With Wiring Channel Area Patents (Class 257/210)
  • Patent number: 7947972
    Abstract: Disclosed are a light emitting device. The light emitting device includes a first conductive semiconductor layer, a light emitting layer, a protective layer, a nano-layer and a second conductive semiconductor layer. The light emitting layer is formed on the first conductive semiconductor layer. The protective layer is formed on the light emitting layer. The nano-layer is formed on the protective layer. The second conductive semiconductor layer is formed on the nano-layer.
    Type: Grant
    Filed: April 1, 2009
    Date of Patent: May 24, 2011
    Assignee: LG Innotek Co., Ltd.
    Inventor: Yong-Tae Moon
  • Patent number: 7915647
    Abstract: A nonvolatile semiconductor memory concerning an example of the present invention comprises a cell array, a plurality of conducting wires extending from the cell array to a lead area, and a plurality of contact holes to arranged in the lead area so that a distance from the end of the cell array sequentially increases from one to the other of the plurality of conducting wires, each of the plurality of conducting wires having a first conducting wire portion having a first conducting wire width, a second conducting wire portion connected to the contact hole and having a second conducting wire width smaller than the first conducting wire width, and a third conducting wire portion electrically connecting the first conducting wire portion to the second conducting wire portion.
    Type: Grant
    Filed: September 20, 2007
    Date of Patent: March 29, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yoshiko Kato, Mitsuhiro Noguchi
  • Publication number: 20110068373
    Abstract: A semiconductor memory device according to an embodiment includes: a cell array block having, above a semiconductor substrate, a plurality of first and second wirings intersecting with one another, and a plurality of memory cells, the first and second wirings being separately formed in a plurality of layers in a perpendicular direction to the semiconductor substrate; and a first via wiring, connecting the first wiring in an n1-th layer of the cell array block with the first wiring in an n2-th layer, the semiconductor substrate or another metal wiring, and extending in a laminating direction of the cell array block. The first via wiring has a cross section orthogonal to the laminating direction of the cell array block. The cross section has an elliptical shape and a longer diameter in a direction perpendicular to the first wiring direction.
    Type: Application
    Filed: September 20, 2010
    Publication date: March 24, 2011
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Yoichi MINEMURA, Hiroyuki Nagashima
  • Patent number: 7911069
    Abstract: A semiconductor device and a layout method thereof are provided, each of which contributes to a reduction in layout area and appropriately adjusts an inter-wiring capacitance even where wiring widths and intervals in a plurality of wiring layers differ at a bus wiring comprised of the wiring layers. In the semiconductor device, a first functional block and a second functional block are connected to each other, and a plurality of wirings formed over their corresponding wiring layers are provided. The wiring layers have constant wiring widths and wiring intervals for every wiring layer. The number of wirings on each wiring layer is determined, at least in part, by multiplying (a) the total number of required wirings (for all wiring layers) by (b) a ratio of (i) a rate of wirings per unit length on the given layer versus (ii) the sum of the rates of wirings per unit length for each of the plurality of wiring layers.
    Type: Grant
    Filed: September 15, 2008
    Date of Patent: March 22, 2011
    Assignee: Oki Semiconductor Co., Ltd.
    Inventor: Michino Fuse
  • Patent number: 7816790
    Abstract: A semiconductor device includes a semiconductor substrate and low dielectric film wiring line laminated structure portions which are provided in regions on the semiconductor substrate except a peripheral portion thereof. Each of the laminated structure portions has a laminated structure of low dielectric films and a plurality of wiring lines. An insulating film is provided on an upper side of the laminated structure portion. Connection pad portions for electrodes are arranged on the insulating film to be electrically connected to the connection pad portions of uppermost wiring lines of the laminated structure portion. Bump electrodes for external connection are provided on the connection pad portions for the electrodes. A sealing film is provided on the insulating film and on the peripheral portion of the semiconductor substrate. Side surfaces of the laminated structure portions are covered with the insulating film or the sealing film.
    Type: Grant
    Filed: December 14, 2006
    Date of Patent: October 19, 2010
    Assignee: Casio Computer Co., Ltd.
    Inventors: Aiko Mizusawa, Osamu Okada, Takeshi Wakabayashi
  • Patent number: 7808017
    Abstract: A semiconductor integrated circuit having a first p-type MOS transistor; a first n-type MOS transistor; a second p-type MOS transistors; a and second n-type MOS transistors having fourth gate electrodes disposed so as to be adjacent to the second diffused regions of the first n-type MOS transistor. The semiconductor integrated circuit further having an absolute value of a threshold voltage of the second p-type MOS transistor being higher than an absolute value of a threshold voltage of the first p-type MOS transistor, and an absolute value of a threshold voltage of the second n-type MOS transistor being higher than an absolute value of a threshold voltage of the first n-type MOS transistor.
    Type: Grant
    Filed: February 1, 2010
    Date of Patent: October 5, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Mototsugu Hamada
  • Patent number: 7777222
    Abstract: Nanotube device structures and methods of fabrication. A method of making a nanotube switching element includes forming a first structure having at a first output electrode; forming second structure having a second output electrode; forming a conductive article having at least one nanotube, the article having first and second ends; positioning the conductive article between said first and second structures such that the first structure clamps the first and second ends of the article to the second structure, and such that the first and second output electrodes are opposite each other with the article positioned therebetween; providing at least one signal electrode in electrical communication with the conductive article; and providing at least one control electrode in spaced relation to the conductive article such that the control electrode may control the conductive article to form a conductive pathway between the signal electrode and the first output electrode.
    Type: Grant
    Filed: August 26, 2009
    Date of Patent: August 17, 2010
    Assignee: Nantero, Inc.
    Inventors: Claude L. Bertin, Thomas Rueckes, Brent M. Segal
  • Patent number: 7751273
    Abstract: A layout structure of a Sub-Word Line Driver (SWD) and a forming method thereof. A layout structure of an SWD may include first through fourth metal-oxide-semiconductor (MOS) transistors. The layout structure may include a first area including an active area of the first MOS transistor, wherein a gate-poly (GP) of the first MOS transistor may be disposed in a predefined direction over a portion of the first area. The layout structure may also include a second area including an active area of the second through fourth MOS transistors. Each GP of the second through fourth MOS transistors may be disposed in parallel to each other. The GP of the first MOS transistor disposed in the predefined direction may be substantially perpendicular to each GP of the second through fourth MOS transistors. The layout structure of an SWD can improve a driving capability without increasing an area of the chip.
    Type: Grant
    Filed: May 5, 2008
    Date of Patent: July 6, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Hyang-Ja Yang
  • Publication number: 20100140666
    Abstract: Semiconductor devices are provided including a plurality of L-shaped cell blocks each including,a cell array and a plurality of decoders disposed in horizontal and vertical directions of the cell array. The plurality of L-shaped cell blocks are oriented in a diagonal direction intersecting the horizontal and vertical directions. Related methods are also provided herein.
    Type: Application
    Filed: December 9, 2009
    Publication date: June 10, 2010
    Inventor: HongSik Yoon
  • Patent number: 7713819
    Abstract: A semiconductor device manufacturing method includes forming a first insulating film on a semiconductor substrate, forming a first conductor film on the first insulating film, forming a second insulating film on the first conductor film, forming a first line-and-space pattern by etching the second insulating film and the first conductor film, forming a etched region etched into a second line-and-space pattern perpendicular to the first line-and-space pattern by etching the second insulating film, the first conductor film, the first insulating film, and the semiconductor substrate, burying a third insulating film in the etched region, removing the second insulating film, forming a fourth insulating film on the first conductor film and the third insulating film, forming a second conductor film on the fourth insulating film, and forming a third line-and-space pattern parallel to the first line-and-space pattern by etching the second conductor film.
    Type: Grant
    Filed: April 24, 2007
    Date of Patent: May 11, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Mutsumi Okajima
  • Patent number: 7705698
    Abstract: A field effect transistor comprising a substrate; an electrically conducting channel within the substrate; an electrically conducting source on the substrate comprising a source finger; an electrically conducing drain on the substrate comprising a drain finger; the source and drain fingers being separated to define a path therebetween; at least one electrically conducting source/drain strip extending along the path; at least one rectifying gate strip extending along the path on each side of the source/drain strip, each gate strip being adapted to control the current flow in the conducting channel.
    Type: Grant
    Filed: June 28, 2007
    Date of Patent: April 27, 2010
    Assignee: RFMD (UK) Limited
    Inventor: Ronald Arnold
  • Patent number: 7687889
    Abstract: The present invention relates to a light emitting display device, such as an organic electroluminescent device, and a method for manufacturing the same. Particularly, the present invention relates to reducing electrical resistance between the scan lines and the cathode electrode layers so that scan line signals do not degrade significantly degrade. One way to achieve this is to use materials to form the conducting layers of the scan line and the cathode electrode layers such that the conductivities of the conducting layers and the cathode electrode layer are as identical as possible. For example, if a same metal such as aluminum is used to form both the conducting layer and the cathode electrode layer, the resistance would be significantly lowered. In addition, a large contacting area may be provided.
    Type: Grant
    Filed: December 27, 2005
    Date of Patent: March 30, 2010
    Assignee: LG Electronics Inc.
    Inventor: Hak Su Kim
  • Patent number: 7679106
    Abstract: A semiconductor integrated circuit having a substantially rectangular standard cell divided by first borderlines opposed to other standard cells longitudinally adjacent to the standard cell and second borderlines opposed to other standard cells laterally adjacent to the standard cell, the standard cell has: a p-type MOS transistor having first diffused regions and a first gate electrode; an n-type MOS transistor having second diffused regions and a second gate electrode with STI disposed for device isolation between the n-type MOS transistor and the p-type MOS transistor substantially in parallel with the first borderlines; dummy p-type MOS transistors having third gate electrodes disposed on the second borderlines so as to be adjacent to the first diffused regions of the p-type MOS transistor, the third gate electrodes being connected to power supply wiring so as to turn off the dummy p-type MOS transistors; and dummy n-type MOS transistors having fourth gate electrodes disposed on the second borderlines so
    Type: Grant
    Filed: May 5, 2008
    Date of Patent: March 16, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Mototsugu Hamada
  • Patent number: 7667254
    Abstract: Wiring is routed to assure insulation between wiring traces in a semiconductor integrated circuit device. The device includes a first wiring trace to which a prescribed voltage is supplied; a second wiring trace that takes on a voltage that exceeds the prescribed voltage; and a third wiring trace that only takes on a voltage less than the prescribed voltage. Alternatively, the device includes a first wiring trace to which a prescribed voltage is supplied; a second wiring trace that takes on a voltage less than the prescribed voltage; and a third wiring trace that takes on a voltage equal to or greater than the prescribed voltage. The wiring traces are routed at a certain wiring space in such a manner that the first wiring trace is interposed between the second and third wiring traces. The first wiring trace for which the potential difference is known to be small beforehand is routed so as to always be adjacent to the second wiring trace.
    Type: Grant
    Filed: July 6, 2006
    Date of Patent: February 23, 2010
    Assignee: NEC Electronics Corporation
    Inventor: Hiroshi Yamamoto
  • Publication number: 20100006905
    Abstract: To facilitate counting of memory cells in failure analysis, without limiting the arrangement of memory cells or increasing the number of processes. A memory cell array region 3 in which memory cells 3a are formed in a repetitive pattern is formed on a semiconductor substrate 2. Power supply wirings 4a and ground wirings 4b in a predetermined layer formed on the memory cell array region 3 are vertically and horizontally arranged in the form of a gird to correspond to the arrangement of the memory cells 3a at least in the memory cell array region 3.
    Type: Application
    Filed: July 2, 2009
    Publication date: January 14, 2010
    Applicant: NEC Electronics Corporation
    Inventor: Seiji HIRABAYASHI
  • Patent number: 7645693
    Abstract: A semiconductor device includes bit lines (14) provided in a semiconductor substrate (10), word lines (16) provided above the bit lines and running in a width direction of the bit lines (14), metal lines (22) provided above the word lines (16) and running in a length direction of the bit lines (14), and bit line contact regions (28) running in the length direction of the word lines (16) and located between word line regions (26) in which a plurality of word lines (16) are disposed. Each of the bit lines (14) is connected with every other metal line (22) in the bit line contact regions (28). It is thus possible to provide a semiconductor device and a fabrication method therefor in which an alignment margin can be ensured between a contact hole (18) and the bit line (14) to enable downsizing of a memory cell.
    Type: Grant
    Filed: April 27, 2006
    Date of Patent: January 12, 2010
    Assignee: Spansion LLC
    Inventor: Hiroshi Murai
  • Publication number: 20090283803
    Abstract: Electromechanical circuits, such as memory cells, and methods for making same are disclosed. The circuits include a structure having electrically conductive traces and supports extending from a surface of the substrate, and nanotube ribbons suspended by the supports that cross the electrically conductive traces, wherein each ribbon comprises one or more nanotubes. The electro-mechanical circuit elements are made by providing a structure having electrically conductive traces and supports, in which the supports extend from a surface of the substrate. A layer of nanotubes is provided over the supports, and portions of the layer of nanotubes are selectively removed to form ribbons of nanotubes that cross the electrically conductive traces. Each ribbon includes one or more nanotubes.
    Type: Application
    Filed: March 31, 2009
    Publication date: November 19, 2009
    Inventors: Brent M. Segal, Darren K. Brock, Thomas Rueckes
  • Publication number: 20090261386
    Abstract: A semiconductor integrated circuit device includes a first component, a second component, a plurality of first, second and third contacts, and a plurality of signal lines having a plurality of first wires, and connecting the first and second component, each of the first wires having a first, second, third and fourth part, each of the parts having a resistivity, the second part having a first resistivity, a different value of the first resistance being set for each of the plurality of first wires, the first, third and fourth parts having a second or third resistivity which is lower than the first resistivity, the first and second part being electrically connected in series by the first contact, the second and third part being electrically connected in series by the second contact, and the third and fourth part being electrically connected in series by the third contact.
    Type: Application
    Filed: April 20, 2009
    Publication date: October 22, 2009
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventor: Eiichi Makino
  • Patent number: 7592710
    Abstract: A bond pad structure of an integrated circuit is provided. The bond pad structure includes a conductive bond pad, a first dielectric layer underlying the bond pad, and an Mtop plate located in the first dielectric layer and underlying the bond pad. The Mtop plate is a solid conductive plate and is electrically coupled to the bond pad. The bond pad structure further includes a first passivation layer over the first dielectric layer wherein the first passivation layer has at least a portion under a middle portion of the bond pad. At least part of an active circuit is located under the bond pad.
    Type: Grant
    Filed: April 21, 2006
    Date of Patent: September 22, 2009
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chin-Chiu Hsia, Chih-Hsiang Yao, Tai-Chun Huang, Chih-Tang Peng
  • Publication number: 20090200579
    Abstract: A semiconductor device includes first lines extending in a first direction and formed in a first wiring layer in a predetermined arrangement order, second lines formed in a second wiring layer different from the first wring layer in the predetermined arrangement order, and contacts electrically connecting between the first lines and the second lines so as to match the arrangement order. In the semiconductor device, at least adjacent two tracks are defined in a linear manner parallel to a second direction perpendicular to the first direction. Then, each of the second lines includes a first line portion extending along one of the two tracks, a second line portion extending along another of the two tracks, and a connection portion connecting between the first and second line portions, while two or more of the contacts are formed at the connection portion.
    Type: Application
    Filed: February 4, 2009
    Publication date: August 13, 2009
    Applicant: Elpida Memory, Inc.
    Inventor: Kazuyuki Morishige
  • Patent number: 7554207
    Abstract: In a method of forming an electrically conductive lamination pattern, an insulating film is formed on a surface of a chromium-containing bottom layer, before an aluminum-containing top layer is formed over the insulating film, so that the insulating film separates the aluminum-containing top layer from the chromium-containing bottom layer. A first selective wet etching process is carried out for selectively etching the aluminum-containing top layer with a first etchant. A second selective wet etching process is carried out for selectively etching the chromium-containing bottom layer with a second etchant in the presence the insulating film which suppresses a hetero-metal-contact-potential-difference between the chromium-containing bottom layer and the aluminum-containing top layer during the second selective wet etching process.
    Type: Grant
    Filed: December 7, 2005
    Date of Patent: June 30, 2009
    Assignee: NEC LCD Technologies, Ltd.
    Inventors: Tsuyoshi Katoh, Syuusaku Kido, Akitoshi Maeda
  • Patent number: 7550790
    Abstract: A D/A conversion circuit with a small area is provided. In the D/A conversion circuit, according to a digital signal transmitted from address lines of an address decoder, one of four gradation voltage lines is selected. A circuit including two N-channel TFTs is connected in series to a circuit including two P-channel TFT, and a circuit including the circuits connected in series to each other is connected in parallel to each of the gradation voltage lines. Further, an arrangement of the circuit including the two N-channel TFTs and the circuit including the two P-channel TFTs is reversed for every gradation voltage line. By this, the crossings of wiring lines in the D/A conversion circuit becomes small and the area can be made small.
    Type: Grant
    Filed: February 22, 2007
    Date of Patent: June 23, 2009
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Jun Koyama, Mitsuaki Osame, Yukio Tanaka, Munehiro Azami, Naoko Yano, Shou Nagao
  • Publication number: 20090134431
    Abstract: A nonvolatile semiconductor storage apparatus includes: a plurality of first wirings; a plurality of second wirings which cross the plurality of first wirings; and a memory cell which is connected between both the wirings at an intersection of the first and second wirings, and includes a variable resistive element operative to store information according to a change in resistance and includes a variable resistive element, wherein the memory cell is formed so that a cross section area of the variable resistive element becomes smaller than a cross section area of the other portion.
    Type: Application
    Filed: November 21, 2008
    Publication date: May 28, 2009
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Hideyuki TABATA, Hiroyuki NAGASHIMA, Hirofumi INOUE, Kohichi KUBO, Masanori KOMURA
  • Patent number: 7528455
    Abstract: Disclosed is a semiconductor transistor for enhancing performance of PMOS and NMOS transistors, particularly current driving performance, while reducing a narrow width effect. A narrow width MOS transistor includes: a channel of which width is W0 and length is L0; an active area including source and drain areas formed at both sides with the channel as a center; a gate insulating layer formed on the channel; a gate conductor formed on the gate insulating layer and intersecting the active area; a first additional active area of width is larger than that W0 of the channel as an active area added to the source area; and a second additional active area of width is larger than that W0 of the channel as an active area added to the drain area. When the structure of the transistor having the additional active areas is applied to NMOS and PMOS transistors, a driving current is represented as 107.27% and 103.31%, respectively. Accordingly, the driving currents of both PMOS and NMOS transistors are enhanced.
    Type: Grant
    Filed: December 27, 2006
    Date of Patent: May 5, 2009
    Assignee: Dongbu Electronics Co., Ltd.
    Inventor: Jung Ho Ahn
  • Patent number: 7514728
    Abstract: In a semiconductor substrate of a first conductivity type, a first well region of the first conductivity type, second well regions of a second conductivity type, and a third well region of the second conductivity type are formed. The second well regions are formed in the semiconductor substrate excluding the region where the first well region has been formed. The third well region is formed under the first and second well regions in the semiconductor substrate in such a manner that a part of the third well region under the first well region is removed, thereby connecting the second well regions to one another electrically.
    Type: Grant
    Filed: November 30, 2007
    Date of Patent: April 7, 2009
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Takeshi Sugahara, Yasuhito Itaka
  • Patent number: 7511318
    Abstract: Electromechanical circuits, such as memory cells, and methods for making same are disclosed. The circuits include a structure having electrically conductive traces and supports extending from a surface of the substrate, and nanotube ribbons suspended by the supports that cross the electrically conductive traces, wherein each ribbon comprises one or more nanotubes. The electro-mechanical circuit elements are made by providing a structure having electrically conductive traces and supports, in which the supports extend from a surface of the substrate. A layer of nanotubes is provided over the supports, and portions of the layer of nanotubes are selectively removed to form ribbons of nanotubes that cross the electrically conductive traces. Each ribbon includes one or more nanotubes.
    Type: Grant
    Filed: November 19, 2007
    Date of Patent: March 31, 2009
    Assignee: Nantero, Inc.
    Inventors: Brent M. Segal, Darren K. Brock, Thomas Rueckes
  • Patent number: 7488996
    Abstract: A plurality of gate lines formed on an insulating substrate, each gate line including a pad for connection to an external device; a plurality of data lines intersecting the gate lines and insulated from the gate lines, each data line including a pad for connection to an external device; and a conductor overlapping at least one of the gate lines and the data lines are included. An overlapping distance of the gate lines or the data lines and a width of the conductor decreases as the length of the gate lines or the data lines increases. Accordingly, the difference in the RC delays due to the difference of the length of the signal lines is compensated to be reduced.
    Type: Grant
    Filed: June 28, 2005
    Date of Patent: February 10, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Jong-Woong Chang
  • Patent number: 7476915
    Abstract: A semiconductor integrated circuit effectively makes use of wiring channels of wiring formed by a damascene method. When first cells are used, since the M1 power source lines are laid out at positions spaced away from a boundary between the cells, the power source lines are not combined in laying out a semiconductor integrated circuit. As a result, the width of the power source lines is not changed. Accordingly, an interval between the line and a line which is arranged close to the line, determined in response to a line width of the lines, can satisfy a design rule; and, hence, the reduction of the wiring channels can be obviated, whereby the supply rate of the wiring channels can be enhanced, and, further, the integrity of a semiconductor chip can be enhanced.
    Type: Grant
    Filed: February 29, 2008
    Date of Patent: January 13, 2009
    Assignee: Renesas Technology Corp.
    Inventors: Masayuki Ohayashi, Takashi Yokoi
  • Patent number: 7468551
    Abstract: A chip package for semiconductor chips is provided by the method of forming a chip package includes the steps of forming a printed circuit board with a window therethrough; forming semiconductor chip connections of one or more primary chips which overlie the window to the printed circuit board by solder connections, locating a suspended semiconductor chip within the window, and connecting the suspended semiconductor chip to one or more primary chips overlying the window in a chip-on-chip connection. A bypass capacitor is formed on the printed circuit board.
    Type: Grant
    Filed: May 13, 2003
    Date of Patent: December 23, 2008
    Assignee: Megica Corporation
    Inventors: Mou-Shiung Lin, Bryan Peng
  • Patent number: 7456447
    Abstract: In a semiconductor integrated circuit device, a VDD wiring trace and a GND wiring trace are routed along an N-well and a P-well, respectively, within a substrate. A substrate-bias VDD2 wiring trace is routed in a direction that intersects the VDD wiring trace and GND wiring trace in the same layer thereof and is electrically connected thereto. A P+ diffusion layer is disposed in the N-well in the vicinity of a portion where the wiring directions of the VDD wiring trace and substrate-bias VDD2 wiring trace intersect and is electrically connected to the VDD wiring trace via a contact. An N+ diffusion layer is disposed in the P-well in the vicinity of a portion where the wiring directions of the GND wiring trace and substrate-bias VDD2 wiring trace intersect and is electrically connected to the GND wiring trace via a contact. The P+ diffusion layer is used as a wiring route regarding the VDD wiring trace and the N+ diffusion layer is used as a wiring route regarding the GND wiring trace.
    Type: Grant
    Filed: July 17, 2006
    Date of Patent: November 25, 2008
    Assignee: NEC Electronics Corporation
    Inventor: Kyoka Tatsumi
  • Patent number: 7446418
    Abstract: The semiconductor device has insulating films 40, 42 formed over a substrate 10; an interconnection 58 buried in at least a surface side of the insulating films 40, 42; insulating films 60, 62 formed on the insulating film 42 and including a hole-shaped via-hole 60 and a groove-shaped via-hole 66a having a pattern bent at a right angle; and buried conductors 70, 72a buried in the hole-shaped via-hole 60 and the groove-shaped via-hole 66a. A groove-shaped via-hole 66a is formed to have a width which is smaller than a width of the hole-shaped via-hole 66. Defective filling of the buried conductor and the cracking of the inter-layer insulating film can be prevented. Steps on the conductor plug can be reduced. Accordingly, defective contact with the upper interconnection layer and the problems taking place in forming films can be prevented.
    Type: Grant
    Filed: June 2, 2005
    Date of Patent: November 4, 2008
    Assignee: Fujitsu Limited
    Inventor: Kenichi Watanabe
  • Patent number: 7402846
    Abstract: An electrostatic discharge (ESD) protection structure is disclosed. The ESD protection structure includes an active device. The active device includes a plurality of drains. Each of the drains has a contact row and at least one body contact row. The at least one body contact row is located on the active device in a manner to reduce the amount of voltage required for triggering the ESD protection structure.
    Type: Grant
    Filed: October 20, 2005
    Date of Patent: July 22, 2008
    Assignee: Atmel Corporation
    Inventors: Stefan Schwantes, Michael Graf, Volker Dudek, Gayle W. Miller, Jr., Irwin Rathbun, Peter Grombach, Manfred Klaussner
  • Patent number: 7388260
    Abstract: Structures for spanning gap in body-bias voltage routing structure. In an embodiment, a structure is comprised of at least one metal wire.
    Type: Grant
    Filed: March 31, 2004
    Date of Patent: June 17, 2008
    Assignee: Transmeta Corporation
    Inventors: Robert P. Masleid, James B. Burr, Michael Pelham
  • Publication number: 20080116490
    Abstract: A sensing method includes exposing a nano-transducer having a controlled surface to a sample including at least one species. Adsorption of the species on the nano-transducer is transduced to a measurable signal as a function of time. Desorption of the species from the nano-transducer is also transduced to a measurable signal as a function of time. A residence time of the at least one species adsorbed on the nano-transducer is extracted from the measurable signals. The adsorption and desorption each define an individual measurable event.
    Type: Application
    Filed: October 19, 2006
    Publication date: May 22, 2008
    Inventors: Duncan R. Stewart, William M. Tong, R. Stanley Williams, Philip J. Kuekes, Sean Xiao-an Zhang, Kevin F. Peters, Kenneth J. Ward
  • Patent number: 7374986
    Abstract: In a field effect transistor (FET), and a method of fabricating the same, the FET includes a semiconductor substrate, source and drain regions formed on the semiconductor substrate, a plurality of wire channels electrically connecting the source and drain regions, the plurality of wire channels being arranged in two columns and at least two rows, and a gate dielectric layer surrounding each of the plurality of wire channels and a gate electrode surrounding the gate dielectric layer and each of the plurality of wire channels.
    Type: Grant
    Filed: September 21, 2007
    Date of Patent: May 20, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sungmin Kim, Ming Li, Eungjung Yoon
  • Patent number: 7368767
    Abstract: A standard cell is read from a library and automatic layout wiring is performed, thereby configuring a circuit. Next, each cell column in the configured circuit is searched for an empty region. In the empty region in the cell column searched for, a spacer cell or a filler cell is placed. At this time, using the spacer cell or filler cell, the well potential of the standard cells in the cell column is fixed.
    Type: Grant
    Filed: March 24, 2005
    Date of Patent: May 6, 2008
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Koichi Kinoshita, Yasuhito Itaka, Takeshi Sugahara
  • Patent number: 7365376
    Abstract: A semiconductor integrated circuit effectively makes use of wiring channels of wiring formed by a damascene method. When first cells are used, since the M1 power source lines are laid out at positions spaced away from a boundary between the cells, the power source lines are not combined in laying out a semiconductor integrated circuit. As a result, the width of the power source lines is not changed. Accordingly, an interval between the line and a line which is arranged close to the line, determined in response to a line width of the lines, can satisfy a design rule; and, hence, the reduction of the wiring channels can be obviated, whereby the supply rate of the wiring channels can be enhanced, and, further, the integrity of a semiconductor chip can be enhanced.
    Type: Grant
    Filed: September 14, 2006
    Date of Patent: April 29, 2008
    Assignee: Renesas Technology Corp.
    Inventors: Masayuki Ohayashi, Takashi Yokoi
  • Patent number: 7365377
    Abstract: In a semiconductor substrate of a first conductivity type, a first well region of the first conductivity type, second well regions of a second conductivity type, and a third well region of the second conductivity type are formed. The second well regions are formed in the semiconductor substrate excluding the region where the first well region has been formed. The third well region is formed under the first and second well regions in the semiconductor substrate in such a manner that a part of the third well region under the first well region is removed, thereby connecting the second well regions to one another electrically.
    Type: Grant
    Filed: June 27, 2005
    Date of Patent: April 29, 2008
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Takeshi Sugahara, Yasuhito Itaka
  • Patent number: 7358549
    Abstract: In accordance with the objectives of the invention a new method and structure is provided for the creation of multiple overlying layers of interconnect metal. A channel is reserved for the creation of via interconnects, no vias are placed on metal lines. The metal lines are stacked and parallel, whereby a space is provided between lines that is reserved for the creation of vias for layer interconnection. This structure can be repeated, the vias are placed on the therefore reserved channel, interconnections are provided to the interconnect traces.
    Type: Grant
    Filed: January 24, 2006
    Date of Patent: April 15, 2008
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventor: Tzong-Shi Jan
  • Patent number: 7352048
    Abstract: The present invention generally relates to filling of a feature by depositing a barrier layer, depositing a seed layer over the barrier layer, and depositing a conductive layer over the seed layer. In one embodiment, the seed layer comprises a copper alloy seed layer deposited over the barrier layer. For example, the copper alloy seed layer may comprise copper and a metal, such as aluminum, magnesium, titanium, zirconium, tin, and combinations thereof. In another embodiment, the seed layer comprises a copper alloy seed layer deposited over the barrier layer and a second seed layer deposited over the copper alloy seed layer. The copper alloy seed layer may comprise copper and a metal, such as aluminum, magnesium, titanium, zirconium, tin, and combinations thereof. The second seed layer may comprise a metal, such as undoped copper. In still another embodiment, the seed layer comprises a first seed layer and a second seed layer.
    Type: Grant
    Filed: February 22, 2005
    Date of Patent: April 1, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Hua Chung, Ling Chen, Jick Yu, Mei Chang
  • Patent number: 7345352
    Abstract: An insulating tube includes a underlying insulating film, a first sidewall insulating film disposed on the underlying insulating film, a second sidewall insulating film disposed on the underlying insulating film, opposite to the first sidewall insulating film so as to provide a cavity between the first and second sidewall insulating films having the same height as the first sidewall insulating film, and an upper insulating film provided over the first and second sidewall insulating films.
    Type: Grant
    Filed: March 9, 2007
    Date of Patent: March 18, 2008
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tsuyoshi Matsumura, Takahito Nakajima, Hiroshi Kawamoto, Mikie Miyasato, Yoshihiro Uozumi
  • Patent number: 7332817
    Abstract: A die metallization and bump design/arrangement, and a die-package interface metallization and bump design/arrangement are described herein.
    Type: Grant
    Filed: July 20, 2004
    Date of Patent: February 19, 2008
    Assignee: Intel Corporation
    Inventor: Edward A. Burton
  • Patent number: 7332753
    Abstract: A process margin of an interconnect is to be expanded, to minimize the impact of vibration generated during a scanning motion of a scanning type exposure equipment. In a semiconductor device, the interconnect handling a greater amount of data (frequently used interconnect) is disposed in a same orientation such that the longitudinal direction of the interconnects is aligned with a scanning direction of a scanning type exposure equipment, in an interconnect layer that includes a narrowest interconnect or a narrowest spacing between the interconnects. Aligning thus the direction of the vibration with the longitudinal direction of the pattern can minimize the positional deviation due to the vibration.
    Type: Grant
    Filed: September 27, 2005
    Date of Patent: February 19, 2008
    Assignee: NEC Electronics Corporation
    Inventors: Yoshihisa Matsubara, Hiromasa Kobayashi
  • Patent number: 7321139
    Abstract: A layout for a transistor in a standard cell is disclosed. The layout for a transistor includes an active region with at least one portion having a first edge and at least one portion having a second edge all perpendicular to a channel of the transistor; and a gate placed on top of the active region with a distance from an edge of the gate to the first edge being shorter than a distance from the edge of the gate to the second edge of the active region, wherein the active region is of a non-rectangular shape.
    Type: Grant
    Filed: May 26, 2006
    Date of Patent: January 22, 2008
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Mi-Chang Chang, Liang-Kai Han, Huan-Tsung Huang, Wen-Jya Liang, Li-Chun Tien
  • Publication number: 20070295995
    Abstract: A method of forming a buried interconnection includes removing a semiconductor substrate to form a groove in the semiconductor substrate. A metal layer is formed on inner walls of the groove using an electroless deposition technique. A silicidation process is applied to the substrate having the metal layer, thereby forming a metal silicide layer on the inner walls of the groove.
    Type: Application
    Filed: June 4, 2007
    Publication date: December 27, 2007
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jong-Ho Yun, Byung-Hee Kim, Dae-Yong Kim, Hyun-Su Kim, Eun-Ji Jung, Eun-Ok Lee
  • Patent number: 7274051
    Abstract: In a field effect transistor (FET), and a method of fabricating the same, the FET includes a semiconductor substrate, source and drain regions formed on the semiconductor substrate, a plurality of wire channels electrically connecting the source and drain regions, the plurality of wire channels being arranged in two columns and at least two rows, and a gate dielectric layer surrounding each of the plurality of wire channels and a gate electrode surrounding the gate dielectric layer and each of the plurality of wire channels.
    Type: Grant
    Filed: March 9, 2005
    Date of Patent: September 25, 2007
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sungmin Kim, Ming Li, Eungjung Yoon
  • Patent number: 7265396
    Abstract: A basic cell placed in a semiconductor device comprises a via contact placed on a wiring grid having a pitch narrower than a pitch between a contact placed in a source region and a contact placed in a drain region of a transistor in a basic cell, and a wiring layer connected to the via contact, being used as a source terminal, a drain terminal, and a gate terminal of the transistor.
    Type: Grant
    Filed: December 29, 2004
    Date of Patent: September 4, 2007
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Muneaki Maeno, Toshiki Morimoto, Hiroaki Suzuki
  • Patent number: 7259441
    Abstract: A pattern of voids in an integrated circuit having a first layer, a first layer surface and adjacent lands on the first layer surface, the adjacent lands enclosing spaces and including a second layer of a first isolation material and a third layer of a second isolation material arranged on the second layer. The pattern of voids has a fourth layer of a third isolation material which closes off at least some of the spaces and cannot be deposited on the first isolation material. The fourth layer is arranged on the third layer and has a second layer surface. Spaces that are not closed off by means of the fourth layer are filled with electrically conductive material. In the method for producing a pattern of voids in an integrated circuit, a second layer of a first isolation material is applied to a first layer surface of a first layer. A third layer of a second isolation material is applied to the second layer, the third layer acquiring a second layer surface which is arranged parallel to the first layer surface.
    Type: Grant
    Filed: February 15, 2002
    Date of Patent: August 21, 2007
    Assignee: Infineon Technologies AG
    Inventors: Werner Pamler, Siegfried Schwarzl, Zvonimir Gabric
  • Patent number: 7230286
    Abstract: A vertical FET structure with nanowire forming the FET channels is disclosed. The nanowires are formed over a conductive silicide layer. The nanowires are gated by a surrounding gate. Top and bottom insulator plugs function as gate spacers and reduce the gate-source and gate-drain capacitance.
    Type: Grant
    Filed: May 23, 2005
    Date of Patent: June 12, 2007
    Assignee: International Business Machines Corporation
    Inventors: Guy Moshe Cohen, Paul M. Solomon
  • Patent number: 7227254
    Abstract: A packaged IC includes an IC die with signal and signal complement traces positioned relative to each other to maximize broadside coupling for a matching impedance. The signal and signal complement traces are electrically connected to transmission or receive channels of the IC die. Use of a broadside coupled trace configuration alleviates routing congestion in an IC package and permits an IC to accommodate a greater number of channels within a given surface area than is possible under the prior art.
    Type: Grant
    Filed: April 2, 2002
    Date of Patent: June 5, 2007
    Assignee: Agilent Technologies, Inc.
    Inventors: Nurwati S Devnani, James Oliver Barnes, Charles E Moore, Benny W H Lai