: Sharp Kabushiki Kaisha
    Inventor: John Kevin Twynam
  • Publication number: 20110037101
    Abstract: A semiconductor device includes an undoped GaN layer (13), an undoped AlGaN layer (14), and a p-type GaN layer (15). In the p-type GaN layer (15), highly resistive regions (15a) are selectively formed. Resistance of the highly resistive regions (15a) can be increased by introducing a transition metal, for example, titanium.
    Type: Application
    Filed: March 27, 2009
    Publication date: February 17, 2011
    Inventors: Kazushi Nakazawa, Toshiyuki Takizawa, Tetsuzo Ueda, Daisuke Ueda
  • Publication number: 20110031534
    Abstract: There are provided a Si(1-v-w-x)CwAlxNv substrate that achieves high crystallinity and low costs, an epitaxial wafer, and manufacturing methods thereof. A method for manufacturing a Si(1-v-w-x)CwAlxNv substrate according to the present invention includes the steps of preparing a different type of substrate 11 and growing a Si(1-v-w-xCwAlxNv layer having a main surface on the different type of substrate 11. The component ratio x+v at the main surface of the Si(1-v-w-x)CwAlxNv layer is 0<x+v<1. The component ratio x+v increases or decreases monotonically from the interface between the Si(1-v-w-x)CwAlxNv layer and the different type of substrate 11 to the main surface of the Si(1-v-w-x)CwAlxNv layer. The component ratio x+v at the interface between the Si(1-v-w-x)CwAlxNv layer and the different type of substrate 11 is closer to that of the material of the different type of substrate 11 than the component ratio x+v at the main surface of the Si(1-v-w-x)CwAlxNv layer.
    Type: Application
    Filed: April 17, 2009
    Publication date: February 10, 2011
    Inventors: Issei Satoh, Michimasa Miyanaga, Shinsuke Fujiwara, HIdeaki Nakahata
  • Publication number: 20110024799
    Abstract: A method for manufacturing a compound semiconductor device includes forming a first compound semiconductor layer over a first substrate, the first compound semiconductor layer containing AlxGa1-xN (0?x<1) having a first band gap; forming a second compound semiconductor layer over the first compound semiconductor layer, the second compound semiconductor layer containing AlyInzGa1-y-zN (0<y<1, 0<y+z?1) having a second band gap larger than the first band gap; forming a compound semiconductor laminated structure over the second compound semiconductor layer; and removing the first compound semiconductor layer while irradiating the first compound semiconductor layer with light having an energy between the first band gap and the second band gap, separating the first substrate from the compound semiconductor laminated structure.
    Type: Application
    Filed: July 28, 2010
    Publication date: February 3, 2011
    Applicant: FUJITSU LIMITED
    Inventors: Yuichi Minoura, Toshihide Kikkawa
  • Patent number: 7880172
    Abstract: A unit cell of a metal-semiconductor field-effect transistor (MESFET) includes a semi-insulating substrate having a surface, an implanted n-type channel region in the substrate, and implanted source and drain regions extending from the surface of the substrate into the implanted channel region. A gate contact is between the source and the drain regions, and an implanted p-type region is beneath the source region. The implanted p-type region has an end that extends towards the drain region, is spaced apart vertically from the implanted channel layer, and is electrically coupled to the source region. Methods of forming transistors including implanted channels and implanted p-type regions beneath the source region are also disclosed.
    Type: Grant
    Filed: January 31, 2007
    Date of Patent: February 1, 2011
    Assignee: Cree, Inc.
    Inventors: Jason P. Henning, Allan Ward, Alexander Suvorov
  • Publication number: 20110018033
    Abstract: It is an objective of the present invention to form a favorable interface between an oxide layer and a group 3-5 compound semiconductor using a practical and simple method. Provided is a semiconductor wafer comprising a first semiconductor layer that is a group 3-5 compound not containing arsenic and that lattice matches or pseudo-lattice matches with InP; and a second semiconductor layer that is formed to contact the first semiconductor layer, is a group 3-5 compound semiconductor layer that lattice matches or pseudo-lattice matches with InP, and can be selectively oxidized relative to the first semiconductor layer.
    Type: Application
    Filed: March 26, 2009
    Publication date: January 27, 2011
    Applicants: SUMITOMO CHEMICAL COMPANY, LIMITED, THE UNIVERSITY OF TOKYO
    Inventors: Mitsuru Takenaka, Shinichi Takagi, Masahiko Hata, Osamu Ichikawa
  • Patent number: 7868415
    Abstract: An integrated circuit is described. The integrated circuit may have: an active area line formed of a material of a semiconductor substrate with a first longitudinal direction parallel to an upper surface of the semiconductor substrate; wherein the active area line has at least one form-supporting element extending in a second longitudinal direction parallel to the upper surface of the semiconductor substrate; and wherein the second longitudinal direction is arranged with regard to the first longitudinal direction in an angle unequal to 0 degree and unequal to 180 degree.
    Type: Grant
    Filed: July 23, 2008
    Date of Patent: January 11, 2011
    Assignee: Qimonda AG
    Inventors: Josef Willer, Michael Specht, Christoph Friederich, Doris Keitel-Schulz
  • Patent number: 7868335
    Abstract: A bipolar junction transistor having an emitter, a base, and a collector includes a stack of one or more layer sets adjacent the collector. Each layer set includes a first material having a first band gap, wherein the first material is highly doped, and a second material having a second band gap narrower than the first band gap, wherein the second material is at most lightly doped.
    Type: Grant
    Filed: August 18, 2008
    Date of Patent: January 11, 2011
    Assignee: HRL Laboratories, LLC
    Inventors: James Chingwei Li, Marko Sokolich, Tahir Hussain, David H. Chow
  • Publication number: 20110001167
    Abstract: A semiconductor-on-insulator hetero-structure and a method for fabricating the semiconductor-on-insulator hetero-structure include a crystalline substrate and a dielectric layer located thereupon having an aperture that exposes the crystalline substrate. The semiconductor-on-insulator hetero-structure and the method for fabricating the semiconductor-on-insulator hetero-structure also include a semiconductor layer of composition different than the crystalline substrate located within the aperture and upon the dielectric layer. A portion of the semiconductor layer located aligned over the aperture includes a defect. A portion of the semiconductor layer located aligned over the dielectric layer does not include a defect. Upon removing the portion of the semiconductor layer located aligned over the aperture a reduced defect semiconductor-on-insulator hetero-structure is formed.
    Type: Application
    Filed: July 1, 2009
    Publication date: January 6, 2011
    Applicant: International Business Machines Corporation
    Inventors: Stephen W. Bedell, Jeehwan Kim, Alexander Reznicek, Devendra K. Sadana
  • Patent number: 7863650
    Abstract: A process for fabricating a multilayer structure is provided as well as the structure itself. In accordance with one embodiment, the process includes growing a growth layer on a silicon substrate by epitaxial growth, forming at least one pattern from the growth layer, depositing an oxide layer on the silicon substrate, transferring a silicon active layer onto the oxide layer, forming a cavity in the silicon active layer oxide layer above the pattern, and growing a III-V material in the cavity.
    Type: Grant
    Filed: September 22, 2009
    Date of Patent: January 4, 2011
    Assignee: S.O.I. TEC Silicon on Insulator Technologies
    Inventor: Fabrice Letertre
  • Publication number: 20100320506
    Abstract: A high quality Group III-Nitride semiconductor crystal with ultra-low dislocation density is grown epitaxially on a substrate via a particle film with multiple vertically-arranged layers of spheres with innumerable micro- and/or nano-voids formed among the spheres. The spheres can be composed of a variety of materials, and in particular silica or silicon dioxide (SiO2).
    Type: Application
    Filed: November 25, 2008
    Publication date: December 23, 2010
    Applicant: Nanocrystal Corporation
    Inventors: Petros M. Varangis, Lei Zhang
  • Publication number: 20100314666
    Abstract: A nitride semiconductor device includes: a first layer made of a first nitride semiconductor; a second layer provided on the first layer and made of a second nitride semiconductor having a larger band gap than the first nitride semiconductor; a first electrode electrically connected to the second layer; a second electrode provided on the second layer and juxtaposed to the first electrode in a first direction; and a floating electrode provided on the second layer, the floating electrode including: a portion sandwiched by the second electrode in a second direction orthogonal to the first direction; and a portion protruding from the second electrode toward the first electrode.
    Type: Application
    Filed: April 9, 2010
    Publication date: December 16, 2010
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Wataru SAITO, Yasunobu SAITO, Takao NODA, Hidetoshi FUJIMOTO, Tetsuya OHNO
  • Publication number: 20100314625
    Abstract: Affords a GaN single-crystal mass, a method of its manufacture, and a semiconductor device and method of its manufacture, whereby when the GaN single-crystal mass is being grown, and when the grown GaN single-crystal mass is being processed into a substrate or like form, as well as when an at least single-lamina semiconductor layer is being formed onto a single-crystal GaN mass in substrate form to manufacture semiconductor devices, cracking is controlled to a minimum. The GaN single-crystal mass 10 has a wurtzitic crystalline structure and, at 30° C., its elastic constant C11 is from 348 GPa to 365 GPa and its elastic constant C13 is from 90 GPa to 98 GPa; alternatively its elastic constant C11 is from 352 GPa to 362 GPa.
    Type: Application
    Filed: June 10, 2010
    Publication date: December 16, 2010
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Hideaki NAKAHATA, Shinsuke FUJIWARA, Takashi SAKURADA, Yoshiyuki YAMAMOTO, Seiji NAKAHATA, Tomoki UEMURA
  • Patent number: 7851821
    Abstract: A group III nitride semiconductor device having a gallium nitride based semiconductor film with an excellent surface morphology is provided. A group III nitride optical semiconductor device 11a includes a group III nitride semiconductor supporting base 13, a GaN based semiconductor region 15, an active layer active layer 17, and a GaN semiconductor region 19. The primary surface 13a of the group III nitride semiconductor supporting base 13 is not any polar plane, and forms a finite angle with a reference plane Sc that is orthogonal to a reference axis Cx extending in the direction of a c-axis of the group III nitride semiconductor. The GaN based semiconductor region 15 is grown on the semipolar primary surface 13a. A GaN based semiconductor layer 21 of the GaN based semiconductor region 15 is, for example, an n-type GaN based semiconductor, and the n-type GaN based semiconductor is doped with silicon.
    Type: Grant
    Filed: February 26, 2010
    Date of Patent: December 14, 2010
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Takashi Kyono, Yusuke Yoshizumi, Yohei Enya, Katsushi Akita, Masaki Ueno, Takamichi Sumitomo, Takao Nakamura
  • Patent number: 7851825
    Abstract: Enhancement-mode III-nitride transistors are described that have a large source to drain barrier in the off state, low off state leakage, and low channel resistance in the access regions are described. The devices can include a charge depleting layer under the gate and/or a charge enhancing layer outside of the gate region, that is, in the access region.
    Type: Grant
    Filed: November 26, 2008
    Date of Patent: December 14, 2010
    Assignee: Transphorm Inc.
    Inventors: Chang Soo Suh, Ilan Ben-Yaacov, Robert Coffie, Umesh Mishra
  • Patent number: 7851824
    Abstract: A light emitting device includes: a light emitting layer; an n-type contact layer made of a compound provided on the light emitting layer; a composition modulation layer provided on the n-type contact layer; and a transparent electrode provided on the composition modulation layer. The composition modulation layer consists of a plurality of elements which constitute the compound. A composition ratio of one of the plurality of elements is higher in the composition modulation layer than in the compound. Alternatively, the light emitting device includes: a light emitting layer; an n-type contact layer made of a compound provided on the light emitting layer; a metal layer provided on the n-type contact layer; and a transparent electrode provided on the metal layer. The metal layer is made of a metal having a lower work function than the compound.
    Type: Grant
    Filed: September 26, 2006
    Date of Patent: December 14, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masato Sawada, Akihiro Ooishi
  • Patent number: 7847297
    Abstract: An ohmic contact in accordance with the invention includes a layer of p-type GaN-based material. A first layer of a group II-VI compound semiconductor is located adjacent to the layer of p-type GaN-based material. The ohmic contact further includes a metal layer that provides metal contact. A second layer of a different II-VI compound semiconductor is located adjacent to the metal layer.
    Type: Grant
    Filed: January 20, 2009
    Date of Patent: December 7, 2010
    Assignee: Avago Technologies ECBU IP (Singapore) Pte. Ltd.
    Inventors: Jeffrey N Miller, David P Bour, Virginia M Robbins, Steven D Lester
  • Publication number: 20100301396
    Abstract: According to one disclosed embodiment, a monolithic vertically integrated composite device comprises a double sided semiconductor substrate having first and second sides, a group IV semiconductor layer formed over the first side and comprising at least one group IV semiconductor device, and a group III-V semiconductor body formed over the second side and comprising at least one group III-V semiconductor device electrically coupled to the at least one group IV semiconductor device. The composite device may further comprise a substrate via and/or a through-wafer via providing electric coupling. In one embodiment, the group IV semiconductor layer may comprise an epitaxial silicon layer, and the at least one group IV semiconductor device may be a combined FET and Schottky diode (FETKY) fabricated on the epitaxial silicon layer. In one embodiment, the at least one group III-V semiconductor device may be a III-nitride high electron mobility transistor (HEMT).
    Type: Application
    Filed: May 28, 2009
    Publication date: December 2, 2010
    Applicant: INTERNATIONAL RECTIFIER CORPORATION
    Inventor: Michael A. Briere
  • Publication number: 20100301347
    Abstract: A semiconductor arrangement is provided that includes one or more substrate structures. One or more nitride-based material structures are used in fabricating nitride-based devices. One or more intermediary layers are interposed between the one or more substrate structures and the one or more nitride-based material structures. The one or more intermediary layers support the lattice mismatch and thermal expansion coefficients between the one or more nitride-based material structure and the one or more substrate structures. Several new electronic devices based on this arrangement are described.
    Type: Application
    Filed: June 1, 2009
    Publication date: December 2, 2010
    Inventors: Jinwook Chung, Han Wang, Tomas Palacios
  • Patent number: 7842974
    Abstract: A gallium nitride based semiconductor diode includes a substrate, a GaN layer formed on the substrate, an AlGaN layer formed on the GaN layer where the GaN layer and the AlGaN layer forms a cathode region of the diode, a metal layer formed on the AlGaN layer forming a Schottky junction therewith where the metal layer forms an anode electrode of the diode, and a high barrier region formed in the top surface of the AlGaN layer and positioned under an edge of the metal layer. The high barrier region has a higher bandgap energy than the AlGaN layer or being more resistive than the AlGaN layer.
    Type: Grant
    Filed: February 18, 2009
    Date of Patent: November 30, 2010
    Assignee: Alpha & Omega Semiconductor, Inc.
    Inventor: TingGang Zhu