Physical Deformation (e.g., Strain Sensor, Acoustic Wave Detector) Patents (Class 257/254)
  • Publication number: 20140239353
    Abstract: A method for fabricating a MEMS device includes depositing and patterning a first sacrificial layer onto a silicon substrate, the first sacrificial layer being partially removed leaving a first remaining oxide. Further, the method includes depositing a conductive structure layer onto the silicon substrate, the conductive structure layer making physical contact with at least a portion of the silicon substrate. Further, a second sacrificial layer is formed on top of the conductive structure layer. Patterning and etching of the silicon substrate is performed stopping at the second sacrificial layer. Additionally, the MEMS substrate is bonded to a CMOS wafer, the CMOS wafer having formed thereupon a metal layer. An electrical connection is formed between the MEMS substrate and the metal layer.
    Type: Application
    Filed: November 19, 2013
    Publication date: August 28, 2014
    Applicant: Invensense, Inc.
    Inventors: Michael Julian Daneman, Mei-Lin Chan, Martin Lim, Fariboz Assaderaghi, Erhan Polatkan Ata
  • Publication number: 20140239352
    Abstract: The present invention provides a CMOS compatible silicon differential condenser microphone and a method of manufacturing the same.
    Type: Application
    Filed: March 11, 2011
    Publication date: August 28, 2014
    Applicant: Goertek Inc.
    Inventor: Zhe Wang
  • Patent number: 8809917
    Abstract: Under one aspect, a covered nanotube switch includes: (a) a nanotube element including an unaligned plurality of nanotubes, the nanotube element having a top surface, a bottom surface, and side surfaces; (b) first and second terminals in contact with the nanotube element, wherein the first terminal is disposed on and substantially covers the entire top surface of the nanotube element, and wherein the second terminal contacts at least a portion of the bottom surface of the nanotube element; and (c) control circuitry capable of applying electrical stimulus to the first and second terminals. The nanotube element can switch between a plurality of electronic states in response to a corresponding plurality of electrical stimuli applied by the control circuitry to the first and second terminals. For each different electronic state, the nanotube element provides an electrical pathway of different resistance between the first and second terminals.
    Type: Grant
    Filed: July 29, 2009
    Date of Patent: August 19, 2014
    Assignee: Nantero Inc.
    Inventors: Claude L. Bertin, X. M. Henry Huang, Thomas Rueckes, Ramesh Sivarajan
  • Publication number: 20140225167
    Abstract: The disclosed technology relates generally to electromechanical devices, and relates more specifically to a nanoelectromechanical switch device and a method for manufacturing the same. In one aspect, an electromechanical device includes a first electrode stack and a second electrode stack, both electrode stacks extending in a vertical direction relative to a substrate surface and being spaced apart by a gap.
    Type: Application
    Filed: December 18, 2013
    Publication date: August 14, 2014
    Applicants: Katholieke Universiteit Leuven, IMEC
    Inventors: Ann Witvrouw, Maliheh Ramezani, Stefan Cosemans
  • Patent number: 8803261
    Abstract: A method of fabricating a micro-electrical-mechanical system (MEMS) transducer comprises the steps of forming a membrane on a substrate, and forming a back-volume in the substrate. The step of forming a back-volume in the substrate comprises the steps of forming a first back-volume portion and a second back-volume portion, the first back-volume portion being separated from the second back-volume portion by a step in a sidewall of the back-volume. The cross-sectional area of the second back-volume portion can be made greater than the cross-sectional area of the membrane, thereby enabling the back-volume to be increased without being constrained by the cross-sectional area of the membrane. The back-volume may comprise a third back-volume portion. The third back-volume portion enables the effective diameter of the membrane to be formed more accurately.
    Type: Grant
    Filed: March 10, 2014
    Date of Patent: August 12, 2014
    Assignee: Wolfson Microelectronics plc
    Inventors: Anthony Bernard Traynor, Richard Ian Laming, Tsjerk H. Hoekstra
  • Publication number: 20140217478
    Abstract: CMOS Ultrasonic Transducers and processes for making such devices are described. The processes may include forming cavities on a first wafer and bonding the first wafer to a second wafer. The second wafer may be processed to form a membrane for the cavities. Electrical access to the cavities may be provided.
    Type: Application
    Filed: February 4, 2014
    Publication date: August 7, 2014
    Applicant: Butterfly Network, Inc.
    Inventors: Jonathan M. Rothberg, Kieth G. Fife, Tyler S. Ralston, Gregory L. Charvat, Nevada J. Sanchez
  • Patent number: 8796791
    Abstract: Measures are proposed by which the design freedom is significantly increased in the case of the implementation of the micromechanical structure of the MEMS element of a component, which includes a carrier for the MEMS element and a cap for the micromechanical structure of the MEMS element, the MEMS element being mounted on the carrier via a standoff structure. The MEMS element is implemented in a layered structure, and the micromechanical structure of the MEMS element extends over at least two functional layers of this layered structure, which are separated from one another by at least one intermediate layer.
    Type: Grant
    Filed: May 7, 2013
    Date of Patent: August 5, 2014
    Assignee: Robert Bosch GmbH
    Inventors: Axel Franke, Patrick Wellner, Lars Tebje
  • Patent number: 8796746
    Abstract: A monolithically integrated MEMS pressure sensor and CMOS substrate using IC-Foundry compatible processes. The CMOS substrate is completed first using standard IC processes. A diaphragm is then added on top of the CMOS. In one embodiment, the diaphragm is made of deposited thin films with stress relief corrugated structure. In another embodiment, the diaphragm is made of a single crystal silicon material that is layer transferred to the CMOS substrate. In an embodiment, the integrated pressure sensor is encapsulated by a thick insulating layer at the wafer level. The monolithically integrated pressure sensor that adopts IC foundry-compatible processes yields the highest performance, smallest form factor, and lowest cost.
    Type: Grant
    Filed: July 7, 2009
    Date of Patent: August 5, 2014
    Assignee: mCube Inc.
    Inventor: Xiao (Charles) Yang
  • Patent number: 8785231
    Abstract: A semiconductor device includes a sensor portion, a cap portion, and an ion-implanted layer. The sensor portion has a sensor structure at a surface portion of a surface. The cap portion has first and second surfaces opposite to each other and includes a through electrode. The surface of the sensor portion is joined to the first surface of the cap portion such that the sensor structure is sealed between the sensor portion and the cap portion. The ion-implanted layer is located on the second surface of the cap portion. The through electrode extends from the first surface to the second surface and is exposed through the ion-implanted layer.
    Type: Grant
    Filed: January 24, 2013
    Date of Patent: July 22, 2014
    Assignee: DENSO CORPORATION
    Inventors: Kazuhiko Sugiura, Tetsuo Fujii, Hisanori Yokura
  • Patent number: 8779531
    Abstract: A microelectromechanical system (MEMS) assembly includes at least one emission source; a top wafer having a plurality of side walls and a generally horizontal portion, the horizontal portion having a thickness between a first side and a directly opposed second side, at least one window in the horizontal portion extending between the first and second sides and a transmission membrane across the at least one window; and a bottom wafer having a first portion with a first substantially planar surface, an intermediate surface directly opposed to the first substantially planar surface, a second portion with a second substantially planar surface, the at least one emission source provided on the second substantially planar surface; where the top wafer bonds to the bottom wafer at the intermediate surface and encloses a cavity within the top wafer and the bottom wafer.
    Type: Grant
    Filed: December 28, 2011
    Date of Patent: July 15, 2014
    Assignee: UTC Fire & Security Corporation
    Inventors: Joseph V. Mantese, Antonio M. Vincitore
  • Publication number: 20140175525
    Abstract: A semiconductor device includes a substrate, a first dielectric layer located above the substrate, a moving-gate transducer, and a proof mass. The moving-gate transducer is at least partially formed within the substrate and is at least partially formed within the first dielectric layer. The proof mass includes a portion of the first dielectric layer and a portion of a silicon layer. The silicon layer is located above the first dielectric layer.
    Type: Application
    Filed: December 17, 2013
    Publication date: June 26, 2014
    Applicant: Robert Bosch GmbH
    Inventors: Ando Feyh, Po-Jui Chen, Markus Ulm
  • Patent number: 8759887
    Abstract: To manufacture a micro structure and an electric circuit included in a micro electro mechanical device over the same insulating surface in the same step. In the micro electro mechanical device, an electric circuit including a transistor and a micro structure are integrated over a substrate having an insulating surface. The micro structure includes a structural layer having the same stacked-layer structure as a layered product of a gate insulating layer of the transistor and a semiconductor layer provided over the gate insulating layer. That is, the structural layer includes a layer formed of the same insulating film as the gate insulating layer and a layer formed of the same semiconductor film as the semiconductor layer of the transistor. Further, the micro structure is manufactured by using each of conductive layers used for a gate electrode, a source electrode, and a drain electrode of the transistor as a sacrificial layer.
    Type: Grant
    Filed: June 3, 2013
    Date of Patent: June 24, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Mayumi Yamaguchi, Konami Izumi
  • Patent number: 8759927
    Abstract: A hybrid integrated component including an MEMS element and an ASIC element is refined to improve the capacitive signal detection or activation. The MEMS element is implemented in a layered structure on a semiconductor substrate. The layered structure of the MEMS element includes at least one printed conductor level and at least one functional layer, in which the micromechanical structure of the MEMS element having at least one deflectable structural element is implemented. The ASIC element is mounted face down on the layered structure and functions as a cap for the micromechanical structure. The deflectable structural element of the MEMS element is equipped with at least one electrode of a capacitor system. At least one stationary counter electrode of the capacitor system is implemented in the printed conductor level of the MEMS element, and the ASIC element includes at least one further counter electrode of the capacitor system.
    Type: Grant
    Filed: May 10, 2013
    Date of Patent: June 24, 2014
    Assignee: Robert Bosch GmbH
    Inventors: Johannes Classen, Jens Frey
  • Publication number: 20140169078
    Abstract: A memory element includes a first piezotronic transistor coupled to a second piezotronic transistor; the first and second piezotronic transistors each comprising a piezoelectric (PE) material and a piezoresistive (PR) material, wherein an electrical resistance of the PR material is dependent upon an applied voltage across the PE material by way of an applied pressure to the PR material by the PE material.
    Type: Application
    Filed: December 19, 2012
    Publication date: June 19, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Bruce G. Elmegreen, Glenn J. Martyna, Dennis M. Newns, Paul M. Solomon
  • Patent number: 8754489
    Abstract: An ultrasonic transducer includes a first electrode, a first insulation film covering the first electrode, a hollow part overlapping the first electrode on the first insulation film, a second insulation film covering the hollow part, a second electrode overlapping the hollow part on the second insulation film, and an interconnection joined to the second electrode. An edge of the first electrode is formed so as to moderate a step of the first electrode.
    Type: Grant
    Filed: September 6, 2012
    Date of Patent: June 17, 2014
    Assignee: Hitachi, Ltd.
    Inventors: Shuntaro Machida, Hiroyuki Enomoto, Yoshitaka Tadaki
  • Publication number: 20140159122
    Abstract: At a pressure sensor region, a pressure sensor including a fixed electrode, a void and a movable electrode is formed. At a CMOS region, a memory cell transistor and a field effect transistor are formed. An etching hole communicating with the void is closed by a first sealing film. The void is formed by removing a region of a film identical to the film of a gate electrode of the memory cell transistor. The movable electrode is formed of a film identical to the film of a gate electrode.
    Type: Application
    Filed: September 13, 2013
    Publication date: June 12, 2014
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventor: Kimitoshi SATO
  • Patent number: 8749054
    Abstract: A monolithic power switch provides a semiconductor layer, a three dimensional FET formed in the semiconductor layer to modulate currents through the semiconductor layer, and a toroidal inductor with a ceramic magnetic core formed on the semiconductor layer around the FET and having a first winding connected to the FET.
    Type: Grant
    Filed: June 24, 2011
    Date of Patent: June 10, 2014
    Inventor: L. Pierre de Rochemont
  • Patent number: 8748999
    Abstract: A device includes a semiconductor substrate, and a capacitive sensor having a back-plate, wherein the back-plate forms a first capacitor plate of the capacitive sensor. The back-plate is a portion of the semiconductor substrate. A conductive membrane is spaced apart from the semiconductor substrate by an air-gap. A capacitance of the capacitive sensor is configured to change in response to a movement of the polysilicon membrane.
    Type: Grant
    Filed: April 20, 2012
    Date of Patent: June 10, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Bruce C. S. Chou, Jung-Kuo Tu, Chen-Chih Fan
  • Publication number: 20140145244
    Abstract: MEMS device for low resistance applications are disclosed. In a first aspect, the MEMS device comprises a MEMS wafer including a handle wafer with one or more cavities containing a first surface and a second surface and an insulating layer deposited on the second surface of the handle wafer. The MEMS device also includes a device layer having a third and fourth surface, the third surface bonded to the insulating layer of the second surface of handle wafer; and a metal conductive layer on the fourth surface. The MEMS device also includes CMOS wafer bonded to the MEMS wafer. The CMOS wafer includes at least one metal electrode, such that an electrical connection is formed between the at least one metal electrode and at least a portion of the metal conductive layer.
    Type: Application
    Filed: November 28, 2012
    Publication date: May 29, 2014
    Applicant: INVENSENSE, INC.
    Inventors: Michael J. DANEMAN, Martin LIM, Xiang LI, Li-Wen HUNG
  • Patent number: 8736000
    Abstract: A microfabricated capacitive chemical sensor can be used as an autonomous chemical sensor or as an analyte-sensitive chemical preconcentrator in a larger microanalytical system. The capacitive chemical sensor detects changes in sensing film dielectric properties, such as the dielectric constant, conductivity, or dimensionality. These changes result from the interaction of a target analyte with the sensing film. This capability provides a low-power, self-heating chemical sensor suitable for remote and unattended sensing applications. The capacitive chemical sensor also enables a smart, analyte-sensitive chemical preconcentrator. After sorption of the sample by the sensing film, the film can be rapidly heated to release the sample for further analysis. Therefore, the capacitive chemical sensor can optimize the sample collection time prior to release to enable the rapid and accurate analysis of analytes by a microanalytical system.
    Type: Grant
    Filed: October 19, 2006
    Date of Patent: May 27, 2014
    Assignee: Sandia Corporation
    Inventors: Ronald P. Manginell, Matthew W. Moorman, David R. Wheeler
  • Patent number: 8735948
    Abstract: A semiconductor device according to the present invention includes: a semiconductor substrate; a source region formed in a top layer portion of the semiconductor substrate; a drain region formed in the top layer portion of the semiconductor substrate and spaced apart from the source region; a gate electrode formed on the semiconductor substrate and opposing to an interval between the source region and the drain region; a wiring formed on the semiconductor substrate and connected to the source region, the drain region, or the gate electrode; and a MEMS sensor disposed on the semiconductor substrate. The MEMS sensor includes: a thin film first electrode made of the same material as the gate electrode and formed in the same layer as the gate electrode; and a second electrode made of the same material as the wiring, formed in the same layer as the wiring, and spaced apart from the first electrode at a side opposite to the semiconductor substrate side of the first electrode.
    Type: Grant
    Filed: November 13, 2008
    Date of Patent: May 27, 2014
    Assignee: Rohm Co., Ltd.
    Inventor: Goro Nakatani
  • Patent number: 8716852
    Abstract: A device includes a capping substrate bonded with a substrate structure. The substrate structure includes an integrated circuit structure. The integrated circuit structure includes a top metallic layer disposed on an outgasing prevention structure. At least one micro-electro mechanical system (MEMS) device is disposed over the top metallic layer and the outgasing prevention structure.
    Type: Grant
    Filed: February 17, 2012
    Date of Patent: May 6, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chia-Pao Shu, Chia-Ming Hung, Wen-Chuan Tai, Hung-Sen Wang, Hsiang-Fu Chen, Alex Kalnitsky
  • Patent number: 8710597
    Abstract: A method and structure for adding mass with stress isolation to MEMS. The structure has a thickness of silicon material coupled to at least one flexible element. The thickness of silicon material can be configured to move in one or more spatial directions about the flexible element(s) according to a specific embodiment. The apparatus also includes a plurality of recessed regions formed in respective spatial regions of the thickness of silicon material. Additionally, the apparatus includes a glue material within each of the recessed regions and a plug material formed overlying each of the recessed regions.
    Type: Grant
    Filed: April 19, 2011
    Date of Patent: April 29, 2014
    Assignee: mCube Inc.
    Inventor: Daniel N. Koury, Jr.
  • Patent number: 8703517
    Abstract: In a manufacturing method of a semiconductor device, a substrate including single crystalline silicon is prepared, a reformed layer that continuously extends is formed in the substrate, and the reformed layer is removed by etching. The forming the reformed layer includes polycrystallizing a portion of the single crystalline silicon by irradiating the substrate with a pulsed laser beam while moving a focal point of the laser beam in the substrate.
    Type: Grant
    Filed: October 24, 2011
    Date of Patent: April 22, 2014
    Assignee: DENSO CORPORATION
    Inventors: Atsushi Taya, Katsuhiko Kanamori, Masashi Totokawa
  • Patent number: 8704315
    Abstract: The present invention is directed to a CMOS integrated micromechanical device fabricated in accordance with a standard CMOS foundry fabrication process. The standard CMOS foundry fabrication process is characterized by a predetermined layer map and a predetermined set of fabrication rules. The device includes a semiconductor substrate formed or provided in accordance with the predetermined layer map and the predetermined set of fabrication rules. A MEMS resonator device is fabricated in accordance with the predetermined layer map and the predetermined set of fabrication rules. The MEMS resonator device includes a micromechanical resonator structure having a surface area greater than or equal to approximately 20 square microns. At least one CMOS circuit is coupled to the MEMS resonator member. The at least one CMOS circuit is also fabricated in accordance with the predetermined layer map and the predetermined set of fabrication rules.
    Type: Grant
    Filed: June 26, 2009
    Date of Patent: April 22, 2014
    Assignee: Cornell University
    Inventors: Jeevak M. Parpia, Harold G. Craighead, Joshua D. Cross, Bojan Robert Ilic, Maxim K. Zalalutdinov, Jeffrey W. Baldwin, Brian H. Houston
  • Patent number: 8697490
    Abstract: A flip chip interconnection structure is formed by mechanically interlocking joining surfaces of a first and second element. The first element, which may be a bump on an integrated circuit chip, includes a soft, deformable material with a low yield strength and high elongation to failure. The surface of the second element, which may for example be a substrate pad, is provided with asperities into which the first element deforms plastically under pressure to form the mechanical interlock.
    Type: Grant
    Filed: July 1, 2011
    Date of Patent: April 15, 2014
    Assignee: STATS ChipPAC, Ltd.
    Inventor: Rajendra D. Pendse
  • Patent number: 8698213
    Abstract: Pressure-sensitive amplifier stage comprising four unipolar pressure-sensor transistors each including a piezoresistive current path. The pressure-sensor transistors are connected as a pressure-measuring bridge having two bridge legs each comprising first and second pressure-sensor transistors which are connected in series. Two unipolar control transistors each has a control terminal and a current path arranged between a further first and a further second terminal. The respective first and second terminals of the two control transistors are connected in pairs, and the control terminals each is connected to a node between the pressure-sensor transistors. The interconnected second terminals are connected to the control terminals of the second pressure-sensor transistors of the two bridge legs.
    Type: Grant
    Filed: February 7, 2012
    Date of Patent: April 15, 2014
    Assignee: ELMOS Semiconductor AG
    Inventor: Wolfgang Buesser
  • Patent number: 8698256
    Abstract: A method of fabricating a micro-electrical-mechanical system (MEMS) transducer comprises the steps of forming a membrane on a substrate, and forming a back-volume in the substrate. The step of forming a back-volume in the substrate comprises the steps of forming a first back-volume portion and a second back-volume portion, the first back-volume portion being separated from the second back-volume portion by a step in a sidewall of the back-volume. The cross-sectional area of the second back-volume portion can be made greater than the cross-sectional area of the membrane, thereby enabling the back-volume to be increased without being constrained by the cross-sectional area of the membrane. The back-volume may comprise a third back-volume portion. The third back-volume portion enables the effective diameter of the membrane to be formed more accurately.
    Type: Grant
    Filed: May 24, 2013
    Date of Patent: April 15, 2014
    Assignee: Wolfson Microelectronics plc
    Inventors: Anthony Bernard Traynor, Richard Ian Laming, Tsjerk Hans Hoekstra
  • Publication number: 20140084349
    Abstract: A microelectronic component includes a semiconductor substrate having a top side and a reverse side, an elastically movable mass device on the top side of the substrate, at least one source region provided in or on the mass device, at least one drain region provided in or on the mass device, and a gate region suspended on a conductor track arrangement above the at least one source region and at least one drain region and spaced apart from the mass device by a gap. The conductor track arrangement is anchored on the top side of the substrate in a periphery of the mass device such that the gate region remains fixed when the mass device has been moved.
    Type: Application
    Filed: September 20, 2013
    Publication date: March 27, 2014
    Applicant: Robert Bosch GmbH
    Inventors: Christoph Schelling, Ando Feyh
  • Publication number: 20140077273
    Abstract: A mechanical memory transistor includes a substrate having formed thereon a source region and a drain region. An oxide is formed upon a portion of the source region and upon a portion of the drain region. A pull up electrode is positioned above the substrate such that a gap is formed between the pull up electrode and the substrate. A movable gate has a first position and a second position. The movable gate is located in the gap between the pull up electrode and the substrate. The movable gate is in contact with the pull up electrode when the movable gate is in a first position and is in contact with the oxide to form a gate region when the movable gate is in the second position. The movable gate, in conjunction with the source region and the drain region and when the movable gate is in the second position, form a transistor that can be utilized as a non-volatile memory element.
    Type: Application
    Filed: October 22, 2013
    Publication date: March 20, 2014
    Applicant: Massachusetts Institute of Technology
    Inventor: Carl O. Bozler
  • Publication number: 20140077272
    Abstract: A micromechanical sensor device with a movable gate includes a field effect transistor having a drain region, a source region, a channel region arranged between the field effect transistor and the source region and including a first doping type, and a movable gate. The movable gate is separated from the channel region by an interspace. The drain region, the source region, and the channel region are arranged in a substrate. An oxide region is provided in the substrate at least at longitudinal sides of the channel region.
    Type: Application
    Filed: September 9, 2013
    Publication date: March 20, 2014
    Applicant: Robert Bosch GmbH
    Inventors: Oleg Jakovlev, Alexander Buhmann, Ando Feyh
  • Publication number: 20140060210
    Abstract: A pressure sensor and a pressure sensing method are provided. The pressure sensor includes a substrate; a sensor thin film transistor (TFT) disposed on the substrate and including a gate insulating layer, wherein the gate insulating layer includes an organic matrix in which piezoelectric inorganic nano-particles are dispersed; a power unit configured to apply an alternating current (AC) signal to a gate of the sensor TFT; and a pressure sensing unit configured to obtain a remnant polarization value based on a drain current which is generated in response to the AC signal and detected by the sensor TFT, and to sense a pressure based on the remnant polarization value.
    Type: Application
    Filed: September 5, 2013
    Publication date: March 6, 2014
    Applicants: Sungkyunkwan University Foundation for Corporate Collaboration, SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Sang-hun JEON, Jong-jin PARK, Thanh Tien NGUYEN, Ji-hyun BAE, Kyung-eun BYUN, Nae-eung LEE, Do-il KIM, Quang Trung TRAN
  • Publication number: 20140061730
    Abstract: A cap and substrate having an electrical connection at a wafer level includes providing a substrate and forming an electrically conductive ground structure in the substrate and electrically coupled to the substrate. An electrically conductive path to the ground structure is formed in the substrate. A top cap is then provided, wherein the top cap includes an electrically conductive surface. The top cap is bonded to the substrate so that the electrically conductive surface of the top cap is electrically coupled to the path to the ground structure.
    Type: Application
    Filed: November 22, 2013
    Publication date: March 6, 2014
    Inventor: Jung-Huei Peng
  • Publication number: 20140054652
    Abstract: A stimulated phonon emission device of an embodiment is provided with a first electroconductive type of semiconductor substrate of an indirect transition type semiconductor crystal, a second electroconductive type of well region provided in the semiconductor substrate, an element isolation region deeper than the well region, an element region surrounded by the element isolation region, and a field-effect transistor having a plurality of gate electrodes which are formed in the well region in the element region, are parallel to each other, and are arranged at a constant pitch and first electroconductive type of source region and drain region provided in the element regions on the both sides of the gate electrode.
    Type: Application
    Filed: August 13, 2013
    Publication date: February 27, 2014
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Kazuhide ABE, Kazuhiko Itaya
  • Publication number: 20140048854
    Abstract: An embodiment of the disclosure discloses an in-cell touch panel having advantages such as a simple structure and a low cost. The in-cell touch panel comprises: a first substrate and a second substrate arranged oppositely, wherein a plurality of gate lines arranged horizontally are formed on the first substrate; the in-cell touch panel further comprises: a plurality of touch driving lines arranged horizontally; a plurality of touch sensing lines arranged vertically; and a plurality of touch scanning TFTs, wherein each touch scanning TFT has a gate connected to one gate line, a source connected to a touch driving circuit, and a drain connected to one touch driving line, the one gate line is only connected to the gate of one touch scanning TFT; wherein, the number of the gate lines?the number of the touch scanning TFTs?the number of the touch driving lines.
    Type: Application
    Filed: August 15, 2013
    Publication date: February 20, 2014
    Applicant: Beijing BOE Optoelectronics Technology Co., Ltd.
    Inventors: Haisheng Wang, Xue Dong, Cheng Li, Xiaoliang Ding, Hongjuan Liu, Shengji Yang, Weijie Zhao, Yingming Liu, Tao Ren
  • Publication number: 20140042498
    Abstract: A substrate-through electrical connection (10) for connecting components on opposite sides of a substrate, and a method for making same. The connection includes a substrate-through via made from substrate material (10?). There is a trench (11) provided surrounding the via, the walls of the trench being coated with a layer of insulating material (12) and the trench (11) is filled with conductive or semi-conductive material (13). A doping region (15) for threshold voltage adjustment is provided in the via material in the surface of the inner trench wall between insulating material (12) and the material (10?) in the via. There are contacts (17?, 17?) to the via on opposite sides of the substrate, and a contact (18) to the conductive material (13) in the trench (11) so as to enable the application of a voltage to the conductive material (13).
    Type: Application
    Filed: April 19, 2012
    Publication date: February 13, 2014
    Applicant: SILEX Microsystems AB
    Inventor: Ulf Erlesand
  • Publication number: 20140042497
    Abstract: A semiconductor physical quantity sensor includes (i) a semiconductor substrate having a first conductive type, (ii) a diaphragm portion disposed in the semiconductor substrate, (iii) a sensing portion disposed in the diaphragm portion, (iv) a well layer having a second conductive type, and (v) a back flow prevention element. The well layer is disposed in a surface portion of the semiconductor substrate, and corresponds to the diaphragm portion. The back flow prevention element is provided by a MOSFET, a JFET, a MESFET, or a HEMT. The back flow prevention element includes two second conductive diffused portions and a gate electrode. The back flow prevention element is arranged on a first electrical wiring, which provides a passage for applying a predetermined voltage to the well layer from an external circuit. The back flow prevention element turns on based on a voltage applied to the gate electrode.
    Type: Application
    Filed: August 2, 2013
    Publication date: February 13, 2014
    Applicant: DENSO CORPORATION
    Inventors: Masaya TANAKA, Hisanori YOKURA
  • Patent number: 8648431
    Abstract: According to one embodiment, an acoustic semiconductor device includes an element unit, and a first terminal. The element unit includes an acoustic resonance unit. The acoustic resonance unit includes a semiconductor crystal. An acoustic standing wave is excitable in the acoustic resonance unit and is configured to be synchronously coupled with electric charge density within at least one portion of the semiconductor crystal via deformation-potential coupling effect. The first terminal is electrically connected to the element unit. At least one selected from outputting and inputting an electrical signal is implementable via the first terminal. The electrical signal is coupled with the electric charge density. The outputting the electrical signal is from the acoustic resonance unit, and the inputting the electrical signal is into the acoustic resonance unit.
    Type: Grant
    Filed: August 29, 2011
    Date of Patent: February 11, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kazuhide Abe, Tadahiro Sasaki, Atsuko Iida, Kazuhiko Itaya, Takashi Kawakubo
  • Patent number: 8642986
    Abstract: An integrated circuit (IC) having a microelectromechanical system (MEMS) device buried therein is provided. The integrated circuit includes a substrate, a metal-oxide semiconductor (MOS) device, a metal interconnect, and the MEMS device. The substrate has a logic circuit region and a MEMS region. The MOS device is located on the logic circuit region of the substrate. The metal interconnect, formed by a plurality of levels of wires and a plurality of vias, is located above the substrate to connect the MOS device. The MEMS device is located on the MEMS region, and includes a sandwich membrane located between any two neighboring levels of wires in the metal interconnect and connected to the metal interconnect.
    Type: Grant
    Filed: September 23, 2009
    Date of Patent: February 4, 2014
    Assignee: United Microelectronics Corp.
    Inventors: Tzung-Han Tan, Bang-Chiang Lan, Ming-I Wang, Tzung-I Su, Chien-Hsin Huang, Hui-Min Wu, Chao-An Su, Min Chen, Meng-Jia Lin
  • Patent number: 8643128
    Abstract: The present invention discloses an MEMS sensor and a method for making the MEMS sensor. The MEMS sensor according to the present invention includes: a substrate including an opening; a suspended structure located above the opening; and an upper structure, a portion of which is at least partially separated from a portion of the suspended structure; wherein the suspended structure and the upper structure are separated from each other by a step including metal etch.
    Type: Grant
    Filed: February 24, 2009
    Date of Patent: February 4, 2014
    Assignee: Pixart Imaging Incorporation
    Inventor: Chuan Wei Wang
  • Patent number: 8624380
    Abstract: A vertical mount pre-molded type package for use with a MEMS sensor may be formed with a low moisture permeable molding material that surrounds a portion of the leadframes and forms a cavity in which one or multiple dies may be held. The package includes structures to reduce package vibration, reduce die stress, increase vertical mount stability, and improve solder joint reliability. The vertical mount package includes a first leadframe having first leads and molding material substantially surrounding at least a portion of the first leads. The molding material forms a cavity for holding the MEMS sensor and forms a package mounting plane for mounting the package on a base. The cavity has a die mounting plane that is substantially non-parallel to the package mounting plane. The first leads are configured to provide electrical contacts within the cavity and to provide electrical contacts to the base.
    Type: Grant
    Filed: May 7, 2012
    Date of Patent: January 7, 2014
    Assignee: Analog Devices, Inc.
    Inventors: Xiaojie Xue, Carl Raleigh, Thomas M. Goida
  • Publication number: 20130328109
    Abstract: A device including a NEMS/MEMS machine(s) and associated electrical circuitry. The circuitry includes at least one transistor, preferably JFET, that is used to: (i) actuate the NEMS/MEMS machine; and/or (ii) receive feedback from the operation of the NEMS/MEMS machine The transistor (e.g., the JFET) and the NEMS/MEMS machine are monolithically integrated for enhanced signal transduction and signal processing. Monolithic integration is preferred to hybrid integration (e.g., integration using wire bonds, flip chip contact bonds or the like) due to reduce parasitics and mismatches. In one embodiment, the JFET is integrated directly into a MEMS machine, that is in the form of a SOI MEMS cantilever, to form an extra-tight integration between sensing and electronic integration. When a cantilever connected to the JFET is electrostatically actuated; its motion directly affects the current in the JFET through monolithically integrated conduction paths (e.g., traces, vias, etc.
    Type: Application
    Filed: December 1, 2011
    Publication date: December 12, 2013
    Applicant: CORNELL UNIVERSITY
    Inventors: Amit Lal, Kwame Amponsah
  • Patent number: 8592875
    Abstract: A semiconductor gas sensor is provided that includes a semiconductor body with a passivation layer formed on a surface of thereof. A gas-sensitive control electrode is separated from a channel region by a gap or a control electrode is arranged as a first plate of a capacitor with a gap and a second plate of the capacitor is connected to a gate of the field effect transistor implemented as a Capacitively Controlled Field Effect Transistor. The control electrode has is connected to a reference voltage. A support area is provided with a first support structure and a second support structure. A contact area is provided on the surface of the semiconductor body. A first contact region has a frictional connection and an electrical connection with the control electrode and the second contact region has at least a frictional connection with the control electrode.
    Type: Grant
    Filed: November 21, 2012
    Date of Patent: November 26, 2013
    Assignee: Micronas GmbH
    Inventors: Christoph Wilbertz, Heinz-Peter Frerichs, Tobias Kolleth
  • Patent number: 8592876
    Abstract: A micro-electro-mechanical system (MEMS), methods of forming the MEMS and design structures are provided. The method comprises forming a coplanar waveguide (CPW) comprising a signal electrode and a pair of electrodes on a substrate. The method comprises forming a first sacrificial material over the CPW, and a wiring layer over the first sacrificial material and above the CPW. The method comprises forming a second sacrificial material layer over the wiring layer, and forming insulator material about the first sacrificial material and the second sacrificial material. The method comprises forming at least one vent hole in the insulator material to expose portions of the second sacrificial material, and removing the first and second sacrificial material through the vent hole to form a cavity structure about the wiring layer and which exposes the signal line and pair of electrodes below the wiring layer. The vent hole is sealed with sealing material.
    Type: Grant
    Filed: January 3, 2012
    Date of Patent: November 26, 2013
    Assignee: International Business Machines Corporation
    Inventors: Hanyi Ding, Qizhi Liu, Anthony K. Stamper
  • Patent number: 8592877
    Abstract: Embodiments of embedded MEMS sensors and related methods are described herein. Other embodiments and related methods are also disclosed herein.
    Type: Grant
    Filed: June 14, 2012
    Date of Patent: November 26, 2013
    Assignee: Arizona Board of Regents, a body corporate of the State of Arizona, Acting for and on behalf of Arizona State University
    Inventors: Narendra V. Lakamraju, Sameer M. Venugopal
  • Publication number: 20130307030
    Abstract: To manufacture a micro structure and an electric circuit included in a micro electro mechanical device over the same insulating surface in the same step. In the micro electro mechanical device, an electric circuit including a transistor and a micro structure are integrated over a substrate having an insulating surface. The micro structure includes a structural layer having the same stacked-layer structure as a layered product of a gate insulating layer of the transistor and a semiconductor layer provided over the gate insulating layer. That is, the structural layer includes a layer formed of the same insulating film as the gate insulating layer and a layer formed of the same semiconductor film as the semiconductor layer of the transistor. Further, the micro structure is manufactured by using each of conductive layers used for a gate electrode, a source electrode, and a drain electrode of the transistor as a sacrificial layer.
    Type: Application
    Filed: June 3, 2013
    Publication date: November 21, 2013
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Mayumi Yamaguchi, Konmai Izumi
  • Patent number: 8587077
    Abstract: A compact MEMS motion sensor device is provided, including a CMOS substrate layer, with plural anchor posts having an isolation oxide layer surrounding a conductive layer. On one side of the CMOS substrate layer, the device further includes a field oxide (FOX) layer, a first set and a second set of implant doped silicon areas, a first polysilicon layer, an oxide layer embedded with plural metal layers interleaved with via hole layers, a Nitride deposition layer, an under bump metal (UBM) layer and a plurality of solder spheres. On the other side of the CMOS substrate layer, it further includes a backside interconnect isolation oxide layer, a first MEMS bonding layer, a first metal compound layer, a second MEMS bonding layer, a MEMS layer, a first MEMS eutectic bonding layer, a second metal compound layer, a second MEMS eutectic bonding layer, and a MEMS cap layer.
    Type: Grant
    Filed: January 2, 2012
    Date of Patent: November 19, 2013
    Assignee: WindTop Technology Corp.
    Inventor: Kun-Lung Chen
  • Patent number: 8587078
    Abstract: A fabricating method of integrated circuit is provided. During the fabricating process of an interconnecting structure of the integrated circuit, a micro electromechanical system (MENS) diaphragm is formed between two adjacent dielectric layers of the interconnecting structure. The method of forming the MENS diaphragm includes the following steps. Firstly, a plurality of first openings is formed within any dielectric layer to expose corresponding conductive materials of the interconnecting structure. Secondly, a bottom insulating layer is formed on the dielectric layer and filling into the first openings. Third, portions of the bottom insulating layer located in the first openings are removed to form at least a first trench for exposing the corresponding conductive materials. Then, a first electrode layer and a top insulating layer are sequentially formed on the bottom insulating layer, and the first electrode layer filled into the first trench and is electrically connected to the conductive materials.
    Type: Grant
    Filed: April 6, 2010
    Date of Patent: November 19, 2013
    Assignee: United Microelectronics Corp.
    Inventors: Chien-Hsin Huang, Li-Che Chen, Ming-I Wang, Bang-Chiang Lan, Tzung-Han Tan, Hui-Min Wu, Tzung-I Su
  • Publication number: 20130285122
    Abstract: According to one embodiment, an electronic device includes a drive circuit on a semiconductor substrate, an insulating region including a first insulating part provided on the semiconductor substrate and formed of interlayer insulating films, and a second insulating part provided on the first insulating part, an element for a high-frequency provided on the insulating region and driven by the drive circuit, an interconnect including a first conductive part in the first insulating part, and a second conductive part in the second insulating part, and transmitting a drive signal from the drive circuit to the element, a first shield provided inside the insulating region and below the element, and a second shield provided inside the insulating region and below the second conductive part.
    Type: Application
    Filed: March 14, 2013
    Publication date: October 31, 2013
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventor: Hiroaki Yamazaki
  • Patent number: 8569089
    Abstract: Semiconductor nano-devices, such as nano-probe and nano-knife devices, which are constructed using graphene films that are suspended between open cavities of a semiconductor structure. The suspended graphene films serve as electro-mechanical membranes that can be made very thin, from one or few atoms in thickness, to greatly improve the sensitivity and reliability of semiconductor nano-probe and nano-knife devices.
    Type: Grant
    Filed: August 31, 2012
    Date of Patent: October 29, 2013
    Assignee: International Business Machines Corporation
    Inventor: Wenjuan Zhu